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Abstract: Bicarbonyl-substituted sulfur ylide is a useful,

but inert reagent in organic synthesis. Usually, harsh reac-
tion conditions are required for its transformation. For the

first time, it was demonstrated that a new, visible-light
photoredox catalytic annulation of sulfur ylides under ex-

tremely mild conditions, permits the synthesis of oxindole

derivatives in high selectivities and efficiencies. The key to
its success is the photocatalytic single-electron-transfer

(SET) oxidation of the inert amide and acyl-stabilized
sulfur ylides to reactive radical cations, which easily pro-

ceeds with intramolecular C¢H functionalization to give
the final products.

Since the pioneering work in 1960s,[1] sulfur ylides have been

a kind of privileged reagents in the field of carbocycle and het-
erocycle synthesis.[2] The unique reactivity of this broadly ap-

plied reagent is based on its carbanion structure, which is sta-
bilized by an adjacent sulfonium ion. The additional delocaliza-
tion of the carbanion by electron-withdrawing groups such as
keto, ester, and amide groups makes this type of reagent more

bench-stable, practical, and functionalized (Scheme 1). Howev-
er, with these benefits, the sulfur ylides with double-electron-

deficient functional groups usually exhibit low reactivity. Thus,
notably few successful cyclizations of such sulfur ylides have
been disclosed and harsh conditions (e.g. , heating and Lewis

acid catalysis) and highly electron-deficient alkenes are usually
required.[3] In 2012, Maulide and co-workers reported an im-

pressive annulation reaction of dicarbonyl-stabilized sulfur
ylides and alkynes under mild conditions by subtly applying

the strategy of gold catalysis to activate the sulfur ylide accept-

ors (Scheme 1a).[4a, 5] Importantly, this strategy is general and
can be widely applied to many other transformations of al-

kenes and allenes with stable sulfur ylides.[4b–e] In contrast to
this strategy, we recently questioned whether such sulfur

ylides themselves could be activated by a single-electron-trans-
fer (SET) oxidation using visible-light photoredox catalysis,

forming radical-cation-type electrophiles for annulation reac-

tions.

The photochemical reactions of sulfur ylides remain under-
developed because of their poor selectivity and because they
typically require high-energy UV irradiation.[6] For example,

Jenks’ group in 2007 reported that diester-stabilized sulfur

ylides could be photolysed at 254 nm to generate active car-

bene intermediates (Scheme 1 b).[6e] These active species easily
react with excess cyclohexene to produce cyclopropanation or

allylation products, with moderate chemoselectivities. Recently,
visible-light-induced photocatalysis has been widely applied in

organic synthesis to construct many kinds of heterocyclic com-
pounds.[7] For example, Yu’s group reported a very nice work

on the synthesis of oxindoles by visible-light photoredox catal-

ysis with the bromosubstituted analogue acting as the
quenching reagent.[8] As part of our research program on het-

erocycle syntheses[9] using sulfur ylides and visible-light photo-
catalysis, we developed a new annulation reaction of amide

and acyl-stabilized sulfur ylides for the first time (Scheme 1 c).
This process provides an alternative route to biologically signif-

icant 3-acyl oxindole products[10] under extremely mild reaction

conditions. Notably, the construction of oxindoles has been an
important platform to develop new reaction methodologies,
including visible-light photocatalysis strategy with diazo,[9g]

and N-arylacrylamide compounds[11] as starting materials.

