PROF. MOJTABA BAGHERZADEH (Orcid ID: 0000-0003-3009-3693) Article type ABSTRACT

: Research Article

New Magnetically Recyclable Reduced Graphene Oxide rGO/MFe_2O_4 (M= Ca, Mg)/Ag₃PO₄ Nanocomposites With **Remarkably Enhanced Visible-light Photocatalytic Activity and Stability**

Mojtaba Bagherzadeh*, Reyhaneh Kaveh

Department of Chemistry, Sharif University of Technology, PO Box 11155-3516, Tehran, Iran

Corresponding author's email: bagherzadeh@sharif.edu (M. Bagherzadeh)

New magnetically separable CaFe₂O₄/Ag₃PO₄, MgFe₂O₄/Ag₃PO₄, rGO/CaFe₂O₄/Ag₃PO₄ and $rGO/MgFe_2O_4/Ag_3PO_4$ photocatalysts synthesized by the hydrothermal and ion-exchange deposition method. These four types of photocatalyst were used for degradation of Methylene blue (MB), Methyl orange (MO) and 4-chlorophenol (4-CP) in aqueous solution under visible-light illumination. The optimized photocatalyst, i.e. rGO/CaFe₂O₄/Ag₃PO₄ with a mass ratio of (1:3:9) composite not only shows the highest photocatalytic performance for the degradation of MB, MO and 4-CP under visible light irradiation among the other synthesized photocatalysts but also exhibits high reusability and stability for at least 5 cycles. It was found that the impressive separation of electron-hole pairs as well as presence of rGO sheets which act as a high speed charge transfer were responsible for increasing photocatalytic This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/php.12968

activity over the optimized photocatalyst under visible-light irradiation. A possible mechanism for the increased photocatalytic activity of the rGO/CaFe₂O₄/Ag₃PO₄ with a mass ratio of (1:3:9) composite was discussed in detail.

Keyword: Photocatalyst; Visible light; CaFe₂O₄; MgFe₂O₄; Ag₃PO₄; rGO

INTRODUCTION

In the ubiquitous scientific world, development of environmentally friendly catalysts is one of the more considerable issues. Semiconductor photocatalysis as a green technology to remove hazardous organic contaminates in water has attracted extensive attention, as it can use sunlight irradiation as the energy source [1–4].

In the past years, some new and efficient photocatalytic materials such as Ag-based photocatalysts have been developed in order to increase the visible-light activity. For instance, silver orthophosphate (Ag₃PO₄) is an efficient visible-light responsive photocatalyst, because of its perfect capabilities in the photodegradation of organic contaminates. Ag₃PO₄ has been considered a good semiconductor photocatalyst with high photooxidative capabilities for O₂ generation from water. Unfortunately, Ag₃PO₄ is light-sensitive and slightly soluble in aqueous media. Therefore, Ag₃PO₄ can be photo-corroded and decompose under light irradiation. Ag⁺ is transformed into weakly active Ag during the photodegradation process, so photocatalytic activity of Ag₃PO₄ slowly decreases due to the photocorrsion by the photogenerated electrons and the practical application of Ag₃PO₄ is considerable limited [5–8].

In order to resolve this problem, recent studies have indicated that combining two or more semiconductors to prepare a composite structure protects the Ag_3PO_4 nanoparticles from dissolution in aqueous media. This strategy can enhance photocatalytic performance and stability of Ag_3PO_4 [9–13].

Some Ag₃PO₄-based hybrid composites have been prepared in order to improve photocatalytic performance stability. and For example, Ag/Ag_3PO_4 [2], TiO₂/Ag₃PO₄/graphene [14], Fe₃O₄-Ag₃PO₄/AgI [15], Ag₃PO₄/Bi₂MoO₆ [5], Ag₃PO₄/nitridized Sr₂Nb₂O₇ [16], Ag₃PO₄/Ag₂CO₃ [17], Ag₃PO₄/CeO₂ [18], Ag₃PO₄/rGO [19-21] have been synthesized and exhibited increased photocatalytic performance and stability than neat Ag₃PO₄. However, aforementioned composites cannot separate and recycle

easily. To overcome this issue, magnetic composite photocatalysts have been developed. These kinds of composites can separate from aqueous media via an external magnet easily [8,22].

Spinel ferrites have considered worthy of attention due to their magnetic properties and the thermal and chemical stability of these particles. Spinel ferrites have been used for many applications such as preparing efficient and separable composite photocatalysts [23–27].

Calcium ferrite (CaFe₂O₄) and Magnesium ferrite (MgFe₂O₄) are suitable choices for fabrication of magnetic composite photocatalysts. CaFe₂O₄ and MgFe₂O₄ are visible-light responsive semiconductors with narrow bands gap of approximately 1.9eV and 2.18eV, respectively. Also, spinel ferrite-based catalysts can be easily separable because of their magnetic properties [28–34].

Up to now, coupling of Ag_3PO_4 with spinel ferrites is rare. Chen et al. fabricated a $ZnFe_2O_4/Ag_3PO_4$ photocatalyst which improved the photocatalytic activity compared with neat Ag_3PO_4 [35]. Zhao et al. synthesized NiFe₂O₄/Ag₃PO₄ photocatalysts that enhanced the photocatalytic performance towards the degradation of methylene blue [36].

In recent decades, reduced graphene oxide (rGO) has attracted tremendous attention in photocatalysis because of its unique properties such as large surface area, better electronic conductivity and good solution-dispersibility. In fact rGO is a good candidate for the preparation of different graphene-based composite photocatalysts [37–41].

The extensive presence of organic contaminates in waste water from industries or households is an serious environmental problem. These persistent organic chemicals can be found in groundwater [8,19].

For instance, chlorophenols such as 4-chlorophenol (4-CP) in aqueous solution are important micropollutants of the aquatic environment. Also, organic dyes (MB, MO, etc.) are an important source of water contamination. Many technologies have been employed over the years for water decontamination [42,43]. Among these various strategies, photocatalysis phenomenon has attracted attention because of the simplicity, high reproducibility and perfect performance.

The aim of this work is to prepare magnetically separable visible-light responsive photocatalysts, which are stable and easy to synthesize. $CaFe_2O_4/Ag_3PO_4$, $MgFe_2O_4/Ag_3PO_4$, $rGO/CaFe_2O_4/Ag_3PO_4$ and $rGO/MgFe_2O_4/Ag_3PO_4$ composites were successfully synthesized. The photocatalytic performance of these composites were evaluated by photo-degradation of 4-CP, MB, MO in water under visible-light irradiation. The synergistic effects of GO contents in $CaFe_2O_4/Ag_3PO_4$ and $MgFe_2O_4/Ag_3PO_4$ composites on the photocatalytic efficiency are investigated.

The present study opens promising perspectives for increasing visible-light-driven photocatalytic efficiency based on graphene oxide in order to destroy toxins.

MATERIALS AND METHODS

Reagents and apparatus. The materials including ferric nitrate (Fe(NO₃)₃.9H₂O), calcium nitrate (Ca(NO₃)₂.6H₂O), magnesium nitrate (Mg(NO₃)₂.6H₂O), silver nitrate (AgNO₃), sodium phosphate monobasic (NaH₂PO₄), sodium hydroxide (NaOH), graphite powder, MB (C₁₆H₁₈ClN₃S), MO (C₁₄H₁₄N₃NaO₃S), 4-chlorophenol (4-CP), were extra pure and purchased from Merck company and used without further purification. Other chemicals and solvents such as ethylene glycol (EG), ethanol (C₂H₆O) were of analytical grade and used as received.

Fourier transform infrared (FTIR) spectra of the prepared samples were recorded on a Bruker Tensor 27 spectrometer using a KBr pellet for sample preparation at room temperature. The structure of samples were investigated via using X-ray diffraction (XRD) technique that were carried out on an Inel Equinox 3000 X-ray diffractometer using Cu Kα radiation. Raman measurements (wavelength 532 nm) were acquired by an Upright Raman microscope with DPSSVD: YAG type of laser excitation. The magnetization of the prepared samples was measured with vibrating sample magnetometer (VSM) (Lake Shore Model 7400, Japan) operating at room temperatures. Optical absorption spectra of the prepared samples were investigated by Ultraviolet–visible (UV–vis) diffuse-reflectance spectra (DRS) on an Avaspec-2048-TEC UV–vis–NIR spectrometer that Barium sulfate (BaSO₄) powder was the internal standard in the wavelength range of 200–800 nm. All of the binding energies were determined by this method. Photoluminescence (PL) spectroscopy was monitored using a CARY ECLIPSE fluorescence spectrometer. The morphology and particle distribution were performed by TESCAN MIRA II field emission scanning electron microscope. The electrochemical impedance (EIS) spectra were carried out by the Autolab potentiostat/galvanostat apparatus in a three electrodes cell. Pt wire as the counter electrode, Ag/AgCl (saturated KCl) as the reference electrode and 0.5 M Na₂SO₄ solution as the electrolyte were applied. EIS measurements were also gained at the open-circuit voltage and these measurements were taken in the frequency range from 0.1 Hz to 100 kHz with AC amplitude of 5 mV. In order to fabricate of working electrode, 30 mg as-prepared catalyst powder and 1 mL ethanol solution were sonicated and then the mixture was sprayed on a 1×1 cm² area of FTO (fluorine doped tin oxide) glass and allowed to dry at 400 °C for 1 h in furnace. The EIS measurements were carried out at room temperature (25 °C). A 500 W xenon lamp source equipped with AM 1.5G filter was used as the light source.

