

Electron Transfer Mechanisms

International Edition: DOI: 10.1002/anie.201600287 German Edition: DOI: 10.1002/ange.201600287

Enhanced Electron Transfer Reactivity of a Nonheme Iron(IV)–Imido Complex as Compared to the Iron(IV)-Oxo Analogue

Anil Kumar Vardhaman, Yong-Min Lee, Jieun Jung, Kei Ohkubo, Wonwoo Nam,* and Shunichi Fukuzumi*

Abstract: Reactions of N,N-dimethylaniline (DMA) with nonheme iron(IV)-oxo and iron(IV)-tosylimido complexes occur via different mechanisms, such as an N-demethylation of DMA by a nonheme iron(IV)-oxo complex or an electron transfer dimerization of DMA by a nonheme iron(IV)tosylimido complex. The change in the reaction mechanism results from the greatly enhanced electron transfer reactivity of the iron(IV)-tosylimido complex, such as the much more positive one-electron reduction potential and the smaller reorganization energy during electron transfer, as compared to the electron transfer properties of the corresponding iron-(IV)-oxo complex.

High-valent metal-oxo and metal-imido complexes have been postulated as active oxidants in oxygen atom and NR group transfer reactions, respectively, by metalloenzymes and bioinspired metal catalysts.^[1-3] While extensive studies have been conducted on the reactivities of high-valent metal-oxo complexes over the past several decades,^[1,2] much less is known about the reactivities of metal-imido complexes.^[2,3] In particular, the chemistry of nonheme iron(IV)-oxo complexes has been well advanced recently by synthesizing a number of biomimetic nonheme iron(IV)-oxo complexes and investigating their reactivities in various oxidation reactions,^[1,2] including oxidative N-dealkylation of N,N-dimethylanilines (DMA), as well as electrochemical properties (Scheme 1 A).^[4] In contrast, only a small number of nonheme iron(IV)-imido complexes have been synthesized, and their chemical properties have been explored less clearly.^[5–8] Very recently, an elegant reactivity comparison of nonheme iron-

[*]	Dr. A. K. Vardhaman, Dr. YM. Lee, Dr. J. Jung, Dr. K. Ohkubo, Prof. Dr. W. Nam, Prof. Dr. S. Fukuzumi Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 (Korea) E-mail: wwnam@ewha.ac.kr
	Dr. K. Ohkubo, Prof. Dr. S. Fukuzumi Faculty of Science and Engineering, ALCA, SENTAN Japan Science and Technology Agency (JST) Meijo University Nagoya, Aichi 468-0073 (Japan)
	Dr. K. Ohkubo Department of Material and Life Science Graduate School of Engineering, ALCA, SENTAN Japan Science and Technology Agency (JST) Osaka University Suita, Osaka 565-0871 (Japan)

Supporting information for this article can be found under http://dx.doi.org/10.1002/anie.201600287. A. N-demethylation of N, N-dimethylaniline by [(N4Py)Fe^{IV}(O)]²⁺

Scheme 1. Reactions of N,N-dimethylaniline by A) nonheme iron(IV)oxo and B) iron(IV)-imido complexes.

(IV)-oxo versus iron(IV)-imido complexes bearing a common supporting ligand, $[(N4Py)Fe^{IV}(O)]^{2+}$ and $[(N4Py)Fe^{IV}-(NTs)]^{2+}$ [N4Py = N,N-bis(2-pyridylmethyl)-*N*-bis(2-pyridyl)methylamine], was reported.^[9,10] A contrasting reactivity pattern of the iron(IV)-oxo versus iron(IV)-imido complexes was observed in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions.^[9,10] However, fundamental electron-transfer (ET) properties of nonheme iron(IV)-imido complexes, such as the one-electron reduction potential and the reorganization energy in ET reaction, have never been reported previously. Moreover, the change of reaction mechanism(s) in oxidation reactions by iron(IV)-oxo and iron(IV)-imido complexes has never been demonstrated previously.

