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Abstract: This work featureshe base-promoteah watersynthesis of [1,6]-naphthyridines from
methyl ketones, malononitrile and phenols or thidlge reaction conditions were carefully tuned
to drive the product selectivity fromH3pyrroles to [1,6]-naphthyridines. The advantagethis
method lie in its simplicity, cost effectivenessidaenvironmental friendliness, representing a
new effort towards theon water synthesis of [1,6]-naphthyridines without startifpm a

nitrogen-containing heterocycle and highlighting tlersatility of the nitrile functional group.
INTRODUCTION

Multicomponent reactions (MCR’@)b provide effective tools for combinatorial syntleeti
chemistry because highly diverse compound libraces be prepared via convenient one-pot

procedures. Attention is often focused on naturatipct scaffolds and drug-like molecufés,
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with particular emphasis on heterocyclic compoufidsAs a consequence, multicomponent
reactions and related domino reactions have redeiueh recent attentioh.

Water is known to enhance the rates and tataffiee selectivity of a wide variety of organic
reactions: Even when rate accelerations are modest, watelide®wadvantages of large heat
capacity, making exothermic processes safer an@ seective, and easily isolation of organic
compounds.

Functionalized [1,6]-naphthyridines and their béhetero-fused analogues have attracted
much attention from synthetic and medicinal vievinge® Naphthyridine derivatives are widely
used for various pharmacological purposes (Figyreuth as antiproliferative activifyHIV-1
integrase inhibition, allosteric inhibition of Akt and Akg,® and selective antagonism of 5-HT
receptors.

The majority of the synthetic strategies towtrese unitSshave relied on condensation of 2-
amino pyridine derivatives with carbonyl compourmdstaining an active methylene group or
with B-keto esterS. Transition metal mediated cyclotrimerisation o&ldynyl nitriles has also
been recognized as a general method toward [1@jthgridines® in addition to the common
approach of Lewis acid catalysis of intramolectiatero Diels-Alder reactions of aldiminés.
Many of these methods suffer from the use of meftissequences, expensive catalysts,
hazardous organic solvents, inert atmosphere, Hgngtaction time, and laborious worktip.
Moreover, there are only a few reports of the seanghd convenient synthesis of this moiety

from readily available and inexpensive startingeriats’**°
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19 Figure 1. Examples of biologically active 1,6-naphthyridines
22 RESULTSAND DISCUSSION

25 We explored the use of phenols and thiols as syntbo an unprecedented coupling with

methyl ketones and malononitrile to create highlpsdituted [1,6]-naphthyridines (Scheme 1).
30 In previous work;> we have used ketones, malononitrile and alipteatimes for the synthesis of

32 [1,6]-naphthyridines. While no base other than teactant amine was required, the method
reported here needs an additional base catalypense 2 shows the use of triethylamine as
37 catalysis for a one-pot, pseudo-five-component rsgis of 1,2-dihydro[1,6]-naphthyridines

39 from ketones, malononitrile and phenols in the eentlly solvent water. The products were
41 well characterized byH NMR, *C NMR, 2D NMR, FTIR, elemental analysis, meltingjirgo

a4 determination, and X-ray crystallographic analysis.
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Scheme 1. Previous® and present approaches to substituted [1,6]-nkgptigines.

Our previous work

o ||4 NH,
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flux N Z N
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2 mmol 2 mmol 1 mmol H CN
Our present work
o R NH,
)J\ . NC/\CN . ?H Et3N (0.2 mmol) H = SN
—_—
R™ CHs RS H,0 2 mL),4h HsC | _
R = aryl, alkyl reflux R N ONQ =5
2 mmol 2 mmol 1 mmol H CN
R = H, alkyl, aryl
B i R NH,
0 Et3;N (0.2 mmol) 1 h, reflux H
N\ 8 ) ' = N
H,O (2 mL), 4 h H3C _
SH N S
reflux s R | “R6
R = aryl, alkyl c R H CN
2mmol 2 mmol B N | 1mmol R®=H, alkyl, aryl
Scheme 2. Pseudo-five component synthesis of [1,6]-napdiyes
XH R NH
0 Et3N (0.2 mmol) H
M 2 Ny AN
R™CHg* NCT CN*+ > LC |
\J H0@mL),4h Hs _
\ ., reflux RN X
R H CN R!
1 2 3 (X=0) 4 (X=0)
2 mmol 2 mmol 1 mmol 30 Examples

