pubs.acs.org/joc

Article

Selective Synthesis of β -Ketonitriles via Catalytic Carbopalladation of Dinitriles

Ge Zeng, Jichao Liu, Yinlin Shao, Fangjun Zhang, Zhongyan Chen, Ningning Lv, Jiuxi Chen,* and Renhao Li*

ABSTRACT: A practical, convenient, and highly selective method of synthesizing β -ketonitriles from the Pd-catalyzed addition of organoboron reagents to dinitriles has been developed. This method provides excellent functional-group tolerance, a broad scope of substrates, and the convenience of using commercially available substrates. The method is expected to show further utility in future synthetic procedures.

$\frac{R^{1}}{NC} + ArB(OH)_{2} \xrightarrow[up to 98\%]{(Pd]} R^{1} + \frac{R^{2}}{R} + \frac{R^{1}}{R} + \frac{R^{2}}{R} + \frac{R^{1}}{R} + \frac{R^{2}}{R} + \frac{$

INTRODUCTION

 β -Ketonitriles are important materials that could serve as key precursors for the synthesis of numerous heterocycles¹⁻⁵ and structural fragments of biologically active molecules.⁶ Thus, over the years, a series of protocols to construct β -ketonitriles have been developed. The most direct approach relies on the nucleophilic substitution between carbonyl species with cyanide or metalated nitriles (Figure 1a, left). Nevertheless, the well-established method has been limited by the lack of general applicability to various electrophilic functionalities. To overcome this issue, metal-catalyzed carbonylative coupling has attracted attention as an alternative approach because of its high functional-group tolerance (Figure 1a, right).⁸ The Liu group reported a green and convenient copper-catalyzed cascade coupling of aromatic alcohols and acetonitrile to β ketonitriles.^{8a} Lee and co-workers developed a one-pot, threecomponent reaction to produce β -ketonitriles by Pd-catalyzed carbonylation of aryl iodides, trimethylsilylacetonitrile, and carbonic oxide (or Mo(CO)₆).^{8b,c} Beller and co-workers described a carbonylative α -arylation process of aryl iodides and alkyl nitriles yielding $\alpha_{,\alpha}$ -disubstituted products.⁸

2,2-Disubstituted malononitriles are safe, bench-stable, efficient, and commercially available cyanating agents that have found use in the synthesis of aryl nitriles with aryl boronic acids by Rh catalysis.^{9a} Moreover, in a similar catalytic system (Rh-catalyzed), these reagents display diverse application prospects as synthetic precursors in the construction of β -ketonitriles with aryl boronic acids (Figure 1b).¹⁰ When compared with other methods to produce β -ketonitriles, this process offers the convenience of commercially available starting materials and proceeds under milder reaction conditions. However, the imperfection of this protocol is that only substituted malononitriles have been explored. Furthermore, the process of Rh-catalyzed addition of aryl boronic acids to dinitriles needs bases as additives. The

synthesis of β -ketonitriles under acid-promoted conditions has not been reported. Herein, we report the development of the Pd-catalyzed addition of organoboron reagents to malononitrile under acidic conditions as an efficient means of preparing β -ketonitriles (Figure 1c).

RESULTS AND DISCUSSION

We initiated our studies by attempting the conversion of malononitrile to the β -ketonitrile using Pd(CF₃CO₂)₂ as the catalyst, 2,2'-bipyridine (L1) as the ligand, and 4-methylbenzenesulfonic acid (TsOH) as the acidic additive. When the reaction was conducted at 80 °C in air (Table 1, entry 1), we were surprised to find that the desired product 3a was obtained in 85% yield and only a trace amount of diaddition product (1,3-diphenylpropane-1,3-dione) was detected (Table 1, entry 1). Next, commercially available Pd catalysts were screened. We found that Pd(II) and Pd(0) could catalyze the present reaction and $Pd(acac)_2$ was the most efficient catalyst (entries 2-7). Encouraged by this result, a series of bidentate nitrogen ligands were examined (entries 8-13). The reaction showed excellent yield, and 4,4'-dimethyl-2,2'-bipyridine (L3) proved the best to give 3a in 98% yield (entry 9). After the determination of the preferred ligand, the effect of the reaction solvent was studied (entries 14–19). The yield was strongly affected by the reaction medium. Solvents such as toluene, tetrahydrofuran, dimethyl sulfoxide, and methanol gave relatively lower yields, while toluene/H₂O as a mixed solvent was optimal. The screening of reaction time demonstrated that

Received: October 9, 2020

Α

Article

a) Classical methods for the synthesis of β -ketonitrile

b) Rh-catalyzed addition of aryl boronic acids to 2,2-disubstituted malononitriles

Figure 1. Synthetic methods of β -ketonitriles.