Herein, we report that the reactions of DMA with nonheme iron(IV)-oxo and iron(IV)-tosylimido complexes bearing the same supporting ligand, $[(N4Py)Fe^{IV}(O)]^{2+}$ (1) and $[(N4Py)Fe^{IV}(NTs)]^{2+}$ (2), occur via quite different mechanisms, such as the N-demethylation of DMA by 1 (Scheme 1A) and the ET dimerization of DMA by 2 (Scheme 1B). The drastic change of the reaction mechanism from the N-demethylation of DMA by 1 to the ET dimerization of DMA by 2 results from the enhanced electron transfer reactivity of the iron(IV)-tosylimido complex (2), such as the more positive one-electron reduction potential and the smaller reorganization energy in electron transfer, as compared to the electron transfer properties of the iron(IV)-oxo analogue (1).

Oxidation of DMA by 1 is known to result in the demethylation of DMA (Scheme 1 A).^[4] Interestingly, when

Figure 1. a) Vis-NIR absorption spectral changes in the reaction of $[(N4Py)Fe^{IV}(NTs)]^{2+}$ (5.0×10⁻² mM) with *N*,*N*-dimethylaniline (5.0×10⁻¹ mM) in CH₃CN at 298 K. Inset shows the time course monitored by absorbance change at 900 nm for the formation of TMB⁺⁺. b) Absorption spectral changes for the formation of DMA⁺⁺ observed in the reaction of $[(N4Py)Fe^{IV}(NTs)]^{2+}$ (0.125 mM) with DMA (5 equiv, 0.625 mM) in CH₃CN at 298 K. Inset shows the time course monitored by absorbance change at 470 nm for the formation of DMA⁺⁺.

1 was replaced by 2, the oxidized product of DMA was changed from the demethylated product (Scheme 1A) to a dimer radial cation (tetramethylbenzidine radical cation (TMB⁺⁺); Scheme 1B). The quantitative formation of TMB⁺⁺ in the reaction of DMA with 2 is shown in Figure 1a, where the absorption bands at 470, 900, and 1020 nm result from the formation of TMB⁺⁺.^[4b,11] The 2:3 stoichiometry for the reaction of DMA with 2 (Scheme 2B) was established by the absorption spectral titration (Supporting Information, Figure S1). When the products formed in this reaction were analyzed using EPR, two Fe^{III} species with a high-spin (S=5/2) state and a low-spin (S=1/2) state, along with TMB⁺, were observed (Figure S2). The Fe^{III} species were assigned as [(N4Py)Fe^{III}(NTs)]⁺ and [(N4Py)Fe^{III}]³⁺. In addition, the ratio of spin amounts of the Fe^{III} species and TMB⁺⁺ was determined to be 3:1 by the comparison of the doubly integrated values of the EPR signals (Figure S3). The formation of H₂NTs in Scheme 1B was also confirmed by the ¹H NMR spectrum (Figure S4). TMB⁺⁺ was formed by the oxidative dimerization of DMA⁺ ($\lambda_{max} = 470 \text{ nm}$),^[11] which was formed by electron transfer from DMA to [(N4Py)Fe^{IV}-(NTs)²⁺ (Figure 1b; Scheme 2, reaction pathway a). Then, the absorption band at 470 nm from DMA⁺ was changed to

Scheme 2. Proposed mechanism for the dimerization of N,N-dimethylaniline by $[(N4Py)Fe^{IV}(NTs)]^{2+}$.

those at 470, 900, and 1020 nm bands owing to TMB^{+} (Figure 1 a; see below).^[4b]

Because the formation of DMA⁺⁺ was immediate upon addition of DMA to a CH₃CN solution of **2**, the reaction was followed using a stopped-flow spectrophotometer, and by monitoring an increase in the absorption band at 470 nm owing to DMA⁺⁺ (Figure 1 b, inset; see also Figure S5 for comparison with the formation of TMB⁺⁺). We also determined the second-order rate constant of $1.4 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ for the formation of DMA⁺⁺ (Figure S6). When DMA was replaced by a deuterated compound (DMA-(CD₃)₂ = *N*,*N*bis(trideuteriomethyl)aniline), no deuterium kinetic isotope effect (KIE = 1.0(1)) was observed, suggesting that the first step of the formation of DMA⁺⁺ in the reaction of **2** and DMA occurs via an ET mechanism (Figure S6).