We first examined this visible-light-driven photochemical re-
action with amide- and acetyl-stabilized sulfur ylide 1 a as the

model substrate. The reaction was performed in THF at room
temperature with [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (abbreviation:
[Ir] ; E/1/2 = + 1.21 versus saturated calomel electrode (SCE) in

CH3CN; dF(CF3)ppy = 2-(2,4-difluorophenyl)-5-trifluoromethyl-
pyridine; dtbbpy = 4,4’-di-tert-butyl-2,2’-bipyridine)[7f] as the

photocatalyst (PC). The starting material 1 a was completely
consumed after 7 h, and the enol-formed 3-acetyl oxindole

product 2 a was obtained. Although the product contained

some unconfirmed impurities, this problem was well resolved
by adding 2.0 equivalents of KH2PO4,[12] and the pure product

2 a was obtained in 82 % yield under a prolonged reaction
time (Table 1, entry 1). The solvent effect was further investi-

gated, but no better result was obtained in other reaction
media. For example, ether solvents such as dioxane and diethyl

Scheme 1. Reactivity of dicarbonyl-stabilized sulfur ylides.
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ether provided the product in 62 and 44 % yield, respectively,

at the level of full conversion (entries 2–3). Solvents such as
CH2Cl2, DMF, and MeCN did not efficiently furnish the transfor-
mation and delivered the desired product 2 a in modest to

moderate yields (entries 4–6). Alcohol solvents such as isopro-
panol and ethanol were also studied; however, only 15 % yield
or a trace amount of 2 a was detected, with most of the start-
ing material intact (entries 7 and 8). We next evaluated numer-

ous other photocatalysts for this transformation. For example,
Mes-Acr, which has a high oxidative potential in its excited

state[13] to catalyse the oxidative transformation of alkenes, sul-
finates, 2H-azirines, and carboxylic acids, only accomplished
this annulation reaction in a low yield (entry 9, 17 % yield).

Other photosensitizers such as organic dye Eosin Y[13] and
metal complexes fac-[Ir(ppy)3] and [Ru(bpy)3(PF6)2][7f] did not re-

spond to the optimized reaction conditions. Finally, the control
experiments revealed that visible light and the photocatalyst

were indispensable elements for the present annulation reac-

tion of sulfur ylides (entries 13 and 14). When the photochemi-
cal annulation of 1 a was performed under an air atmosphere,

this reaction system was complex and no desired product was
observed (entry 15).

After having determined the optimal conditions, we evaluat-
ed the scope of sulfur ylides that could participate in this visi-

ble-light-induced photocatalytic annulation reaction. As out-

lined in Table 2, the tolerance of substituent groups on the ni-
trogen atom was first investigated. The results show that these

mild reaction conditions tolerate a series of substituents, such

as methyl, phenyl, benzyl, and p-methoxylbenzyl, and produce
the corresponding oxindole products with large variations on

the nitrogen atom (2 a–d : 62–64 %). The Boc-protected (Boc =

tert-butoxycarbonyl) substrate (1 e) did not react under opti-
mized conditions. We then selected N-methyl amide-stabilized
sulfur ylides to further study the electronic and steric effect on

the benzene ring of aniline. Consequently, a wide range of
substituted patterns on the aromatic ring was found to be
compatible with these photoredox catalysis conditions. For ex-
ample, all sulfur ylides with halogen atoms (e.g. , Cl and F) and
electron-donating groups (e.g. , MeO and Me) on the benzene

ring can be converted into the corresponding products in
moderate to good yields (2 f–i : 52–80 % yields). When a methyl

group was substituted on the ortho-position of the nitrogen
atom, the 7-methyl oxindole derivative 2 j was isolated in 77 %
yield; when two substituents were introduced (e.g. , Me and

CF3) at the meta-positions, ketone-formed oxindole derivatives
2 k and 2 l were obtained in 92 and 46 % yield, respectively.

We further evaluated the diversity of the acyl group on
sulfur ylides (R3). For example, sulfur ylides with aryl- and het-

Table 1. Optimization of the photochemical annulation of 1 a.[a]

Entry Photocatalyst (E1/2
ox) Solvent Result [%][b]