Table 1. Optimization of Reaction Conditions^a

NC ^C CN 1a	+ PhB(OH) ₂ 2a	cat., lig TsOH, ai	and, solvent r, 24 h, 80 °C	NC 3a
entry	Catalyst	ligand	solvent ^b	yield (%) ^c
1	$Pd(CF_3CO_2)_2$	L1	toluene/H ₂ O	85
2	$Pd(OAc)_2$	L1	toluene/H ₂ O	92
3	PdCl ₂	L1	toluene/H ₂ O	trace
4	$Pd(acac)_2$	L1	toluene/H ₂ O	95
5	$Pd(PPh_3)_2$	L1	toluene/H ₂ O	ND
6	$Pd(CH_3CN)_2Cl_2$	L1	toluene/H ₂ O	trace
7	$Pd_2(dba)_3$	L1	toluene/H ₂ O	40
8	$Pd(acac)_2$	L2	toluene/H ₂ O	96
9	$Pd(acac)_2$	L3	toluene/H ₂ O	98
10	$Pd(acac)_2$	L4	toluene/H ₂ O	27
11	$Pd(acac)_2$	L5	toluene/H ₂ O	77
12	$Pd(acac)_2$	L6	toluene/H ₂ O	55
13	$Pd(acac)_2$	L7	toluene/H ₂ O	84
14	$Pd(acac)_2$	L3	toluene	42
15	$Pd(acac)_2$	L3	THF	27
16	$Pd(acac)_2$	L3	DMSO	16
17	$Pd(acac)_2$	L3	MeOH	12
18	$Pd(acac)_2$	L3	acetone	trace
19	$Pd(acac)_2$	L3	1,4-dioxane	ND
20	$Pd(acac)_2$	L3	toluene/H ₂ O	65 ^d
21	$Pd(acac)_2$	L3	toluene/H ₂ O	94 ^e
A - A - A A - A A - A A - A A - A A - A A - A A A - A A A - A	$ \begin{tabular}{cccc} & & & & & & & & & & & & & & & & & $	$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty}$	$\stackrel{Ph}{\underset{N}{\longleftrightarrow}} \stackrel{Ph}{\underset{N}{\Rightarrow}} \stackrel{Ph}{\underset{N}{\Rightarrow}} \stackrel{Ph}{\underset{N}{\rightthreetimes}} \stackrel{Ph}{\underset{N}{\Rightarrow}} \stackrel{Ph}{\underset{N}{\Longrightarrow}} \stackrel{Ph}{\underset{N}{\Longrightarrow}} \stackrel{Ph}{\underset{N}{\Longrightarrow}} \stackrel{Ph}{\underset{N}{\Longrightarrow}} \stackrel{Ph}{\underset{N}{\Longrightarrow}} \stackrel{Ph}{\underset{N}{\Longrightarrow}} \stackrel{Ph}{\underset{N}{\Longrightarrow}} \stackrel{Ph}{\underset{N}{\Longrightarrow}} \stackrel{Ph}{\underset{N}{\scriptsize}} \stackrel{Ph}{\underset{N}{\atop}} \stackrel{Ph}{\underset{N}{\atop}} \stackrel{Ph}{\underset{N}{\atop}} \stackrel{Ph}{\underset{N}{\atop}} \stackrel{Ph}{\underset{N}{\atop}} \stackrel{Ph}{\underset{N}{\atop}} \stackrel{Ph}{\underset{N}{\atop}} \stackrel{Ph}{\underset{N}{\atop}} \stackrel{Ph}{\underset{N}{{}} \stackrel{Ph}{\underset{N}{{}} \stackrel{Ph}{\underset{N}{{}} \stackrel{Ph}}{\underset{N}{{}} \stackrel{Ph}}{\underset{N}{{}} \stackrel{Ph}}{\underset{N}{{}} \mathsf{$	
L1	L2 L3	L4	L5 L6	L7

^{*a*}Reaction conditions: **1a** (0.4 mmol), **2a** (0.2 mmol), Pd source (10 mol %), ligand (20 mol %), solvent (3.0 mL), TsOH (2 equiv), air, 80 °C, 24 h. ^{*b*}Toluene/H₂O (2.5 mL/0.5 mL). ^{*c*}Isolated yield. ^{*d*}Reaction time: 12 h. ^{*e*}Reaction time: 36 h.

neither a shorter nor a longer reaction time increases the reaction yield (entries 20–21). After in-depth screening, the optimal reaction conditions were determined to comprise $Pd(acac)_2$ as the catalyst, 4,4'-dimethyl-2,2'-bipyridine as the ligand, TsOH as an acidic additive, toluene/H₂O as the cosolvent, and an 80 °C reaction temperature under an air atmosphere.