The formation of TMB⁺⁺ was then monitored by an increase in absorbance at 900 nm, and found to obey firstorder kinetics (Figure 1 a, inset). The pseudo-first-order rate constant (k_1) was proportional to the DMA concentration, affording the second-order rate constant (k_{et}) of $1.0(1) \times 10^2 \text{ m}^{-1} \text{ s}^{-1}$ (Figure S7). When DMA was replaced by DMA- $(\text{CD}_3)_2$, no deuterium kinetic isotope effect was observed (KIE = 1.0(1); Figure S7). This observation is in sharp contrast to the reaction of **1** and DMA, which exhibited a significant kinetic isotope effect owing to a hydrogen atom transfer from the methyl group of DMA to $1.^{[4a.e]}$ Furthermore, the formation of TMB⁺⁺ in the reaction of DMA with **2** was dependent on the DMA concentration (Figure S1), indicating that the rate-determining step is the C–C bond formation between DMA $^{+}$ and DMA (Scheme 2, reaction pathway b).

Based on the experimental results described above, we propose the overall mechanism of the DMA oxidation by 2 (Scheme 2). First, electron transfer from DMA to 2 produces DMA^{+} and $[(N4Py)Fe^{III}(NTs)]^+$ (reaction pathway a), followed by the rate-determining C-C bond formation step between DMA⁺⁺ and DMA to produce a coupling radical product and a proton (reaction pathway b). The coupling radical product is rapidly oxidized by DMA⁺⁺ to produce TMB and a proton (reaction pathway c). TMB is also readily oxidized by DMA⁺⁺ to produce TMB⁺⁺ (reaction pathway d), since the E_{ox} value of TMB (0.32 V vs. SCE)^[11] is much lower than that of DMA (0.73 V vs. SCE).^[12] Therefore, the overall stoichiometry agrees well with that shown in Scheme 1B. Similarly, the dimerization of triphenylamine (TPA) was observed in the electron transfer oxidation of TPA by 2 to produce a TPA dimer radical cation (Figure S8), with the ratedetermining step of the dimerization with TPA (Figure S9).

Then, the one-electron reduction potential of **2** was determined from the electron transfer equilibrium between tris(4-bromophenyl)amine (TBPA) ($E_{ox} = 1.08$ V vs. SCE)^[12] and **2**. While no electron transfer from TBPA to **1** ($E_{red} = 0.51$ V vs. SCE)^[13] occurs in CH₃CN at 298 K, efficient electron transfer occurs from TBPA to **2** under the same reaction conditions (Figure 2 a), where the absorption band at

Figure 2. Absorption spectral change for the formation of tris (4bromophenyl)amine radical cation (TBPA⁺⁺) produced in electron transfer from TBPA (10 mM) to [(N4Py)Fe^{IV}(NTs)]²⁺ (0.125 mM) in CH₃CN at 298 K. Inset shows the time course monitored by absorbance change at 705 nm.

705 nm is assigned to TBPA⁺⁺.^[14] This result indicates that **2** is a stronger electron acceptor than the corresponding Fe^{IV}-oxo complex, **1**. The electron transfer from TBPA to **2** was found to be in equilibrium, where the final concentration of TBPA⁺⁺ produced increased with increasing initial concentrations of TBPA to reach a constant value (Figure S10). The equilibrium constant (K_{et}) was determined to be 0.24 at 298 K (see the Supporting Information, Experimental Section and Figure S11). Then, the one-electron reduction potential (E_{red}) of **2** was determined to be 1.04 ± 0.02 V vs. SCE from the K_{et} value and the E_{ox} value of TBPA (1.08 V vs. SCE) using the Nernst equation [Eq. (1)], which is much more positive than the reported value of **1** ($E_{red} = 0.51$ V vs. SCE).^[13] $E_{\rm red} = E_{\rm ox} + (RT/F) \ln K_{\rm et}$