Synthesis of MFe_2O_4 (M = Ca, Mg)/ Ag_3PO_4 photocatalysts. MFe_2O_4 (M = Ca, Mg)/Ag_3PO_4 composites were synthesized by an ion-exchange method. In the first step, MFe_2O_4 nanoparticles were prepared by simple hydrothermal method. The calcium nitrate $Ca(NO_3)_2.6H_2O$ and ferric nitrate Fe(NO_3)_3.9H_2O with a molar ratio of (1:2) were added into 60 mL ethylene glycol (EG). After being sonicated for 10 min, the pH of the solution was adjusted to 10 using an appropriate NaOH solution. Then the resulting mixture was transferred into a 100 mL Teflon-lined autoclave and heated to 125 °C for 24 h. After filtration and being washed several times with ethanol, the product was dried to obtain $CaFe_2O_4$ nanoparticles. The MgFe_2O_4 nanoparticles were synthesized by the same method by replacing the calcium nitrate with magnesium nitrate.

A procedure for preparing of $CaFe_2O_4/Ag_3PO_4$ composite with a mass ratio of (1:3) is as follows:

0.510 g (3 mmol) of AgNO₃ was solved in 20 mL distilled water and ammonia aqueous solution (1.0 M) was added gradually to the aforementioned solution in order to form a transparent solution. Then 0.17 g CaFe₂O₄ was added into the solution and resulting mixture was sonicated for 30 min. 10 mL aqueous solution of NaH₂PO₄ (0.1 M) was added with drop by drop to the above mixture while sonication, then prepared mixture was sonicated for another 30 min. The precipitates were filtered and being washed with distilled water and dried at 80 °C for 24 h (Scheme 1). The MgFe₂O₄/Ag₃PO₄ composite (1:3) were prepared via the same procedure by replacing synthesized MgFe₂O₄ nanoparticles with CaFe₂O₄ nanoparticles.

The Ag_3PO_4 nanoparticles was prepared by a similar method without adding $CaFe_2O_4$ or $MgFe_2O_4$ nanoparticles.

Synthesis of the rGO/ MFe₂O₄ (M = Ca, Mg)/ Ag_3PO_4 photocatalysts. Graphene oxide (GO) was synthesized from purified graphite powder based on Hummers method [39]. In order to synthesize rGO/ CaFe₂O₄ composite a hydrothermal method was used. First Ca(NO₃)₂.6H₂O and Fe(NO₃)₃.9H₂O with a molar ratio of (1:2) were dissolved into 60 mL EG and treated with sonicate for 10 min. Second, 0.056 g GO was dispersed into 10 mL EG. After being sonicated for 1 h, two solutions were mixed together and sonicated for another 1 h. Then suitable amount of NaOH solution was added to resulting solution until the pH reached 10. The mixture was transferred into a 100 mL sealed Teflon-lined autoclave for 24 h at 125 °C. The prepared precipitate was washed with ethanol and dried to obtain rGO/ CaFe₂O₄ nanoparticles. Some amount of oxygen- containing groups in GO reduced during the hydrothermal reaction process, so the products of rGO are in the prepared composite. The similar method by replacing the calcium nitrate with magnesium nitrate was applied in order to synthesize rGO/ MgFe₂O₄ nanopaticles.

For typical preparation of rGO/MFe₂O₄(M= Ca, Mg)/Ag₃PO₄ composites with a mass ratio of (1:3:9), 0.510 g AgNO₃ were dispersed into 20 mL distilled water and ammonia aqueous (1.0 M) was added dropwise into the solution of AgNO₃. Then 0.17 g rGO/MFe₂O₄(M= Ca, Mg) was added into the mixture sonicated about 2 h in order to make Ag⁺ combine with the surface of rGO/MFe₂O₄(M= Ca, Mg). After that, 10 mL NaH₂PO₄ (0.1 M) was added into the above solution gradually. The prepared mixture was sonicated for another 30 min. Finally, the product was collected and washed with distilled water and dried at 80 °c for 2 h.

Photocatalytic activity measurement. The photodegradation performance of the synthesized samples were evaluated for MB, MO and 4-CP degradation in aqueous solution under visible light irradiation. A 250-W mercury lamp with a cut off filter (providing visible light \geq 420 nm) as the light source was employed. Photocatalytic experiment was carried out in a 150 mL photoreactor at room temperature (25 °C ± 2 °C). In all of the measurements, distance between the lamp and the reactor was kept at 50 cm and its focused intensity on the reactor was calculated 85.272 µW.cm⁻². Fig. 1 shows the emission wavelength of the 250-W mercury lamp with the UV cut-off filter. For each experiment, a desired amount of prepared photocatalyst (0.5-3 g/L) was added to the MB, MO and 4-CP aqueous solutions with a

favorite concentration of pollutant (15-35 mg/L) and illumination under continuous stirring. Prior to irradiation, the solution was stirred in the dark for 1 h to obtain an equilibrium between MB, MO and 4-CP aqueous solution and prepared photocatalysts. Then, the mixture was exposed to Mercury lamp illumination under continuous stirring. At a given time interval of irradiation, 5 mL of the reaction mixture was withdrawn and photocatalyst was magnetically separated. The concentration of the residual MB, MO and 4-CP in the reaction of solution were monitored by measuring the absorbance of solution at the wavelength 667, 469 and 280 nm respectively.

To study the reaction kinetic of photodegradation reaction of MB, MO and 4-CP under visible light illumination, the pseudo-first-order model called Langmuir-Hinshelwood (L-H) kinetic was used (Eq. (1)) [44].

$$\mathbf{r} = -\frac{\mathrm{dC}}{\mathrm{dt}} = \frac{\mathrm{kKC}}{\mathrm{1 + KC}} \tag{1}$$

In which r, C, t, k and K are degradation rate (mg L^{-1} min⁻¹), organic pollutant concentration in aqueous solution after the various intervals of time (mg L^{-1}), irradiation time (min), reaction rate constant (min⁻¹) and adsorption coefficient of organic pollutant (L mg⁻¹), respectively. At low initial concentration of organic pollutant, the Eq. (1) is reduced to the Eq. (2):

$$= -\frac{dC}{dt} = K \operatorname{app} C$$
(2)

Where K_{app} is gained for organic pollutant photodegradation from plotting the graph of $ln(C_0/C_t)$ versus t.

The photocatalytic stability of the prepared photocatalysts was investigated by using repeated test for MB, MO and 4-CP degradation. After reaction in each test, the mixture was extracted to investigate the concentration of MB, MO and 4-CP, while the reacted prepared photocatalysts were collected via an external magnet and dried at 80 °C for the next run.

Also, the free radical trapping experiments were carried out. Tert-butyl alchol (t-BuOH) was chosen as the hydroxyl radical (O H) scavenger, benzoquinone (BZQ) was chosen as the superoxide radical (O_2^{-}) scavenger, KI was chosen as the hole (h^+) scavenger.

RESULTS AND DISCUSSION

Characterizations

FT-IR spectroscopy. Fig. 2 displays FT-IR spectra of CaFe₂O₄, Ag₃PO₄, CaFe₂O₄/Ag₃PO₄ and rGO/CaFe₂O₄/Ag₃PO₄ nanoparticles. As shown in Fig. 2a, the FT-IR spectrum exhibits the characteristic peaks of the calcium ferrite skeleton. The small peak appeared at 3408 cm⁻¹ indicated the stretching vibration of the O-H band. Presence of this small peak is attributed to adsorbed water at the surface of calcium ferrite nanoparticles. Also, the band at 2501 cm⁻¹ is corresponding to the trace of atmospheric or adsorbed CO₂. The peak at 1433 cm⁻¹ can be attributed to the C-H bending frequencies of the remaining trace of EG. The band at 881cm⁻¹ correspond to Fe-O-H bending vibrations and the bands at 487 and 455 cm⁻¹ attributed to the stretching vibration of the Ca-O and Fe-O (metal-oxygen bonds) [32,45].