1 [Ir] (+ 1.21 V) THF 82
2 [Ir] (+ 1.21 V) dioxane 62
3 [Ir] (+ 1.21 V) Et2O 44
4 [Ir] (+ 1.21 V) CH2Cl2 40
5 [Ir] (+ 1.21 V) DMF 20
6 [Ir] (+ 1.21 V) CH3CN 24
7 [Ir] (+ 1.21 V) iPrOH 15
8 [Ir] (+ 1.21 V) EtOH trace
9 Mes-Acr (+ 2.06 V) THF 17
10 Eosin Y (+ 0.83 V) THF NR
11 [Ru(bpy)3(PF6)2] (+ 0.77 V) THF NR
12 fac-[Ir(ppy)3] (+ 0.31 V) THF NR
13[c] [Ir] (+ 1.21 V) THF NR
14 – THF NR
15[d] [Ir] (+ 1.21 V) THF 0

[a] Conditions: sulfur ylide 1 a (0.3 mmol), KH2PO4 (2.0 equiv), PC
(2 mol %), solvent (6.0 mL), Ar atmosphere, 3 W blue-LEDs irradiation, rt,
16 h. [b] Isolated yields. [c] Without visible light. [d] Air atmosphere. NR =

No reaction. DMF = N,N-Dimethylformamide. bpy = 2,2’-Bipyridine. ppy
= 2-phenylpyridine.

Table 2. Photochemical annulation: Sulfur ylide scope.[a]

[a] Conditions: sulfur ylide 1 (0.3 mmol), KH2PO4 (2.0 equiv), [Ir] (2 mol %),
THF (6.0 mL), Ar atmosphere, 3 W blue-LEDs irradiation, rt, indicated time;
isolated yields. NR = No reaction. PMB = p-Methoxylbenzyl.
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eroaryl-substituted acyls were also useful and were trans-
formed into oxindole products in acceptable yields (2 m : R3 =

phenyl, 57 % yield; 2 n : R3 = 2-furanyl, 56 % yield). In the case
of aliphatic substituents, this transformation can also convert

the sulfur ylides into the desired products in satisfactory yields
(e.g. , 2 o : R3 = benzyl, 72 % yield; 2 p : R3 = cyclopropyl, 67 %

yield). In addition to the acyl moieties on sulfur ylides, other
electron-withdrawing groups were demonstrated to be suc-
cessful for this visible-light-induced photochemical annulation.

For example, when the sulfur ylides with an ester group (1 q)
or a benzenesulfonyl group (1 r) were subjected to the stan-

dard conditions, 3-ester oxindole 2 q and 3-sulfonyl oxindole
2 r were produced in 70 and 48 % yield, respectively [Eqs. (1)
and (2)] .

We then selected 3-acetyl oxindole 2 a as a versatile

platform for further synthetic manipulations. For in-
stance, as highlighted in Scheme 2, 20 mol % of chiral

amine catalyst 3, 40 mol % of trifluoroacetic acid, and

2.0 equivalents of benzalacetone 4 were added to
the reaction mixture after full conversion of the start-

ing material 1 a and replacement of the solvents. As
a result, this two-step, one-pot operation rapidly pro-

duced the chiral spirocyclic oxindole 5 in good yield
with excellent enantio- and diastereocontrol (63 %

yield, 94 % ee, >20:1 d.r.).[14] This sequence of photo-

catalytic annulation and organocatalytic asymmetric
Michael addition/aldol condensation undoubtedly
demonstrates the synthetic utility of the present visi-
ble-light-driven photochemical reaction of sulfur

ylides.
To better understand this photochemical annula-

tion of sulfur ylides, we propose a possible reaction
mechanism as illustrated in Scheme 3. The photoca-
talyst [Ir] is well known to readily absorb a photon

under blue-LEDs irradiation to generate the excited
photocatalyst [Ir]*, which has a strong oxidation po-

tential.[7f] Sulfur ylide 1 a, which is a special carbanion,
is assumed to be oxidized by the excited state of the

photocatalyst [Ir]* to form the sulfonium-ion-connect-

ed radical species A (SET oxidation), which can be sta-
bilized by the adjacent amide and acetyl groups. Pre-

sumably, species A is highly electrophonic and readily
undergoes an intramolecular radical addition to the

benzene ring to forge a new chemical bond, which
concomitantly generates the radical intermediate B.