(1)

The $E_{\rm red}$ value of **2** was confirmed by cyclic voltammetry (Figure S12), showing that the one-electron reduction process of **2** was reversible with the $E_{\rm red}$ value of 1.02 ± 0.02 V (vs. SCE), which agrees well with the value determined by the redox titration $(1.04 \pm 0.02$ V vs. SCE). The large difference in the $E_{\rm red}$ values between **1** and **2** results in the drastic change in the mechanisms of the reactions of DMA with **1** and **2**, because the $E_{\rm ox}$ value of DMA (0.73 V vs. SCE) is higher than the $E_{\rm red}$ value of **1** (0.51 V vs. SCE). In such a case, electron transfer from DMA to **1** is highly exergonic when hydrogen atom transfer rather than electron transfer occurs for the N-demethylation (Scheme 1A), whereas electron transfer from DMA to **2** occurs for the formation of TMB⁺⁺ (Scheme 1B and Scheme 2).

Rates of electron transfer from TBPA to **2** were determined from the rise in the absorption band at 705 nm due to TBPA⁺⁺ (Figure 2). The electron transfer rates obeyed pseudo-first-order kinetics in the presence of a large excess of TBPA (Figure 2, inset). The pseudo-first-order rate constants (k_{obs}) increased linearly with increasing concentration of TBPA (Figure S13), and the second-order rate constant of the electron transfer (k_{et}) was determined from the slope of the linear plot of k_{obs} versus concentration of TBPA to be $8.5 \times 10^2 \,\mathrm{m^{-1} s^{-1}}$. Similarly, the k_{et} values of electron transfer from a series of arylamine derivatives to **2** were determined, and the k_{et} values are listed in Table S1 (see also Figure S13), together with the E_{ox} values of arylamine derivatives and the driving force of electron transfer, which was determined using [Eq. (2)], where *e* is the elementary charge.

$$-\Delta G_{\rm et} \left({\rm eV} \right) = e(E_{\rm red} - E_{\rm ox}) \tag{2}$$

The driving force dependence of the electron transfer rate constants is shown in Figure 3, where the $\log k_{\rm et}$ values are plotted against the $-\Delta G_{\rm et}$ values. The driving force dependence of $k_{\rm et}$ is well fitted by the solid line in Figure 3, in light of the Marcus theory of adiabatic outer-sphere electron transfer [Eq. (3)],

$$k_{\rm et} = Z \exp[-(\lambda/4)(1 + \Delta G_{\rm et}/\lambda)^2/k_{\rm B}T]$$
(3)

where Z is the collision frequency taken as $1 \times 10^{11} \text{m}^{-1} \text{s}^{-1}$, λ is the reorganization energy of electron transfer, k_{B} is the Boltzmann constant, and T is the absolute temperature.^[15,16] The λ value is determined to be 1.89 eV as the best fit value of [Eq. (3)], and this value is significantly smaller than that of **1** (2.74 eV).^[13] The log k_{et} value of the reactions of DMA with **2** (number 5 in Figure 3) agrees with the Marcus line with $\lambda =$ 1.89 eV for the electron transfer from arylamine derivatives to **2**.