Fig. 2b shows the FT-IR spectrum of Ag_3PO_4 nanoparticles. The band at 3176 cm⁻¹ is attributed to the O-H stretching of water molecules. The sharp peak at 1388cm⁻¹ is related to the antisymmetric stretching mode of the PO_4^{3-} group, whereas the symmetric vibration mode of PO_4^{3-} group is found at 763cm⁻¹. The asymmetric stretching vibration of P-O bonds is found at 1020 cm⁻¹. Also, the peak at 547cm⁻¹ is attributed to the asymmetric bending mode of P-O bonds [46].

In spectrum of CaFe₂O₄/Ag₃PO₄ (1:3), the absorption peak at 422 and 462 cm⁻¹ ascribed metal-oxygen bonds that become weak and the absorption peaks at 555, 759 and 1020 cm⁻¹ can be assigned to the symmetric bending mode of P-O bonds, symmetric vibration mode of PO₄³⁻ group and asymmetric stretching vibration of P-O bonds, respectively (Fig. 2c). In spectrum of rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9) composite (Fig. 2d), the peak at 1541 cm⁻¹ appear due to the skeletal vibration of graphene [47].

Fig. S1a (see Supporting Information file) shows FT-IR spectra of $MgFe_2O_4$ nanoparticles. The absorption bands at 3454 and 1629 cm⁻¹ are attributed to vibration of bonded O-H and H-O-H of adsorbed water hydroxyl ions. The band at 881 cm⁻¹ is related to Fe-O-H vibrations in FeOOH. The peaks at 490, 492 and 457 cm⁻¹ correspond to the vibrations of metal oxygen bonds such as Mg-O and Fe-O. The band at 1438 cm⁻¹ may be related to C-H bending frequencies of remaining trace EG [45,48].

Fig. S1b exhibits the spectra of Ag_3PO_4 nanoparticles and Fig. S1c displays the FT-IR spectra of $MgFe_2O_4/Ag_3PO_4$ (1:3) composite. The peaks at 486 and 524 cm⁻¹ are assigned to

the vibrations of metal-oxygen bonds. The bands at 557 and 767cm⁻¹ are attributed to the symmetric bending mode of P-O bonds and symmetric vibration mode of PO_4^{3-} , respectively. The peak at 1037 cm⁻¹ is related to asymmetric stretching vibration of P-O bonds. As shown in Fig. S1d that is related to the sample of rGO/MgFe₂O₄/Ag₃PO₄ (1:3:9) the band at 1541 cm⁻¹ correspond to the skeletal vibration of graphene.

XRD analysis. Fig. 3 shows X-ray diffraction pattern of prepared Ag₃PO₄, CaFe₂O₄, CaFe₂O₄/Ag₃PO₄ and rGO/CaFe₂O₄/Ag₃PO₄ nanoparticles. All diffraction peaks can be indexed to Ag₃PO₄ (JCPDS NO. 6-0505) or CaFe₂O₄ (JCPDS NO. 74-2136). The XRD pattern of CaFe₂O₄/Ag₃PO₄ (1:3) depicted in Fig. 3b indicates that the material obtained contains just CaFe₂O₄ and Ag₃PO₄. Also, at the XRD pattern of rGO/CaFe₂O₄/Ag₃PO₄ composite no typical peak of GO at 2θ ~10 was observed that is due to the presence of CaFe₂O₄ and Ag₃PO₄ nanoparticles between interlayers during the reduction process.

As shown in Fig. S2, the diffraction peaks of MgFe₂O₄ are in agreement with standard diffraction pattern of MgFe₂O₄ (JPDC NO. 36-0398). The XRD pattern of MgFe₂O₄/Ag₃PO₄ (1:3) indicated that this sample obtained contains MgFe₂O₄ and Ag₃PO₄ nanoparticles and no other impurities are observed. In Fig. S2b, no peak of GO was detected. This issue is related to the presence of MgFe₂O₄ and Ag₃PO₄ nanoparticles between interlayer of GO sheets [14,46,49,50].

FE-SEM images. Fig. 4a and Fig. S3a showed the FE-SEM micrograph of prepared CaFe₂O₄ and MgFe₂O₄ nanoparticles, respectively. The micrographs showed the formation of spherical CaFe₂O₄ and MgFe₂O₄ nanoparticles. CaFe₂O₄ nanoparticles have diameter distribution between 100-200 nm. The estimated particle size of MgFe₂O₄ nanoparticles were in the range of 50-70 nm. FE-SEM images of rGO/CaFe₂O₄ and rGO/MgFe₂O₄ composites were shown in Fig. 4b and Fig. S3b, respectively. In a comparision, in Fig 4b, S3b homogenous spherical particles of CaFe₂O₄ and MgFe₂O₄ and MgFe₂O₄ were loaded on graphene's surface. Presence of graphene's sheets could be vividly limited the aggregation and size of synthesized spinel ferrites. It could be seen that prepared calcium ferrite had better interaction with graphene's sheets than magnesium ferrite.

Morphology of the prepared Ag_3PO_4 nanoparticles was observed in Fig. 4c. As can be seen from Fig. 4c, prepared Ag_3PO_4 particles have irregular particles morphology.

The FE-SEM images of $CaFe_2O_4/Ag_3PO_4$ and $MgFe_2O_4/Ag_3PO_4$ composites were shown in Fig. 4d and Fig. S3c, respectively. It can be seen that the $CaFe_2O_4$ and $MgFe_2O_4$ particles scattered on the surface of Ag_3PO_4 particles in aforementioned images.

Fig. 4e, f and Fig. S3d, S3e displayed the FE-SEM images of synthesized $rGO/CaFe_2O_4/Ag_3PO_4$ and $rGO/MgFe_2O_4/Ag_3PO_4$ composites, respectively. The images of the rGO/MFe_2O_4 (M=Ca, Mg)/Ag_3PO_4 with a mass ratio of (1:3:9) indicate that rGO sheets are embedded between the crystal particles. The calcium and magnesium ferrite nanoparticles are agglomerated around the Ag_3PO_4 crystal to form a composite structure.

Raman analysis. Fig. 5 compares the Raman spectra of both $CaFe_2O_4$ and $rGO/CaFe_2O_4$ nanoparticles. The $CaFe_2O_4$ Raman plot shows the typical peaks at 440, 566, 649 and 1246 cm⁻¹, respectively. The Raman plot of $rGO/CaFe_2O_4$ composites show the characteristics D and G peaks at 1359 cm⁻¹ and 1571 cm⁻¹ in addition to the peaks that were related to $CaFe_2O_4$ nanoparticles.

Fig. S4 exhibites the Raman plot of $MgFe_2O_4$ and $rGO/MgFe_2O_4$ nanoparticles. The peaks in the range of 100-1000 cm⁻¹ were observed [43]. These peaks confirmed the pure $MgFe_2O_4$ nanoparticles. In Fig. S4b that is related to the $rGO/MgFe_2O_4$ composites in addition to the peaks corresponding to $MgFe_2O_4$, the characteristics D and G peaks at 1359 cm⁻¹ and 1563 cm⁻¹ appear which confirmed the dispersion of graphene oxide into reduced graphene oxide.

VSM Magnetic analysis. The magnetic response of pure CaFe₂O₄, rGO/CaFe₂O₄/Ag₃PO₄ and MgFe₂O₄ and rGO/MFe₂O₄/Ag₃PO₄ (1:3:9) nanoparticles has been investigated by VSM. (Fig. 6 and S5). It could be observed that presence of MFe₂O₄ (M= Ca, Mg) nanoparticles introduce the magnetic behavior in rGO/MFe₂O₄ (M= Ca, Mg)/Ag₃PO₄ composites. A drop in M_S values has been observed from 30.2 emu/gm and 26.9 emu/gm for CaFe₂O₄ and MgFe₂O₄ to 7 and 5 emu/gm for rGO/CaFe₂O₄/Ag₃PO₄ and rGO/MgFe₂O₄/Ag₃PO₄ nanoparticles, respectively. The lower values of the M_s can be related to the presence of Ag₃PO₄ particles and rGO sheets in the rGO/MFe₂O₄ (M= Ca, Mg)/Ag₃PO₄ composites. However the magnetic behavior of rGO/MFe₂O₄ (M= Ca, Mg)/Ag₃PO₄ composites allow their easy separation from suspended system by an external magnet [51].