With the optimal conditions established, we proceeded to examine the substrate scope of this transformation, with respect to different substituted phenylboronic acids. As shown in Scheme 1, a wide range of substituted phenylboronic acids were suitable substrates under the acidic conditions and furnished the corresponding β -ketonitriles in good to excellent yields. For instance, a variety of alkyl or aryl substituents on the phenyl ring of boronic acids, including methyl (2b-2d), tertiary butyl (2e), isopropyl (2f), and phenyl (2g), allowed the reaction to proceed smoothly, affording products 3b-3gwith yields in the range of 77-94%. Substrates that contained fused rings such as 1-naphthyl and 2-naphthyl were also transformed smoothly (Scheme 1, 3h-3i), while phenylboronic acids bearing halogen groups, such as -F, -Cl, -Br, and -I, were also valid substrates and provided expected products 3j-3q. Furthermore, electron-donating substituents $(-OMe, -OPh, and -OCF_3)$ and electron-withdrawing substituents $(-COCH_3, -COOEt, and -CF_3)$ on the phenyl rings of the boronic acids were compatible with the reaction (3r-3w). Notably, the treatment of thiophen-2-ylboronic acid and benzo[b]thiophen-2-ylboronic acid was also successful (3x - 3y).

2,2-Dimethylmalononitrile is a novel carbon-bound cyanating reagent that undergoes a retro-Thorpe-type reaction with aryl boronic acid or an aryl organometallic reagent to give the aryl nitrile product.⁹ Recently, the Reeves group reported the Rh-catalyzed addition of arylboronic acids to 2,2-disubstituted malononitriles to synthesize α,α -disubstituted β -ketonitriles.¹⁰

Article

Scheme 1. Synthesis of β -Ketonitrile from Malononitrile^{*a*}

^aReaction conditions: **1a** (0.4 mmol), **2** (0.2 mmol), Pd(acac)₂ (10 mol %), L3 (20 mol %), toluene/H₂O (2.5 mL/0.5 mL), TsOH (2 equiv), air, 80 °C, 24 h, isolated yield.

However, the unsubstituted malononitrile was not described in Reeves' report. To examine the difference between our methodology and Reeves' approach, we observed that the Rh-catalyzed addition of phenylboronic acids to malononitriles to synthesize 3-oxo-3-phenylpropanenitrile proceeded in 34% less yield than that achieved with Pd(acac)₂ (Figure 2, 34% yield vs 98% yield).

Figure 2. Rh-catalyzed vs Pd-catalyzed reaction in the addition of arylboronic acids to malononitrile.

In a further comparison, we also screened various organoboronic acids with substituted malononitrile (Scheme 2). Generally, our methodology was applicable to 2,2-dimethylmalononitrile with excellent functional-group tolerance, producing the corresponding β -ketonitriles in medium to high yields as per the Reeves strategy. Phenylboronic acids bearing electron-donating groups or electron-withdrawing groups were all afforded the corresponding products in yields

Scheme 2. Synthesis of β -Ketonitrile from Substituted Malononitriles^{*a*}

^aReaction conditions: 1 (0.4 mmol), 2 (0.2 mmol), Pd(acac)₂ (10 mol %), L3 (20 mol %), toluene/H₂O (2.5 mL/0.5 mL), TsOH (2 equiv), air, 80 °C, 24 h, isolated yield.

of 49–95% (Scheme 2, 4a–4f). Monosubstituted malononitrile bearing an acidic α -proton or bulky malononitrile also gave β -ketonitriles (Scheme 2, 4g–4i). The reaction was sensitive to steric hindrance of malononitrile given that a reduced yield was obtained with 2,2-dibenzylmalononitrile relative to 2,2-dibenzylmalononitrile and 2-benzyl-2-methylmalononitrile (**4h**, 42% vs **4g**, 95% and **4i**, 97%, respectively). Based on previous reports,¹¹ the proposed catalytic cycle of

Based on previous reports,¹¹ the proposed catalytic cycle of this Pd-catalyzed β -ketonitrile formation is shown in Scheme 3.