The higher $E_{\rm red}$ value of **2** than that of **1** was supported by the density functional theory (DFT) calculations at the CAM-B3LYP/6-311G(d) level of theory (Supporting Information),^[17,18] which shows that the LUMO level of **2** (*S*=1) was 0.4 eV lower than that of **1** (*S*=1; Figure S14). The bond reorganization energies of electron transfer (λ_i) of

Figure 3. a) Plots of logk_{et} of electron transfer from arylamines [1: 4-CN-DMA; 2: (4-Br-C₆H₄)₃N (=TBPA); 3: (C₆H₅)₃N (=TPA); 4: 4-Br-DMA; 5: DMA; and 6: 4-Me-DMA] to [(N4Py)Fe^{IV}(NTs)]²⁺ (red circles) in CH₃CN at 298 K vs. the driving force of the electron transfer. b) Plots of logk_{et} of electron transfer from ferrocene derivatives [1a: ferrocene; 2a: *n*-amyl ferrocene; 3a: dimethylferrocene; 4a: octamethylferrocene; and 5a: decamethylferrocene] to [(N4Py)Fe^{IV}(O)]²⁺ (blue circles) in CH₃CN at 298 K vs. the driving force of the electron transfer.^[13] The fitting to the Marcus theory of the electron transfer are shown by the red line with λ = 1.89 eV and blue line with λ = 2.74 eV.

 $2/[(N4Py)Fe^{III}(NTs)]^+$ and $1/[(N4Py)Fe^{III}(O)]^+$ were also evaluated by using the density DFT calculations.^[19] The λ_i value of 2/[(N4Py)Fe^{III}(NTs)]⁺ was estimated to be 0.72 eV as an energy difference between the optimized structure of 2 (S=1) and the optimized structure of $[(N4Py)Fe^{III}(NTs)]^+$ (S = 1/2; Figure S15). This value is 1.58 eV smaller than the corresponding λ_i value of **1** $(S=1)/[(N4Py)Fe^{III}(O)]^+$ (S = 1/2).^[20] The difference in the λ value (0.85 eV) observed in the one-electron reduction processes of 2 ($\lambda = 1.89 \text{ eV}$) and 1 ($\lambda = 2.74 \text{ eV}$) corresponds to about one-half of the difference in the λ_i values (1.58 eV) of electron exchanges of $(S=1)/[(N4Py)Fe^{III}(NTs)]^+$ 2 (S = 1/2)and 1 $(S=1)/[(N4Py)Fe^{III}(O)]^+$ (S=1/2; Table S2). The smaller λ value of **2** than that of **1** may result due to the smaller change in the bond lengths by the ET reduction of 2.

In conclusion, we have shown that a nonheme iron(IV)tosylimido complex, $[(N4Py)Fe^{IV}(NTs)]^{2+}$ (2), acts as a much stronger electron acceptor than the corresponding iron(IV)oxo complex, $[(N4Py)Fe^{IV}(O)]^{2+}$ (1), but a one-electron reduced complex, $[(N4Py)Fe^{III}(NTs)]^+$, acts as a much weaker base than the corresponding iron(III)-oxo complex, $[(N4Py)Fe^{III}(O)]^+$. Such differences in the redox and acidbase properties resulted in the drastic change in the reaction mechanisms from the N-demethylation of DMA by $[(N4Py)Fe^{IV}(O)]^{2+}$ (1) via hydrogen atom transfer to the electron transfer dimerization of DMA by $[(N4Py)Fe^{IV}-(NTs)]^{2+}$ (2) to form TMB⁺⁺ product.

Acknowledgements

This work was supported by the NRF of Korea through CRI (NRF-2012R1A3A2048842 to W.N.), GRL (NRF-2010-00353 to W.N.) and ALCA and SENTAN projects from JST, Japan (to S.F.) and JSPS (26620154 and 26288037) from MEXT (to K.O.).

Keywords: bioinorganic chemistry \cdot electron transfer \cdot iron(IV)-imido complexes \cdot mechanisms \cdot N-demethylation

How to cite: Angew. Chem. Int. Ed. 2016, 55, 3709–3713 Angew. Chem. 2016, 128, 3773–3777