UV-vis analysis. Fig. 7a, b and Fig. S6a exhibits the UV-vis diffuse reflectance spectroscopy of the CaFe₂O₄, Ag₃PO₄ and MgFe₂O₄ nanoparticles, respectively. The band gap energy (E_g) of these three samples were calculated by the following equation:

$$\alpha h v = A \left(h v - E_{\sigma} \right)^{1/2} \tag{3}$$

Where α is absorption coefficient and h is plank constant. Furthermore, υ and A are light frequency and a constant, respectively. E_g can be obtain from a region in the plot of $(\alpha h \upsilon)^2$ versus photon energy (h υ) [37].

The band gap energy of the pure CaFe₂O₄, MgFe₂O₄ and Ag₃PO₄ nanoparticles are about 1.52, 1.68 and 1.94 eV respectively. The E_g of these three samples are low compared to standard value, which can attribute to the different conditions of synthetic hydrothermal method. Diffuse reflectance spectroscopy of CaFe₂O₄/Ag₃PO₄ (1:3) and MgFe₂O₄/Ag₃PO₄ (1:3) composites are illustrated in Fig.7 and Fig. S6b, respectively. The value of E_g for CaFe₂O₄/Ag₃PO₄ composite was calculated 1.31 eV and this value for MgFe₂O₄/Ag₃PO₄ composite was 1.35 eV. So, these two composites have higher visible light absorption capability. Introduce of rGO sheets decreases band gap energy of CaFe₂O₄/Ag₃PO₄ and MgFe₂O₄/Ag₃PO₄ composites. The E_g for rGO/CaFe₂O₄/Ag₃PO₄ and rGO/MgFe₂O₄/Ag₃PO₄ composite has lower band gap energy compare to other samples.

PL results. The Photoluminescence (PL) analysis has been widely performed to study the migration, transfer and recombination processes of photo-induced electron-hole pairs in the prepared samples. In fact, the lower the PL signal means that the higher separation efficiency of photo-induced electron-hole pairs, implying that more photo-induced electrons and holes can be available for redox processes. Fig. S7 displays room temperature PL spectra of the pure Ag₃PO₄ nanoparticles, as well as rGO/MFe₂O₄ (M= Ca, Mg)/Ag₃PO₄ (1:3:9) composites upon the excitation wavelength at 420 nm. The main emission peak of Ag₃PO₄ was vividly decreased, owing to this fact that the recombination of photo-induced electron-hole pairs is efficiency prevented because of the presence of MFe₂O₄ (M= Ca, Mg)/Ag₃PO₄ (1:3:9) composites. As shown in Fig. S7 the weak pL intensity of rGO/MFe₂O₄ (M= Ca, Mg)/Ag₃PO₄ (1:3:9) composites, implying that the cooperative effects between MFe₂O₄/Ag₃PO₄ nanoparticles and rGO sheets contributed to enhancing the charge separation efficiency and decreasing the recombination of photogenerated electron-hole pairs is efficiency and decreasing the

Electrochemical impedance measurement (EIS). EIS analysis was employed to obtain further insight into the charge transfer mechanisms. Fig. 8 exhibits the Nyquist plots of the synthesized Ag_3PO_4 and of rGO/MFe₂O₄ (M= Ca, Mg)/Ag_3PO₄ (1:3:9) composites at the open-circuit voltage. The semicircle diameter of EIS is equal to total charge transfer resistance (R_{ct}) in the prepared samples. As shown in Fig. 8 rGO/MFe₂O₄ (M= Ca, Mg)/Ag_3PO₄ (1:3:9) composites have smaller R_{ct} than pure Ag₃PO₄ nanoparticles, providing evidence that the rGO/MFe₂O₄ (M= Ca, Mg)/Ag₃PO₄ (1:3:9) composites have smaller R_{ct} than pure Ag₃PO₄ nanoparticles, providing transfer resistance and high efficient separation of photoinduced electron-hole [53].

Photocatalytic performance for MB, MO and 4-CP degradation

Evaluation of the photocatalytic activity. To evaluate the photocatalytic performance of the synthesized samples, MB and MO photodegradation as well as 4-CP photodegradation were carried out under visible irradiation. MB, MO and 4-CP are representative organic contaminations. The control studies were also conducted without photocatalyst or light. The photocatalytic degradation was calculated as follow:

% Degradation =
$$[(C_0 - C_t)/C_0] * 100$$
 (4)

Where C_0 and C_t are concentration of organic contaminations before irradiation and after irradiation, respectively.

First, the degradation efficiency for MB removal in the presence of prepared samples under visible light illumination were investigated.

The amount of MB adsorbed onto $CaFe_2O_4$, $CaFe_2O_4/Ag_3PO_4$ with a mass ratio of (1:3), rGO/CaFe_2O_4/Ag_3PO_4 (1:3:9) and MgFe_2O_4, MgFe_2O_4/Ag_3PO_4 (1:3), rGO/MgFe_2O_4/Ag_3PO_4 (1:3:9) was approximately evaluated to be ~ 4%, 9%, 12% and 5%, 8%, 9% of the initial amount of MB, respectively. As a result, the MB degradation without light irradiation could be neglected. As shown, the absence of any photocatalyst also concluded in no degradation, showing the removal of MB occurred through photocatalysis. Under aforementioned conditions, no electron-hole pairs can be formed and therefore photocatalytic behavior of synthesized samples is not induced. It is clear that the photocatalytic performances relate to the formation, transfer and separation of photogenerated electron-hole pairs [53-55]. As shown in Fig. 9, pure CaFe_2O_4 degraded only 21% of MB after 45 min while,

CaFe₂O₄/Ag₃PO₄ with a mass ratio of (1:3) showed 95% removal after 45 min that is related to the combine CaFe₂O₄ and Ag₃PO₄ nanoparticles together. The CB potential of CaFe₂O₄ is more negative than that Ag₃PO₄, so the photogenerated electrons in CaFe₂O₄ could migrate to the surface of Ag_3PO_4 and simultaneously, the photogenerated holes in the VB of Ag_3PO_4 could migrate to CaFe₂O₄. Aforementioned process could improve the separation of photogenerated electron-hole pairs. Based on the degradation efficiency results, the rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9) degraded 92% of MB within 27 min. The high photocatalytic performance of rGO/CaFe₂O₄/Ag₃PO₄ could be attributed to the efficient separation of photogenerated electron-hole pairs. The rGO is a perfect electron acceptor and electron transporter which increases the charge separation efficiency that avoid recombining the photogenerated electron-hole pairs. Also, rGO keeps nanoparticles dispersed hence retards agglomeration. Consequently, photocatalytic activity could improve. Pure MgFe₂O₄ and MgFe₂O₄/Ag₃PO₄ with a mass ratio of (1:3) degraded 18% and 89% of MB after 45 min. The rGO/MgFe₂O₄/Ag₃PO₄ (1:3:9) composite showed 85% removal after 27 min (Fig. S8). Photocatalytic degradation efficiency of MO in the presence of pure CaFe₂O₄, CaFe₂O₄/Ag₃PO₄ (1:3), rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9) and pure MgFe₂O₄ MgFe₂O₄/Ag₃PO₄ (1:3), rGO/MgFe₂O₄/Ag₃PO₄ (1:3:9) under visible light irradiation are presented in Fig. 10 and Fig. S9, respectively. The amount of MO adsorbed onto CaFe₂O₄, CaFe₂O₄/Ag₃PO₄ (1:3),rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9)and $MgFe_2O_4$ $MgFe_2O_4/Ag_3PO_4$ (1:3), $rGO/MgFe_2O_4/Ag_3PO_4$ (1:3:9) was evaluated to be ~ 6%, 5%, 9% and 5%, 6%, 8% of the initial amount of MO, respectively. Consequently, the MO degradation without light could be neglected.

It is cleared that with decreasing band gap energies of the synthesized composites, photoactivity of prepared samples increase. In addition to MB and MO, 4-CP was selected as another model organic pollutant in order to further investigated the photocatalytic activity of the rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9) and rGO/MgFe₂O₄/Ag₃PO₄ (1:3:9) that showed better photocatalytic performance in dye degradation compare to CaFe₂O₄/Ag₃PO₄ (1:3) and MgFe₂O₄/Ag₃PO₄ (1:3) composites. As shown in Fig. 11, after 160 min of irradiation, no degradation of 4-CP observed without catalysts. The photocatalytic degradation of 4-CP in the presence of rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9) and of rGO/MgFe₂O₄/Ag₃PO₄ (1:3:9) under visible light was 90% and 86% in about 160 min, respectively.