Optimization of Reaction Conditions
To optimize the reaction conditions, a series ofpeginents were conducted with a
representative reaction of 4-chloro acetophen&{ig) (2 mmol), malononitrileZ{1}) (2 mmol)

and 4-tert-butyl-pheno(3{10}) (1 mmol) with variation of reaction parametersieTresults,
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summarized in Table 1, showed that the natureet#talyst and the reaction temperature had a

significant effect on the yield of the desired [in@dphthyridines 4{1,1,10) and 7-hydroxy-

©CoO~NOUTA,WNPE

11 [1,6]-naphthyridines §{1,1}). Sodium hydroxide was ineffective, at both lowdahigh

13 temperatures (Table 1, entries 1 and 2). In therlaiase (100 °C), an unexpected compound
5{1,1} was isolated in 10% yield, presumably by nucleaplattack of hydroxide in competition
18 with phenoxide. Therefore, the use of a higher eatration of NaOH as base catalyst gave
20 significant improvements in the yield of the 7-hyxly compound{1,1}, isolated in greater
proportions relative to naphthyridineg{{,1,10})) as the temperature was lowered (Table 1,
25 entries 3-5). No product was observed when a backgt reaction was carried out with no

27 catalyst (entry 6).
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Table 1. Optimization of Reaction Conditions for the Matimponent Coupling Reactidhs

ACS Combinatorial Science

Oxy-CHs OH NH,
N NC/\CN N conditions H H
catalyst HsC N N6 HsC on
: Saeuye
2 iérln}ol 2 i{r:;}ol 1 m?r,r{é(l)} i 41,110} ¢ St
amoun temp (°C time (h’ yield (%)°
entry catalys (mmol) solven 4{1,1,10] 5{1,1}
1 NaOF 0.z H,O 35 12 0 0
2 NaOF 0.z H,O 10C 3 15 1C
3 NaOF 1.C H,O 10C 3 20 40
4 NaOF 1.C H,O 80 3.t 25 55
5 NaOF 1.C H,O 70 4 15 65
6 - - H,O 10C 24 - -
7 K,CG;3 1.C H,O 10C 4 30 4C
8 guanidine 0.2 H,O 10C 4 84 0
9 DBU 0.z H,O 10C 4 86 0
10 EtsN 0.2 H,O 10C 4 94 0
11 EtsN 0.2 H,O 60 8 49 0
12 pyridine 0.2 H,O 10C 4 91 0
13 EtsN 0.2 DMSO  12(-13C 8 74 0
14 Et:N 0.z DMF 12C-13C 8 79 0
15 Et:N 0.z Toluene  10C-11C 8 81 0
16 Et:N 0.z ACN 7C-80 10 52 0
17 Et:N 0.z EtOH 70-80 10 51 0
18 EtsN 0.2 MeOH 5C-60 12 41 0
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19 Et:N 0.z DCM 30-35 12 10 0

®Reaction conditions: 4-chloro acetophenone (2 mnm$lononitrile (2 mmol), 4-tert-butyl-
phenol (1 mmol), different solvents (2 mL), diffatecatalysts, different temperatures, different
times."Isolated yields.