- a) S. L.-F. Chan, Y.-H. Kan, K.-L. Yip, J.-S. Huang, C.-M. Che, *Coord. Chem. Rev.* 2011, 255, 899; b) G. Yin, Acc. Chem. Res. 2013, 46, 483; c) M. Costas, *Coord. Chem. Rev.* 2011, 255, 2912; d) S. P. de Visser, J.-U. Rohde, Y.-M. Lee, J. Cho, W. Nam, *Coord. Chem. Rev.* 2013, 257, 381; e) K. Ray, F. F. Pfaff, B. Wang, W. Nam, J. Am. Chem. Soc. 2014, 136, 13942; f) W. Nam, Y.-M. Lee, S. Fukuzumi, Acc. Chem. Res. 2014, 47, 1146; g) S. Fukuzumi, Dalton Trans. 2015, 44, 6696; h) S. A. Cook, A. S. Borovik, Acc. Chem. Res. 2015, 48, 2407; i) W. N. Oloo, L. Que, Jr., Acc. Chem. Res. 2015, 48, 2612; j) H. M. Neu, R. A. Bagila, D. P. Goldberg, Acc. Chem. Res. 2015, 48, 2754.
- [2] a) K. Ray, F. Heims, F. F. Pfaff, *Eur. J. Inorg. Chem.* 2013, 3784;
 b) H.-Y. Liua, M. H. Mahmood, S.-X. Qiu, C. K. Chang, *Coord. Chem. Rev.* 2013, 257, 1306; c) J. M. Smith, D. Subedi, *Dalton Trans.* 2012, 41, 1423; d) J. Hohenberger, K. Ray, K. Meyer, *Nat. Commun.* 2012, 3, 720; e) C.-M. Che, V. K.-Y. Lo, C.-Y. Zhou, J.-S. Huang, *Chem. Soc. Rev.* 2011, 40, 1950; f) G. Du, M. M. Abu-Omar, *Curr. Org. Chem.* 2008, 12, 1185; g) D. P. Goldberg, *Acc. Chem. Res.* 2007, 40, 626.
- [3] a) W.-L. Man, W. W. Y. Lam, T.-C. Lau, Acc. Chem. Res. 2014, 47, 427; b) M. M. Abu-Omar, Dalton Trans. 2011, 40, 3435; c) C.-M. Che, C.-Y. Zhou, E. L.-M. Wong, Top. Organomet. Chem. 2011, 33, 111; d) M. P. Mehn, J. C. Peters, J. Inorg. Biochem. 2006, 100, 634.
- [4] a) K. Nehru, M. S. Seo, J. Kim, W. Nam, *Inorg. Chem.* 2007, 46, 293; b) J. Park, Y. Morimoto, Y.-M. Lee, Y. You, W. Nam, S. Fukuzumi, *Inorg. Chem.* 2011, 50, 11612; c) A. Barbieri, M. De Gennaro, S. Di Stefano, O. Lanzalunga, A. Lapi, M. Mazzonna, G. Olivo, B. Ticconi, *Chem. Commun.* 2015, 51, 5032.
- [5] a) M. J. Zdilla, M. M. Abu-Omar, J. Am. Chem. Soc. 2006, 128, 16971; b) M. J. Zdilla, J. L. Dexheimer, M. M. Abu-Omar, J. Am. Chem. Soc. 2007, 129, 11505; c) M. J. Zdilla, M. M. Abu-Omar, Inorg. Chem. 2008, 47, 10722; d) P. Leeladee, G. N. L. Jameson, M. A. Siegler, D. Kumar, S. P. de Visser, D. P. Goldberg, Inorg. Chem. 2013, 52, 4668.
- [6] a) W.-L. Man, W. W. Y. Lam, H.-K. Kwong, T.-C. Lau, Angew. Chem. Int. Ed. 2012, 51, 9101; Angew. Chem. 2012, 124, 9235;
 b) W.-L. Man, J. Xie, Y. Pan, W. W. Y. Lam, H.-K. Kwong, K.-W. Ip, T.-C. Lau, J. Am. Chem. Soc. 2013, 135, 5533; c) Y. Liu, X. Guan, E. L.-M. Wong, P. Liu, J.-S. Huang, C.-M. Che, J. Am. Chem. Soc. 2013, 135, 7194.
- [7] a) L. Wang, L. Hu, H. Zhang, H. Chen, L. Deng, J. Am. Chem. Soc. 2015, 137, 14196; b) L. Zhang, Y. Liu, L. Deng, J. Am. Chem. Soc. 2014, 136, 15525; c) K. Searles, S. Fortier, M. M. Khusniyarov, P. J. Carroll, J. Sutter, K. Meyer, D. J. Mindiola, K. G. Caulton, Angew. Chem. Int. Ed. 2014, 53, 14139; Angew. Chem. 2014, 126, 14363.
- [8] a) E. Gouré, F. Avenier, P. Dubourdeaux, O. Sénèque, F. Albrieux, C. Lebrun, M. Clémancey, P. Maldivi, J.-M. Latour, Angew. Chem. Int. Ed. 2014, 53, 1580; Angew. Chem. 2014, 126, 1606; b) I. Nieto, F. Ding, R. P. Bontchev, H. Wang, J. M. Smith, J. Am. Chem. Soc. 2008, 130, 2716; c) C. M. Thomas, N. P. Mankad, J. C. Peters, J. Am. Chem. Soc. 2006, 128, 4956; d) S. C. Bart, E. Lobkovsky, E. Bill, P. J. Chirik, J. Am. Chem. Soc. 2006, 128, 5302; e) R. L. Lucas, D. R. Powell, A. S. Borovik, J. Am. Chem. Soc. 2005, 127, 11596.
- [9] E. J. Klinker, T. A. Jackson, M. P. Jensen, A. Stubna, G. Juhász, E. L. Bominaar, E. Münck, L. Que, Jr., *Angew. Chem. Int. Ed.* 2006, 45, 7394; *Angew. Chem.* 2006, 118, 7554.
- [10] a) A. K. Vardhaman, P. Barman, S. Kumar, C. V. Sastri, D. Kumar, S. P. de Visser, *Angew. Chem. Int. Ed.* 2013, *52*, 12288;