The photocatalytic kinetics of the synthesized photoctalysts were also studied. K_{app} is gained for photodegradation of MB, MO and 4-CP from plotting the graph of ln (Co/Ct) versus t as shown in Fig. 12, S10 and S11, respectively. Based on the k _{app} values, one can compare the photocatalytic performance of the various catalysts. The obtained results displayed that the kinetic simulation curves are close to linear curves. All of the correlation coefficients (R²) were higher than 0.9. Consequently, the pseudo first order kinetics model fit the experimental data well [56,57]. As a result, the photocatalytic degradation of MB, MO and 4-CP using synthesized photoctalysts were fitted using the pseudo-first-order L-H model. As seen in Fig. 13, S12 and S13, the degradation rate of MB, MO and 4-CP in the presence of rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9) under visible light illumination was higher than of others.

Effect of concentration of catalyst on pollutants photodegradation. The effect of rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9) photocatalyst concentration on the photodegradation rate of MB, MO and 4-CP were investigated in the range of 0.5 g/L to 3 g/L at constant pollutants concentration (25 mg/L) and the obtained results are illustrated in Fig. 14, S14 and S15, respectively. As shown, the photodegradation efficiency of MB, MO and 4-CP enhances from 0.5 to 2 g/L. At low photocatalyst concentration, the adsorbed light controlled the activity of photocatalyst. It could be attributed to the limited photocatalyst surface area. On the other hand, further raising the photocatalyst concentration from 2 to 3 g/L has a negative effect on the photodegradation efficiency. This issue may cause enhanced scattering and turbidity effects, resulting in decreased visible light penetration on the synthesized photocatalyst concentration for pollutants degradation was 2 g/L.

Effect of initial pollutants concentration on photodegradation. Fig. 14, S16 and S17 illustrate the interaction effect of initial MB, MO and 4-CP concentration on the degradation rate of pollutants by changing the initial concentration of pollutants from 15 to 35 mg/L with constant photocatalyst concentration (2 g/L) under visible light irradiation, respectively. As the pollutants concentration increases, the amount of pollutants adsorbed on the active surface area of photocatalyst enhances. As a result, the formation of 'OH radicals will be enhanced. The obtained results showed that the photodegradation efficiency of pollutants decrease with increase in initial MB, MO and 4-CP concentration ranging from 25 to 35 mg/L. The increase in initial pollutants concentration decrease the visible light penetration to the surface of photocatalyst. Furthermore, the limited active site onto the photocatalyst may be another reason for the decreased photodegradation efficiency.

Effect of reactive species on photodegradation of pollutants. In order to further insight into the photodegradation pathway of organic pollutants, the free radical trapping experiments to investigate of species in the the role reactive photocatalytic system rGO/CaFe2O4/Ag3PO4 (1:3:9) were carried out. The degradation efficiency of MB, MO and 4-CP under various scavengers (t-BuOH as the hydroxyl radical ('OH) scavenger, BZQ as the superoxide radical (O_2^{\bullet}) scavenger and KI as the hole (h^+) scavenger) are shown in Fig.15, S18 and S19, respectively [58]. As observed in Fig. 15, MB strongly degraded after 27 min photocatalytic treatment without scavengers, while the addition of 1 mM t-BuOH scavenger caused fast deactivation of the

rGO/CaFe2O4/Ag3PO4 (1:3:9) photocatalyst, and the degradation efficiency of MB decreased from 92% to 41% in 27 min. So, this result indicates that all 'OH play main role in this process. The introduction of 1 mM BZQ into the system also restrained the photocatalytic activity of the photocatalyst toward MB after 27 min reaction, demonstrating that O₂[•] play an important role in photodegradation. When the 1mM KI was introduced into the system, the degradation rate was slightly reduced indicating that h⁺ has little effect on the MB degradation. The same observations for MO and 4-CP degradation exhibit 'OH participation which was formed by oxidative and reductive reactions as well as O_2^{\bullet} is the great contributor for pollutants degradation.

of

Photocatalytic stability. Stability of the rGO/CaFe₂O₄/Ag₃PO₄ with a mass ratio of (1:3:9) that had higher photocatalytic activity as compared to other synthesized photocatalysts is another essential factor for evaluating its performance. Therefore, rGO/CaFe₂O₄/Ag₃PO₄ was recycled for five times under the same conditions. The degradation of MB, MO and 4-CP during each run is exhibited in Fig. 16a, b and c, respectively. The photocatalytic data showed that photocatalytic activity of rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9) for organic contaminations degradation changes little and even, 84%, 80% and 74% of MB, MO and 4-CP is degraded after recycling for five times, respectively. In fact, after contact between Ag₃PO₄ and CaFe₂O₄ particles, a p-n junction is generated, the charge carriers transfer from CaFe₂O₄ to Ag₃PO₄. Consequently, the rGO/CaFe₂O₄/Ag₃PO₄ displays high stability because it does not suffer from photocorrosion during the degradation contaminates. In addition, the rGO sheets not only enhance the charge separation efficiency but also keep nanoparticles dispersed hence retards agglomeration so the rGO/CaFe₂O₄/Ag₃PO₄ photocatalyst shows high

stability. The used photocatalysts separated by an external magnetic field was washed with distilled water for two times and dried at 80 °C for 1 h.

Possible photocatalytic mechanism in rGO/MFe_2O_4 (M = Ca, Mg)/ Ag_3PO_4 system. In order to elucidate photocatalytic degradation mechanism of organic pollutants over synthesized photocatalysts, the reactive species including 'OH, O_2^{--} and h⁺ involved in the photodegradation process were investigated. The photodegradation pathway of MB, MO and 4-CP over the prepared photocatalysts could be inferred, which is illustrated in Scheme 2 [59–62]. To clarify the separation of photo-induced e⁻/h⁺ pairs over the synthesized photocatalysts, it is essential to estimate the conduction band (CB) and valence band (VB) potentials of the samples. These energy levels were calculated using the following equations:

$$E_{CB} = \chi - E^{e} - 0.5 E_{g}$$
(5)

$$E_{VB} = E_{CB} - E_g \tag{6}$$

Where E_{VB} , E_{CB} and E^{e} are the VB, CB potentials and the energy of free electrons vs. hydrogen (4.5 eV), respectively. Also, χ is electronegativity of the semiconductor and it was estimated via Eq. (13):

$$\chi = [\chi (A)^{a} \chi (B)^{b} \chi (C)^{c}]^{1/a+b+c}$$
(7)

In above equation a, b, and c are the number of atoms in the compounds [63]. The values of E_g and χ for Ag₃PO₄ are 1.94 and 5.98 eV, respectively. So, the E_{CB} and E_{VB} of Ag₃PO₄ were estimated to be 0.51 and 2.45 eV versus normal hydrogen electrode (NHE). Moreover, the estimated values of E_g and χ for CaFe₂O₄ are 1.52 and 5.54 eV, respectively. As a result, E_{CB} and E_{VB} for CaFe₂O₄ are 0.28 and 1.8 eV. E_g and χ for MgFe₂O₄ are 1.64 and 5.67 eV, respectively. Therefore, the E_{CB} and E_{VB} of MgFe₂O₄ were estimated to be 0.35 and 1.99 eV. For CaF₂O₄ and MgFe₂O₄ particles that are p-type semiconductors, the Fermi levels are close to VB levels and for Ag₃PO₄ particles which are n-type semiconductor, the Fermi level is close to CB level.

Before contact between Ag_3PO_4 and MFe_2O_4 particles, the CB edge and Fermi level of Ag_3PO_4 are lower than those of MFe_2O_4 . After contact when a p-n junction is generated, the charge carriers transfer from MFe_2O_4 to Ag_3PO_4 . Consequently, an external electric field at the heterojunction interface is generated [64]. The Fermi energy levels of $n-Ag_3PO_4$ and p- MFe_2O_4 are aligned under equilibrium conditions. In fact, the photogenerated electrons in

 MFe_2O_4 could migrate to Ag_3PO_4 and simultaneously, the photogenerated holes in the VB of Ag_3PO_4 could migrate to MFe_2O_4 . Aforementioned process could improve the separation of photogenerated electron-hole pairs. Consequently, the photogenerated electrons in CB of Ag_3PO_4 react with surface adsorbed O_2 to form O_2^{\bullet} , which then reacts with H⁺ to form 'OOH, followed by rapid decomposition to 'OH radicals. In addition, the photogenerated holes in VB of MFe_2O_4 could oxidize H_2O and OH^- to form 'OH radicals, that are involved in the photodegradation reaction of organic pollutants. In fact, the process of generating 'OH can occur by two pathways.

rGO/MFe₂O₄/Ag₃PO₄ shows significant advance in photodegradation of organic pollutants compared to MFe₂O₄/Ag₃PO₄. The rGO sheets are perfect speed charge transfer ability that enhances the charge separation efficiency which prevent recombination of the photogenerated electrons and holes. The photogenerated electrons in MFe₂O₄ migrate to the rGO sheets due to marvelous electron conductivity and graphene sheets are good electron acceptors. So, the electrons are quickly migrate to the graphene sheets. Then, the electrons transferred to the surface of Ag₃PO₄ (Fig. 17 and S20). As a result, the electron-hole recombination of the rGO/MFe₂O₄/Ag₃PO₄ is inhibited. In addition, rGO sheets can delay aggregation of nanoparticles. So, the presence of rGO sheets in the composites can promote the separation of electron-hole pairs that this issue has a main role in the increase quantity of active holes for organic contaminations degradation also, the probability of combination of photogenerated electrons and Ag₃PO₄ decreases, that offers better recyclability and stability of the prepared composites.