To prevent the intrusion of the 7-hydroxycompau®{1,1}) and to acquire the desired
[1,6]-naphthyridine 4{1,1,10) under environmentally benevolent conditions, est¢d a panel
of organic bases. Guanidine and DBU provided omtydesired [1,6]-naphthyridind{(,1,10}),
but yields were found to be slightly better withridine and EtzN at 100 °C (Table 1, entries 8-
12). Here, the weaker bases may induce less polymerization of the ketone as a competitive
side reaction, leading to higher yields. Triethylamine was chosen as the catalyst for further
tests of solvent effects. Interestingly, isolated yields were found to be comparatively low in
common high boiling organic solvents such as DMSO, DMF, and toluene (entries 13-15),
due mainly to difficulties in isolation. Also prolonged times were required for reaction
completion in these mixtures. Lower-boiling solvents (acetonitrile, EtOH, MeOH, DCM) did
not allow the required high temperatures with standard glassware, and afforded poor
yields of 4{1,1,10} (Table 1, entries 16-19). Thus, the best yield, cleanest reaction, and most
facile workup were achieved in water as a solvempleying 0.2 mmoEt:N (Table 1, entries
10).

Substrate scope

Various methyl ketones, phenols, and malononittigge tested with the optimized reaction
conditions, giving 30 variants using this proto@éigure 2, Table 2). Both aliphatic alcohols and
phenols afforded excellent yields, the latter tatieg both electron-withdrawing and electron-
donating substituents on the aromatic ring. Acidsgie/ze (containing hydroxy groups) and

sterically bulky alcohol phenol${haphthol,a-naphthol) also reacted very efficiently with no
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side products. Therefore, the present protocolgeagral applicability, accommodating a variety
of substitution patterns.

Good diversity in the ketone component was alserédéd. Especially noteworthy was the
successful use of electron-rich ketones [4-methogiophenone and 3'4'-
dimethoxyacetophenone], considering the difficullgually associated with Knoevenagel
condensation reactions of these substrates (Tab{421,2}-4{5,1,10})). Sterically bulky 2-
acetylfluorene was readily converted into the aebsproduct 4{6,1,10})), and aliphatic ketones
were also examined{7,1,1}). To further expand the scope of the reactionuge of heteroaryl
methyl ketones was investigate{4,1,1}4{2,1,10}). Steric considerations seem to have limited
the process in one cas#{{,1,1}), in which the methyl ketone, but no other ketogeye good
yield, perhaps because of crowding in intermedift€Scheme 3). A representative structure
was confirmed by X-ray crystallographic analysiscoimpound 4{1,1,11})) (CCDC 926217)

(Table 2).
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o R NH,
R)J\CH . Nc/\CN . | Et3N (0.2 mmol) H - ‘ SN
3 R® H,O (2mL), 4h HsC _
reflux, 100 °c RN O-gs
1{1-7) 2{1} 3{1-11} HoCN
2 mmol 2 mmol 1 mmol 4{1{1-7},2{1},3{1-11}}
o) o) o) OH OH
S OH OH OH
Nifuery Begeries
cl 1{1} 1{2} 1{3} Cl
o) o) 3{1} 3{2} 3(3} 3(4}
H5CO
CHs 3 CHs OH OH OH OH
CHs
H3CO 1{4} H5CO 1{5}
OH 37} 3(8
O’O o} WO 3{5} 36} oH CHg ®)
OH OH CH,0H
CHy CHs OH OH 2
16y 17}
Chemset 1
CHs
3{9%}
N\ 3{11 3{13
N Nen {11} O,N {13}
2{1} 3{10} 3{12}
Chemset 2 Chemset 3

Figure 2. Components used for the synthesis of [1,6]-napldimes.
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Table 2. Synthesized [1,6faphthyridine and ORTEP representation 4{1,1,11} (CCDC