After the generation of intermediate B, two possible pathways
are proposed. In path a, an SET reduction of B by the strong

reducing reagent [Ir]¢ delivers a transient radical intermediate
C and simultaneously closes the photoredox catalytic cycle.[15]

Intermediate C is then converted into ketone-formed 3-acetyl
oxindole 2 a’ through a 1,2-hydrogen shift/aromatization pro-

cess. Finally 2 a’ spontaneously transforms into the more
stable, enol-formed product 2 a through a tautomerization pro-
cess. In path b, KH2PO4 promotes the elimination process to

furnish the intermediate D with its resonance form E. They
could then be reduced by the photocatalyst and reprotonated
to give the final compound 2 a.

To support this proposed redox-neutral photocatalytic pro-
cess, we first characterized substrate 1 a in CH3CN using CV,
which revealed the oxidation potential of 1 a to be + 0.99 V

versus SCE.[16] Hence, the SET oxidation of sulfur ylide 1 a by

the excited state of [Ir]* (+ 1.21 V vs. SCE) should be thermody-
namically favourable. We then carried out the fluorescence

quenching experiment with 1 a, and substrate 1 a can unam-
biguously quench the excited [Ir]*.[16] Moreover, the quantum

yields (F) of the process were measured at four stages of con-
version,[17] which were 2, 4, 6, and 8 min, respectively and the

corresponding quantum yields were 28, 29, 28, and 30 %.[16]

Quantum yields of these magnitudes (F<1) support the feasi-
bility of the proposed mechanism, although it cannot com-

Scheme 2. Synthetic manipulation: asymmetric synthesis of chiral spirocyclic oxindole 5.

Scheme 3. Possible reaction mechanism.
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pletely rule out the chain propagation process. In addition, the
reaction was completely shut down by the addition of 2,2,6,6-

tetramethylpiperidine N-oxide (TEMPO), which suggests that
radicals were involved in this photochemical annulation reac-

tion of sulfur ylides. On the other hand, in order to rule out
the generation of the carbene intermediate through an

energy-transfer pathway,[9g] we added 2.0 equivalents of 1,4-
diazobicyclo[2.2.2]octane (DABCO), an electron-donating
quencher of the photocatalyst,[6d] to the model reaction under
the standard conditions. As a result, no reaction occurred after
16 h with sulfur ylide 1 a remaining. In addition, according to
Schuster’s work,[6d] carbene intermediate was easily reacted by
an O¢H insertion reaction in the presence of excess alcohols.

However, except for the observation of a small amount of the
product 2 a, a large amount of the starting material 1 a is still

intact in the alcohol solvents (Table 1, entries 7–8). Therefore,

we believed that the carbene intermediate was less likely in-
volved in this reaction based on the current experimental evi-

dence.
In conclusion, we have developed a new, visible-light photo-

redox catalytic annulation reaction of sulfur ylides. This photo-
chemical process enables the synthesis of oxindole derivatives

in high selectivity and efficiency under extremely mild reaction

conditions. Its success relies on the activation of inert dicar-
bonyl-stabilized sulfur ylides by photocatalytic SET oxidation,

which generates reactive radical species that easily induce the
intramolecular C¢H functionalizations. We believe that the

strategy of visible-light photoredox catalysis will pave the way
to exploit a new annulation chemistry of sulfur ylides.

Experimental Section

General

To a 10 mL Schlenk tube equipped with a magnetic stirrer bar was
added 1 (0.3 mmol, 1.0 equiv), KH2PO4 (0.6 mmol, 2.0 equiv), [Ir]
(2 mol %), and THF (6 mL). The resulting mixture was degassed
through a ‘freeze-pump-thaw’ procedure three times, and then the
solution was stirred at room temperature under irradiation of 3 W
blue LEDs. Upon the completion of the cycloaddition, as moni-
tored by TLC analysis, the isolated yield was determined by flash
chromatography on silica gel (petroleum ether/EtOAc = 4:1).
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