CONCLUSIONS

In summary, we have successfully indicated four efficient and magnetically separable photocatalysts $CaFe_2O_4/Ag_3PO_4$, $MgFe_2O_4/Ag_3PO_4$, $rGO/CaFe_2O_4/Ag_3PO_4$ and $rGO/MgFe_2O_4/Ag_3PO_4$ for MB, MO and 4-CP degradation. It was shown that $rGO/CaFe_2O_4/Ag_3PO_4$ with a mass ratio of (1:3:9) nanocomposite exhibits the wonderful visible light photocatalytic activity compared with other synthesized nanocomposites, that arises from synergistic effect between the prepared nanocomposites and rGO sheets.

On the basis of this study, the $rGO/CaFe_2O_4/Ag_3PO_4$ nanocomposite photocatalytic system is an effective and magnetically recoverable visible light driven photocatalyst for degradation of MB, MO and 4-CP as representative of organic contaminations.

Acknowledgement

M.B. acknowledges the Research Council of Sharif University of Technology for the research funding of this project.

SUPPORTING INFORMATION

Additional Supporting Information is available in the online version of this article:

Fig. S1. FT-IR spectra of (a) $MgFe_2O_4$, (b) Ag_3PO_4 , (c) $MgFe_2O_4/Ag_3PO_4(1:3)$, (d) $rGO/MgFe_2O_4/Ag_3PO_4(1:3:9)$.

Fig. S2. XRD patterns of (a) $MgFe_2O_4/Ag_3PO_4$; the iconograph in (a) is the XRD pattern of $MgFe_2O_4$ and (b) $rGO/MgFe_2O_4/Ag_3PO_4$.

Fig. S3. FESEM image of (a) neat MgFe₂O₄, (b) rGO/MgFe₂O₄, (c) MgFe₂O₄/Ag₃PO₄ (1:3), (d, e) rGO/MgFe₂O₄/Ag₃PO₄ (1:3:9).

Fig. S4. Raman spectra of (a) MgFe₂O₄ nanoparticles and (b) rGO/MgFe₂O₄ nanocomposites.

Fig. S5. Magnetization curve of MgFe₂O₄, rGO/MgFe₂O₄/Ag₃PO₄ (1:3:9).

Fig. S6. The UV–Vis DRS and the band gap for (a) MgFe₂O₄, (b) MgFe₂O₄/Ag₃PO₄(1:3), (c) rGO/MgFe₂O₄/Ag₃PO₄(1:3:9).

Fig. S7. Photoluminescence spectra with an excitation of a diode laser (wavelength 420 nm) of Ag₃PO₄, rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9), rGO/MgFe₂O₄/Ag₃PO₄ (1:3:9).

Fig. S8. The degradation efficiency for MB (25 mg/L) removal in the process of the MgFe₂O₄, MgFe₂O₄/Ag₃PO₄ and rGO/MgFe₂O₄/Ag₃PO₄ nanocomposites under visible light irradiation ([catalyst]= 2 g/L).

Fig. S9. The degradation efficiency for MO (25 mg/L) removal in the process of the MgFe₂O₄, MgFe₂O₄/Ag₃PO₄ and rGO/MgFe₂O₄/Ag₃PO₄ nanocomposites under visible light irradiation ([catalyst]= 2 g/L).

Fig. S10. Linear-log plot for the photocatalytic degradation of MO in the presence of prepared samples under visible light irradiation.

Fig. S11. Linear-log plot for the photocatalytic degradation of 4-CP in the presence of $rGO/CaFe_2O_4/Ag_3PO_4$ and $rGO/MgFe_2O_4/Ag_3PO_4$ nanocomposites under visible light irradiation.

Fig. S12. The degradation rate constant of the fabricated catalysts for the photocatalytic degradation of MO under visible light irradiation.

Fig. S13. The degradation rate constant of the fabricated catalysts for the photocatalytic degradation of 4-CP under visible light irradiation.

Fig. S14. The degradation efficiency for MO (25 mg/L) removal using different amount of $rGO/CaFe_2O_4/Ag_3PO_4$ (1:3:9) under visible light irradiation.

Fig. S15. The degradation efficiency for 4-CP (25 mg/L) removal using different amount of $rGO/CaFe_2O_4/Ag_3PO_4$ (1:3:9) under visible light irradiation.

Fig. S16. The degradation efficiency for MO removal using different concentration of initial dye in the presence of rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9) under visible light irradiation ([catalyst]= 2g/L).

Fig. S17. The degradation efficiency for 4-CP removal using different concentration of initial pollutant in the presence of rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9) under visible light irradiation ([catalyst]= 2g/L).

Fig. S18. Effect of different scavengers on degradation of MO by rGO/CaFe₂O₄/Ag₃PO₄ under the optimized conditions.

Fig. S19. Effect of different scavengers on degradation of 4-CP by $rGO/CaFe_2O_4/Ag_3PO_4$ under the optimized conditions.

Fig. S20. Schematic illustration of the proposed reaction mechanism for the photocatalytic degradation of the dyes in the presence of $rGO/MgFe_2O_4(M=Ca, Mg)/Ag_3PO_4$ nanocomposite.

References

- J. Fenoll, N. Vela, I. Garrido, G. Navarro, G. Lucas, S. Navarro (2015) Reclamation of Water Polluted with Flubendiamide Residues by Photocatalytic Treatment with Semiconductor Oxides. J. Photochem. Photobiol. 91, 1088–1094.
- 2. X. Huang, J. Ding, Q. Zhong (2015) Catalytic decomposition of H₂O₂ over Fe-based catalysts for simultaneous removal of NO_X and SO₂. Appl. Surf. Sci. 326, 66–72.
- C. Guo, L. Song, Sh. Zhang (2018) Synthesis of Pb₉ (PO₄)₆/Ag₃PO₄ Composite Photocatalysts With Enhanced Visible Light Photocatalytic Activity. J. Photochem. Photobiol. 94, 228-236.
- L. Zhang, R. Zheng, S. Li, B. Liu, D. Wang, L. Wang, T. Xie (2014) Enhanced Photocatalytic H₂ Generation on Cadmium Sulfide Nanorods with Cobalt Hydroxide

as Cocatalyst and Insights into Their Photogenerated Charge Transfer Properties. Appl. Mater. Interfaces. 6, 13406–13412.

- Yang-S. Xu, Wei-D. Zhang (2013) Monodispersed Ag₃PO₄ nanocrystals loaded on the surface of spherical Bi2MoO6 with enhanced photocatalytic performance. Dalton Trans. 42, 1094–101.
- Y. Bi, Sh. Ouyang, N. Umezawa, J. Cao, J. Ye (2011) Facet effect of single-crystalline Ag₃PO₄ sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 133, 6490– 6492.
- X. Zhao, L. Song, Sh. Zhang (2018) Synthesis of AgCl/Ag₃PO₄ Composite Photocatalysts and Study on Photodegradation Activity Based on a Continuous Reactor. J. Photochem. Photobiol. https://doi.org/10.1111/php.12875.
- X. Chen, Y. Dai, J. Guo, T. Liu, X. Wang (2016) Novel Magnetically Separable Reduced Graphene Oxide (RGO)/ZnFe₂O₄/Ag₃PO₄ Nanocomposites for Enhanced Photocatalytic Performance toward 2,4-Dichlorophenol under Visible Light. Ind. Eng. Chem. Res. 55, 568–578.
- X. Yang, H. Cui, Y. Li, J. Qin, R. H. Zhang, H. Tang (2013) Fabrication of Ag₃PO₄graphene composites with highly efficient and stable visible light photocatalytic performance. Acs Catal. 3, 363–369.
- 10. B. Chai, J. Li, Q. Xu (2014) Reduced graphene oxide grafted Ag₃PO₄ composites with efficient photocatalytic activity under visible-light irradiation. Ind. Eng. Chem. Res. 53, 8744–8752.
- 11. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang (2010) An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 9, 559–564.
- Jing-W. Xu, Zhi-D. Gao, K. Han, Y. Liu, Yan-Y. Song (2014) Synthesis of magnetically separable Ag₃PO₄/TiO₂/Fe₃O₄ heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria. ACS Appl. Mater. Interfaces. 6, 15122–15131.
- W-S. Wang, H. Du, R-X. Wang, T. Wen, A-W. Xu (2013) Heterostructured Ag₃PO₄
 /AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability

under visible light. Nanoscale. 5, 3315–3321.