926217).
Structure R°0OH | Product | Yield
(%)
(1} | 4{1,11}| 94
32} | 4{1,1,2} | 89
3(3 | 41,13} | 91
34y | 41,14} | 91
35} | 4{1,1,5} 89 =
36} | 4{1,1,6} | 90 ¥ o
37y | 4{1,1,7y | 93 P
38} | 4{1,1,8} | 92
3{9r | 4{1,1,9} | 92
3{10} | 4{1,1,10]| 94
3(11} | 4{1,1,11)| 93 4{1,1,11}(CCDC 926217)
3(12} | 4{1,1,12)| 92
3{13} | 4{1,1,13]| 88 Structure R°OH | Product | Yield
(%)
31} | 4211} | 92
32} | 421,2} | 91
33t | 42,13} | 91 3{1} | 4{5,1,1} | 92
34} | 42,14} | 92 3{10} | 4{5,1,10}| 93
A7 | 42,17} | 93
3(8} | 4{2,1,8} | 93
3(9} | 4{2,1,9} | 90
3{10} | 4{2,1,10]| 93
3(1} | 4{3,1,1} | 93
3(10} | 4{3,1,10]| 94 3{10} | 4{6,1,10}| 93
32y | 4412y | 91
3{10} | 4{4,1,10)| 94
3(11} | 4{4,1,11)| 93
10
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A plausible mechanism for the multicomponent comsdéion process is shown in Scheme 3.

©CoO~NOUTA,WNPE

Initial Knoevenagel condensation of the carbonyhpound with malononitrile in the presence
11 of a bas®'®was supported by NMR observation of the resultiragipct [7), (R = 4'-CI-GH4-)]

13 isolated after 30 min. This intermediaf® (s proposed to undergo Michael-type reaction with
another molecule of, with subsequent malonitrile elimination to formearmediatel0. Another

18 attack of malononitrile triggers ring closure telg intermediatd.1l, which tautomerises to give
20 12. Though we could not isolate the intermedid® structures12{1,1} and 12{2,1} were
characterized by X-ray analysis (Figure 3a,b). Ifnie second ring is produced by attack of
25 phenols on the electrophilic nitrile group in intexdiatel2, driven by aromatization in the target

27 compound.

11
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Scheme 3. A plausible mechanism for the formation of [1r&phthyridines.
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12{1,1} 12{2,1}
22 Figure 3. (a) ORTEP representation of intermedid®1,1} (CCDC 926218). (b) 12{2,1}

24 (CCDC926219).

27 Thus the present reaction comprises a relay psesas the following domino sequences:
30 (1) two-component Knoevenagel reaction, (2) two-ponent Michael-type reaction followed by
32 elimination, (3) two-component ring closure, angl f#o-component cyclization aromatization
34 process (Scheme 3). This pathway was examined By dakulations,’ in which the proposed
transition structures were identified (see Suppgrtihformation, Fig S1-S6). All the optimized
39 geometries of reactants, products and corresporidingre shown in energy profile diagrams in
41 Supporting Information (Fig S7), which identify smmable “downhill” energetics for the

intermediates.

Rationale of rate acceleration in water

49 Even though Knoevenagel condensations accomplisktalehydration event, the reaction
o1 described here is favored in an agueous mediunh Battandard hydrophobic effect (i.e., the
propensity of hydrophobic molecules to associaterder to minimize their contact surface with

56 water, leading to effective concentration of thactant$®) and an “on-water” effect (in which

13
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OH groups at oil-water phase boundary can then g@haymportant role in catalyzing reactions
via the formation of hydrogen bonds) can be proposed.

Table 1 shows much faster and higher yielding reastusing the same catalyst and reactants
in water (entry 10) than in organic other solvefastries 13-19). Since the aqueous reaction
mixture remains heterogeneous throughout the cafrgeaction, this qualifies as am water
synthesis.