3712 www.angewandte.org

Angew. Chem. **2013**, *125*, 12514; b) S. Kumar, A. S. Faponle, P. Barman, A. K. Vardhaman, C. V. Sastri, D. Kumar, S. P. de Visser, *J. Am. Chem. Soc.* **2014**, *136*, 17102.

- [11] M. Kirchgessner, K. Sreenath, K. R. Gopidas, J. Org. Chem. 2006, 71, 9849.
- [12] The oxidation potentials of DMA and TPA derivatives were determined by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and second harmonic alternative current voltammetry (SHACV) in CH₃CN at 298 K (Table S1).
- [13] Y.-M. Lee, H. Kotani, T. Suenobu, W. Nam, S. Fukuzumi, J. Am. Chem. Soc. 2008, 130, 434.
- [14] a) M. Oyama, T. Higuchi, J. Electrochem. Soc. 2002, 149, E12;
 b) S. Amthor, B. Noller, C. Lambert, Chem. Phys. 2005, 316, 141.
- [15] S. Fukuzumi, Coord. Chem. Rev. 2013, 257, 1564.
- [16] a) R. A. Marcus, Annu. Rev. Phys. Chem. 1964, 15, 155; b) R. A. Marcus, Angew. Chem. Int. Ed. Engl. 1993, 32, 1111; Angew. Chem. 1993, 105, 1161.

- [17] M. J. Frisch et al., Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009 (Full author list is shown in the Supporting Information).
- [18] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [19] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- [20] Because electron transfer from electron donors (S=0) to the Fe^{IV} complexes (S=1; overall spin=1) to produce donor radical cations (S=1/2) and the Fe^{III} complexes (S=5/2; overall spin=2 or 3) is spin forbidden, the low spin state of the Fe^{III} complexes (S=1/2) was used for the calculations; see also Y. Kawashima, K. Ohkubo, S. Fukuzumi, *J. Phys. Chem. A* **2013**, *117*, 6737.

Received: January 11, 2016 Revised: January 26, 2016 Published online: February 17, 2016