- X. Yang, J. Qin, Y. Jiang, R. Li, Y. Li, H. Tang (2014) Bifunctional TiO₂/Ag₃PO₄/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria. RSC Adv. 4, 18627–18636.
- A.M. Idris (2014) An In-Situ Anion Exchange Method Synthesized of Ag₃PO₄ Functionalized with Fe₃O₄ and AgI for Photocatalytic Degradation of Methyl Orange under Visible Light Irradiation. Int. J. Mater. Sci. Appl. 3, 303–308.
- 16. J. Guo, H. Zhou, S. Ouyang, T. Kako, J. Ye (2014) An Ag₃PO₄/nitridized Sr₂Nb₂O₇ composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation. Nanoscale. 6, 7303–7311.
- 17. L. Ma, I. Jia, X. Guo, L. Xiang (2014) Current Status and perspective of rare earth catalytic materials and catalysis. Chinese J. Catal. 35, 108–119.
- R. Shao, X. Zeng, Zh. Cao, H. Dong, L. Wang, F. Wang, J. Liu, Zh. Li, Q. Liang (2015) A novel Ag₃PO₄/Nb₂O₅ fiber composite with enhanced photocatalytic performance and stability. RSC Adv. 19, 673–679.
- G. Chen, M. Sun, Q. Wei, Y. Zhang, B. Zhu, B. Du (2013) Ag₃PO₄/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water. J. Hazard. Mater. 244, 86–93.
- 20. B. Chai, J. Li, Q. Xu (2014) Reduced Graphene Oxide Grafted Ag₃PO₄ Composites with Efficient Photocatalytic Activity under Visible-Light Irradiation. Ind. Eng. Chem. Res. 53, 8744–8752.
- Q. Xiang, D. Lang, T. Shen, F. Liu (2015) Graphene-modified nanosized Ag₃PO₄ photocatalysts for enhanced visible-light photocatalytic activity and stability. Appl. Catal. B, Environ. 162, 196–203.
- J. Zhao (2017) Environmental Energy-efficient fabrication of a novel multivalence Mn₃O₄ -MnO₂ heterojunction for dye degradation under visible light irradiation. Applied Catal. B, Environ. 202, 509–517.
- E. Casbeer, V. K. Sharma, X. Z. Li (2012) Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep. Purif. Technol. 87, 1–14.

- D. Guin, B. Baruwati, S.V. Manorama (2005) A simple chemical synthesis of nanocrystalline AFe₂O₄ (A= Fe, Ni, Zn): an efficient catalyst for selective oxidation of styrene. J. Mol. Catal. A Chem. 242, 26–31.
- Zh. Li, X. Lai, H. Wang, D. Mao, Ch. Xing, D. Wang (2009) General synthesis of homogeneous hollow core-shell ferrite microspheres. J. Phys. Chem. C. Nanomater. Interfaces. 113, 2792–2797.
- 26. M. Aamir, Muhammad N. Ashiq, Gh. Yasmeen, B. Ahmad, Muhammad F. Ehsan, T. He (2015) Synthesis and characterization of polyaniline/ZrCo-substituted nickel ferrite (NiFe_{1.2}Zr_{0.4}Co_{0.4}O₄) nanocomposites: their application for the photodegradation of methylene blue. Desalin water treat. 57, 1–10.
- 27. H. Liu, H. Hao, J. Xing, J. Dong, Z. Zhang, Z. Zheng, K. Zhao (2016) Enhanced photocatalytic capability of zinc ferrite nanotube arrays decorated with gold nanoparticles for visible light-driven photodegradation of rhodamine B. J. Mater Sci. 51, 5872–5879.
- William L. IV, J. Drwiega, David W. Mazyck, Seung W. Lee, W. Sigmund, Chang Y. Wu,
 P. Chadik (2005) Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants. Environ. Sci. Technol. 39, 8052–8056.
- R. Dom, R. Subasri, K. Radha, P.H. Borse (2011) Synthesis of solar active nanocrystalline ferrite, MFe₂O₄ (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun. 151, 470–473.
- J. Cao, T. Kako, P. Li, S. Ouyang, J. Ye (2011) Fabrication of p-type CaFe₂O₄ nanofilms for photoelectrochemical hydrogen generation. Electrochem. commun, 13, 275–278.
- Z. Zhang, W. Wang (2014) Solution combustion synthesis of CaFe₂O₄ nanocrystal as a magnetically separable photocatalyst. Mater. Lett. 133, 212–215.
- 32. L. Khanna, N.K. Verma (2013) Synthesis, characterization and in vitro cytotoxicity study of calcium ferrite nanoparticles. Mater. Sci. Semicond. Process. 16, 1842–1848.
- S. Verma, P.A. Joy, Y.B. Khollam, H. S. Potdar, S.B. Deshpande (2004) Synthesis of nanosized MgFe₂O₄ powders by microwave hydrothermal method Mater. Lett. 58, 1092–1095.

- 34. T. Sasaki, S. Ohara, T. Naka, J. Vejpravova, V. Sechovsky, M. Umetsu, S. Takami, B. Jeyadevan, T. Adschiri (2010) Continuous synthesis of fine MgFe₂O₄ nanoparticles by supercritical hydrothermal reaction. J. Supercrit. Fluids. 53, 92–94.
- 35. X. Chen, Y. Dai, W. Huang (2015) Novel Ag₃PO₄/ZnFe₂O₄ composite photocatalyst with enhanced visible light photocatalytic activity. Mater. Lett. 145, 125–128.
- G. Zhao, L. Liu, J. Li, Q. Liu (2016) Efficient removal of dye MB: Through the combined action of adsorption and photodegradation from NiFe₂O₄/Ag₃PO₄. J. Alloys Compd. 664, 169-174.
- 37. B. Velaga, P. Shanbogh, D. Swain, Ch. Narayana, N. Sundaram (2018) High Surface Area SnO₂-Ta₂O₅ Composite for Visible Light Driven Photocatalytic Degradation of an Organic Dye, J. Photochem. Photobiol. https://doi.org/10.1111/php.12896.
- D. Das, A. Samal, J. Das, A. Dash, H. Gupta (2014) One-Pot Fabrication of RGO– Ag₃VO₄ Nanocomposites by in situ Photoreduction using Different Sacrificial Agents: High Selectivity Toward Catechol Synthesis and Photodegradation Ability. J. Photochem. Photobiol. 90, 57–65.
- H. Liu, Y. Wang, L. Shi, R. Xu, L. Huang, Sh. Tan (2016) Utilization of reduced graphene oxide for the enhancement of photocatalytic property of TiO₂ nanotube. Desalin water treat. 57, 13263–13272.
- 40. N. Zhang, Y. Zhang, Y. Xu (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale. 4, 5792–5813.
- 41. D. Lang, T. Shen, Q. Xiang (2015) Roles of MoS₂ and Graphene as Cocatalysts in the Enhanced Visible-Light Photocatalytic H₂ Production Activity of Multiarmed CdS Nanorods. ChemCatChem. 7, 943 – 951.
- 42. J. Theurich, M. Lindner, D.W. Bahnemann (1996)Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study. Langmuir. 12, 6368–6376.
- W.S. Hummers Jr, R. E. Offeman (1958) Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339.
- 44. E. Akbarzadeh, S. R. Setayesh and M. R. Gholami (2016) Synthesis of the visible-light-

driven Ag₃VO₄/Ag₃PO₄/Ag photocatalysts with enhanced photocatalytic activity. RSC Adv. 18, 14909-14915.