The replacement of phenols with thiols gave theticipated thiol-substituted [1,6]
naphthyridines (Figure 4, Table Both aromatic and aliphatic thiols afforded exadllgields,
including those with electron-withdrawing as wedl @ectron-donating groups. Sterically bulky
naphthalene-2-thiol also reacted very efficient${(,1,6}, 19{2,1,6}Jand 19{3,1,6}). We have
confirmed the structure of compound9{4,1,1}) unambiguously by X-ray crystallographic

analysis (CCD®@56062) (Table 3).

jJ)\ N Et3N (0.2 mmol) 1 h, reflux H SN
CHg* N CN ———> —
H,0 (2 mL), 4 h
reflux R6
117} 2{1) c
N -
2mmol 2 mmol 12{1{17}.2(1}) ﬁf]}nif 19{1{1-7},2{1},14{1-11}}

25 Examples

Tr o Ta T,
14{1} 14(2} ey Laa)
SH SH
T i
14{5) 14{6} 14{7} 14{8}

Chemset 14

Figure 4. Components used for the synthesis of thiol-stuistl naphthyridines.

14
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Table 3. Naphthyridinesynthesized witlthiol nucleophilesORTEP representation 19{4,1,1}

(CCDC956063.
Structure R°SH | Product | Yield Structure R®SH | Product | Yield
(%) (%)
14{2} | 19{1,1,2} 93 14{1} | 19{5,1,1} 90
14{3} | 19{1,1,3} 93 142} | 19{5,1,2} 91
14{5} | 19{1,1,5} 95 14{3} | 19{5,1,3} 89
14{6} | 19{1,1,6} 90
14{7y | 19{1,1,7} 91
14{1} | 19{2,1,1} 93
14{2} | 19{2,1,2} 93
14{3} | 19{2,1,3} 92
14{4} | 19{2,1,4} 93 14{1} | 19{6,1,1} 91
14{5} | 19{2,1,5} 91
14{6} | 19{2,1,6} 91
147} | 19{2,1,7} 90
14{3} | 19{3,1,3} 93
14{5} | 19{3,1,5} 92
14{6} | 19{3,1,6} 90 14{1} | 19{7,1,1} 87
147} | 19{3,1,7} 92
14{8} | 19{3,1,8} 90
14{1} | 19{4,1,1} 91
14{2} | 19{4,1,2} 90
14{4} | 19{4,1,4} 91

19{4,1,1} (CCDC 956062)

Hydroxide was similarly used as nucleophile to prepare four7-hydroxy-[1,6]-

naphthyridines%). Theoptimized reaction conditicand structures, obtained in moderate yie

are shown in Figure 5.
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CONCLUSION
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R NH,
o H,O (2 mL), 4 h H
M N\ - = NN
R CHz; * NC CN+ NaOH HaC ‘
70°C R NN YoH

1{1-4} 2{1} H CN
2 mmol 2 mmol 1 mmol 5{1{1-4},2{1}}

4 Examples

S )
H:C o N H:C H CN
5{1,1}, 72% 5{2,1}, 70%

N
H3C
o

CN HC 1 cN
5{3,1}, 70% 5{4,1}, 69%

Figure5. Synthesis of hydroxy-inserted [1,6]-naphthyridines

We highlight here the synergistic effects of thembmed use of multi-component
reactions between methyl ketones, malononitrilegd gohenols or thiols in water as an
environmentally benevolent solvent for the preparadf functionally rich heterocycles. This is
an excellent example of a true on water syntheisisesthe rate enhancement in water in
comparison to organic solvents is vividly discelaiand thus it adds a new entry to the lisbiof
water transformations. By controlling the addition timé thiol nucleophiles, we were able
selective prepare eitheH3pyrroles or[1,6]-naphthyridines. This protocol rastly represents a
promising green route to an interesting new cldssompounds, involving the creation of three

C-C, two C-N, and one C-S or C-O bond in a singleration. Two nitrogen-containing rings are

16
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made without starting from any nitrogen-containhegerocyclic moiety, and the presence of a

cyano group in the naphthyridines makes them ussfuthetic intermediates for the preparation

©CoO~NOUTA,WNPE

11 of other nitrogen-containing heterocycfés.
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