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Figure 1. Structure of ageladi
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A convergent synthesis of the imidazopyridine scaffold of fluorescent alkaloid ageladine A (1) has been
achieved, employing 3-amino-2-chloropyridine as the staring material. A carboxylic acid was introduced
using n-butyllithium and dry ice as the key reaction.

� 2011 Elsevier Ltd. All rights reserved.
Isolation of a fluorescent alkaloid, ageladine A (1), from the
marine sponge Agelas nakamurai was reported by Fusetani and
co-workers in 2003 (Fig. 1).1 The entire structure of ageladine A
was elucidated with a detailed two-dimensional (2D) NMR inter-
pretation including COSY and HMBC. Ageladine A also reportedly
shows inhibitory activity at micromolar levels against matrix
metalloproteinase 2 (MMP-2). MMP-2 is known to be involved in
the formation of a complex at the head of the migrating malignant
tumor cells.2 Also, MMP-2 is known to regulate angiogenesis on the
surface of endothelial cells.3 Due to these properties, MMP-2 inhib-
itors are promising candidates for use as antimetastatic agents as
well as antiangiogenic agents, and in fact some are already being
tested in clinical trials.4 The suggested MMP-2 inhibitory mecha-
nism caused by ageladine A can be of significant attention, not
forming a zinc complex like common MMP-2 inhibitors. Further-
more, the fluorescent property of ageladine A was discovered,
and its utility as a fluorescent bioprobe is suggested.1 Indeed, with
respect to fluorescence-based bioprobe research, a number of ad-
vanced studies have been reported, which is a promising indication
of the utility of ageladine A.5
ll rights reserved.
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In 2006, Weinreb established the first total synthesis of agela-
dine A in a 12-step process,6 and Karuso subsequently reported a
shorter version of total synthesis.7

Here, the basic strategy for the synthesis of the imidazopyridine
scaffold of ageladine A is elucidated in Scheme 1. As the starting
material, 3-amino-2-chloropyridine (2) was protected by a Boc
group. To the resulting Boc-protected aminopyridine 3, carboxylate
was introduced at the 4-position of the pyridine ring as the key
reaction. The reaction condition included two steps, deprotonation
using n-butyllithium and then carboxylation in succession pouring
the reaction mixture onto crushed dry ice. Empirically, 3.0 equiv of
n-butyllithium was needed while our initial attempt recovered
about half of the Boc-protected aminopyridine 3 using 1.5 equiv
of n-butyllithium. It is worth noting that carboxylation was carried
out only at the 4-position of the pyridine ring, as far as can be ascer-
tained. This step was established successfully with a good yield and
excellent positional selectivity. In order to protect the entire amino
moiety, compound 4 was subjected to a condensation reaction with
phthalic anhydride after the removal of the Boc protection.8 The ob-
tained phthalimide-protected carboxylate 5 was converted to 6
with a Boc-protected amino functional group, by Curtius rearrange-
ment with DPPA heated at 140 �C for 2 h and with t-BuOH heated at
the same temperature overnight.9 When water was employed in-
stead of t-BuOH in the second step, the reaction was not successful,
and did not form the expected amine product. Meanwhile, when
compound 4 was subjected to the above conditions of Curtius rear-
rangement, unwanted bicycle of imidazolidinone was generated as
the major product. Again, Boc protection of compound 6 was
cleaved using TFA, which gave 7 in an almost quantitative yield.
The phthalimide portion of 7 was then disconnected by heating at
90 �C for 2 h with 30% CH3NH2 in EtOH,10 which furnished 8 con-
taining two of the free amino groups at the 3- and 4-positions of
the pyridine ring. The reaction with a volatile reagent proceeded
cleanly and required no tedious work up steps. These diamino sub-
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Scheme 1. Synthetic route. Reagents and conditions: (a) Boc2O, DMAP, CH2Cl2, rt, 3 h, 89%; (b) (i) n-BuLi, THF, �78 �C, 1 h; (ii) CO2 excess, 75% in two steps; (c) (i) TFA, CH2Cl2,
rt, 30 min; (ii) phthalic anhydride, AcOH/TFA (10:1), 140 �C, 24 h, 68% in two steps; (d) (i) DPPA, toluene/1,3-dimethyl-2-imidazolidinone (9:1), 140 �C, 2 h; (ii) t-BuOH,
140 �C, overnight, 84% in two steps; (e) TFA, CH2Cl2, rt, 30 min, 97%; (f) 30% CH3NH2 in EtOH, 90 �C, 2 h, 91%; (g) CNBr, EtOH, rt, 1 h, 83%.

3132 T. Mineno et al. / Tetrahedron Letters 52 (2011) 3131–3132
stituents of 8 were finally cyclised using CNBr,11 which gave the de-
sired product 9 in a good yield of 83%.

In summary, an efficient synthetic sequence for compound 9
was established—the composition of the imidazopyridine scaffold
of fluorescent alkaloid ageladine A. Compound 9 possesses a halo-
gen, one of the functional groups for coupling reactions, at the pyr-
role ring position of ageladine A. This synthetic approach was
designed with versatility in mind to enable structural modifica-
tions for an enhancement of characteristic analysis. The short
and efficient synthetic route introduced here should promote the
versatility of research. Studies of further applications are ongoing.
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