- 45. Y. Shen, Y. Wu, X. Li, Q. Zhao, Y. Hou (2013) One-pot synthesis of MgFe₂O₄ nanospheres by solvothermal method. Mater. Lett. 96, 85–88.
- 46. G. Botelho, J. Andres, L. Gracia, L.S. Matos, E. Longo (2016) Photoluminescence and Photocatalytic Properties of Ag₃PO₄ Microcrystals: An Experimental and Theoretical Investigation. Chempluschem. 81, 202–212.
- 47. N. Aina, W. Shaheena, B. Bashira, N. Abdelsalamb, M. Warsia, M. Khanc, M. Shahid (2016) Electrical, magnetic and photoelectrochemical activity of rGO/MgFe₂O₄ nanocomposites under visible light irradiation. Ceramics International. 42, 12401-12408.
- 48. T.K. Pathak, N. H. Vasoya, V.K. Lakhani, K.B. Modi (2010) Structural and magnetic phase evolution study on needle-shaped nanoparticles of magnesium ferrite. Ceram. Int. 36, 275–281.
- S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng and J. Xu (2014) In situ ion exchange synthesis of strongly coupled Ag@ AgCl/g-C₃N₄ porous nanosheets as plasmonic photocatalyst for h ighly efficient visible-light photocatalysis. Appl. Mater. Interfaces. 6, 22116-22125.
- 50. B. Jiang, Y. Wang, Jian-Q. Wang, Ch. Tian, W. Li, Q. Feng, Q. Pan, H. Fu (2013) In Situ Fabrication of Ag/Ag₃PO₄/Graphene Triple Heterostructure Visible-Light Photocatalyst through Graphene-Assisted Reduction Strategy. ChemCatChem. 5, 1359–1367.

51. M.Z. Naik, A.V. Salker (2016) Tailoring the super-paramagnetic nature of $MgFe_2O_4$ nanoparticles by In^{3+} incorporation. Mater. Sci. Eng B. 211, 37–44.

52. K. He, J. Xie, M. Li, X. Li (2018) In situ one-pot fabrication of $g-C_3N_4$ nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H₂ generation. Appl. Surf. Sci. 430, 208-217.

53. N. Mohaghegh, E. Rahimi (2016) $BiPO_4$ photocatalyst employing synergistic action of Ag/Ag_3PO_4 nanostructure and graphene nanosheets. Solid. State. Sciences. 56, 10-15.

- 54. A. Kumar, A. Kumara, G. Sharma, M. Naushad, R. Cataluna Veses, A. Ghfar, F. Stadler, M. Rizwan Khan (2017) Solar-driven photodegradation of 17-β-estradiol and Ciprofloxacin from waste water and CO₂ conversion using sustainable Coal-char/polymeric-gC₃N₄/RGO metal free nano-hybrids. New J. Chem. 41, 10208-10224.
- 55. H. Wang, L. Shen, F.Fu. Guo, Y. Liang (2016) Design and construction of the sandwichlike Z-scheme multicomponent CdS/Ag/Bi₂MoO₆ heterostructure with enhanced photocatalytic performance in RhB photodegradation. New J. Chem. 40, 8614-8624.
- 56. X. Yuan, H. Wang, Y. Wu, G. Zeng, X. Chen, L. Leng, Zh. Wu, H. Li (2016) One-pot selfassembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity. Appl. Organometal Chem. 30, 289–296.
- 57. Zh. Xue, T. Wang, B. Chen, T. Malkoske, Sh. Yu, Y. Tang (2015) Degradation of Tetracycline with BiFeO₃ Prepared by a Simple Hydrothermal Method. Materials. 8, 6360-6378.

58. F. Zhang, Sh. Zou, T. Wang, Y. Shi, P. Liu (2017) CeO₂/Bi₂WO₆ Heterostructured Microsphere with Excellent Visible-light-driven Photocatalytic Performance for Degradation of Tetracycline Hydrochloride. J. Photochem. Photobiol. 93, 1154-1164.

- 59. A. Chithambararaj, N.S. Sanjini, A.C. Bose, S, Velmathi (2013) Flower-like hierarchical h-MoO₃: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation. Catal. Sci. Technol. 3, 1405-1414.
- 60. Ch. Zhang, Y. Zhou, J. Bao, Y. Zhang, Sh. Zhao, J. Fang, W. Chen, X. Sheng (2017) Hierarchical TiO₂ nanosheet-assembled nanotubes with dual electron sink functional sites for efficient photocatalytic degradation of rhodamine B. Appl Organometal Chem. 4204.
- Q. Huang, M. Cao, Z. Ai, L. Zhang (2015) Reactive oxygen species dependent degradation pathway of 4-chlorophenol with Fe@Fe₂O₃ core-shell nanowires. Appl. Catal. B Environ. 162, 319–326.
- 62. C. Yang, Q. Li, L. Tang, K. Xin, A. Bai, Y. Yu (2015) Synthesis, photocatalytic activity, and photogenerated hydroxyl radicals of monodisperse colloidal ZnO nanospheres. Appl. Surf. Sci. 357, 1928-1938.

- N. Kaur, S. Kaur Shahi, V. Singh (2016) Choline Chloride Assisted Synthesis of N and Metal Codoped TiO₂ and their Photocatalytic Activity under Visible Light. J. Photochem. Photobiol. 92, 69–75.
- 64. S. Sivakumar, A. Selvaraj, A. Kandasamy Ramasamy (2013) Photocatalytic Degradation of Organic Reactive Dyes over MnTiO₃/TiO₂ Heterojunction Composites Under UV-Visible Irradiation. J. Photochem. Photobiol. 89, 1047–1056.

Figure Captions:

Fig. 1. Spectrum distribution of the Visible light source provided by a 250-W mercury lamp with a UV cut off filter (visible light \geq 420 nm).

Fig. 2. FT-IR spectra of (a) $CaFe_2O_4$, (b) Ag_3PO_4 , (c) $CaFe_2O_4/Ag_3PO_4(1:3)$, (d) $rGO/CaFe_2O_4/Ag_3PO_4(1:3:9)$.

Fig. 3. XRD patterns of (a) Ag_3PO_4 , (b) $CaFe_2O_4/Ag_3PO_4$; the iconograph in (b) is the XRD pattern of $CaFe_2O_4$ and (c) $rGO/CaFe_2O_4/Ag_3PO_4$.

Fig. 4. FESEM image of (a) neat CaFe₂O₄, (b) rGO/CaFe₂O₄, (c) Ag₃PO₄, (d) CaFe₂O₄/Ag₃PO₄ (1:3), (e, f) rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9).

Fig. 5. Raman spectra of (a) CaFe₂O₄ nanoparticles and (b) rGO/CaFe₂O₄ nanocomposites.

Fig. 6. Magnetization curve of CaFe₂O₄, rGO/CaFe₂O₄/Ag₃PO₄ (1:3:9).

Fig. 7. The UV–Vis DRS and the band gap for (a) $CaFe_2O_4$, (b) Ag_3PO_4 , (c) $CaFe_2O_4/Ag_3PO_4(1:3)$, (d) $rGO/CaFe_2O_4/Ag_3PO_4(1:3:9)$.

Fig. 8. EIS Nyquist plots of the Ag_3PO_4 , $rGO/CaFe_2O_4/Ag_3PO_4$ (1:3:9), $rGO/MgFe_2O_4/Ag_3PO_4$ (1:3:9).

Fig. 9. The degradation efficiency for MB (25 mg/L) removal in the process of the $CaFe_2O_4$, $CaFe_2O_4/Ag_3PO_4$ and $rGO/CaFe_2O_4/Ag_3PO_4$ nanocomposites under visible light irradiation ([catalyst]= 2 g/L).

Fig. 10. The degradation efficiency for MO (25 mg/L) removal in the process of the $CaFe_2O_4$, $CaFe_2O_4/Ag_3PO_4$ and $rGO/CaFe_2O_4/Ag_3PO_4$ nanocomposites under visible light irradiation ([catalyst]= 2 g/L).

Fig. 11. The degradation efficiency for 4-CP (25 mg/L) removal in the process of the $rGO/CaFe_2O_4/Ag_3PO_4$ and $rGO/MgFe_2O_4/Ag_3PO_4$ nanocomposites under visible light irradiation ([catalyst]= 2 g/L).

Fig. 12. Linear-log plot for the photocatalytic degradation of MB in the presence of prepared samples under visible light irradiation.

Fig. 13. The degradation rate constant of the fabricated catalysts for the photocatalytic degradation of MB under visible light irradiation.

Fig. 14. The degradation efficiency for MB removal using different amount of $rGO/CaFe_2O_4/Ag_3PO_4$ (1:3:9) and different concentration of initial dye under visible light irradiation.

Fig. 15. Effect of different scavengers on degradation of MB by rGO/CaFe₂O₄/Ag₃PO₄ under the optimized conditions.

Fig. 16. (a) MB, (b) MO, (c) 4-CP degradation performance in consecutive cycles using the recycled $rGO/CaFe_2O_4/Ag_3PO_4$ (1:3:9) photocatalyst through magnetic separation.

Fig. 17. Schematic illustration of the proposed reaction mechanism for the photocatalytic degradation of the dyes in the presence of $rGO/CaFe_2O_4(M=Ca, Mg)/Ag_3PO_4$ nanocomposite.

b