Scheme 3. Proposed Mechanism

The transmetallation of the arylboronic acid with the Pd catalyst would generate arylpalladium species A. Then, the cyano group would coordinate with Pd, leading to intermediate B. Subsequently, carbopalladation of the malononitrile would give Pd-ketimine C. Hydrolysis of the imine Pd complex C would generate the corresponding β -ketonitrile under acidic conditions as well as the active Pd species.

CONCLUSIONS

In summary, we developed a practical, convenient, and highly selective method of synthesizing β -ketonitriles by Pd-catalyzed addition of organoboron reagents to dinitriles under acid conditions. This method provides excellent functional-group tolerance and a broad scope of substrates and uses commercially available substrates. Compared with the similar Rh-catalyzed process, our methodology showed a similarly efficient catalytic effect, which is even better in some cases, using cheaper Pd(acac)₂ as the catalyst and TsOH as the acidic additive in an air atmosphere. A plausible mechanism described here is expected to be helpful in identifying or tuning other substrates and catalysts, thereby helping to develop more efficient catalytic processes.

EXPERIMENTAL SECTION

General Methods. Chemicals were received from commercial sources without further purification or prepared by literature methods. Melting points are uncorrected and recorded on a digital melting point apparatus WRS-1B. ¹H NMR and ¹³C NMR spectra were recorded on a 500 or 400 MHz spectrometer using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts are given in δ relative to TMS, and the coupling constants J are given in Hz. High-resolution mass spectrometry (HRMS) was performed with a TOF MS instrument with an EI or ESI source.

General Procedure for the Synthesis of β -Ketonitriles. Dinitriles 1 (0.4 mmol), arylboronic acid (0.2 mmol), Pd(acac)₂ (10 mmol %), 4,4'-dimethyl-2,2'-bipyridine (20 mmol %), TsOH (2 equiv), toluene (2.5 mL), and H₂O (0.5 mL) were successively added to a 25 mL Schlenk reaction tube. The reaction mixture was stirred vigorously at 80 °C for 24 h in a heating mantle. After that, the reaction mixture was cooled to room temperature, washed with saturated NaHCO₃, and extracted with ethyl acetate (3 \times 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by flash column chromatography with petroleum ether (PE)/ethyl acetate to afford the desired product.

Procedure for the Synthesis of 2-Benzylmalononitrile and 2,2-Dibenzylmalononitrile.¹² At room temperature, NaH 400 mg (10 mmol) was dissolved in 40 mL of tetrahydrofuran (THF) and 4 mL of dimethylformamide solution, and then, a solution of malononitrile (1.32 g, 20 mmol, in 5 mL of THF) was added dropwise. Two hours later, a solution of benzyl bromide (10 mmol) in THF (10 mL) was added slowly. The mixture was subjected to continuous stirring at room temperature for 10 h, washed with saturated NH₄Cl, and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by flash column chromatography with PE/ethyl acetate to afford desired products 1c in 23% yield and 1d in 38% yield.

Procedure for the Synthesis of 2-Benzyl-2-methylmalononitrile.¹² 2-Benzylmalononitrile (1 mmol) was dissolved in acetone (5 mL). Then, methyl iodide (2 mmol) and K_2CO_3 (2.5 mmol) were added. The mixture was stirred overnight at room temperature. After filtration and concentration, the residue was purified by flash chromatography to yield desired product 1e in 98% yield.

3-Oxo-3-phenylpropanenitrile (*3a*). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford *3a*. Paleyellow solid (28.5 mg, 98%), mp 80–81 °C. Lit.¹³ 68-70 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.93–7.90 (m, 2H), 7.68–7.65 (m, 1H), 7.54–7.51 (m, 2H), 4.10 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 187.0, 134.7, 134.3, 129.2, 128.5, 113.7, 29.3.

3-Oxo-3-(o-tolyl)propanenitrile (**3b**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3b**. White solid (25.8 mg, 81%), mp 69–71 °C. Lit.¹³ 68–70 °C.¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, *J* = 7.6 Hz, 1H), 7.49–7.45 (m, 1H), 7.34– 7.30 (m, 2H), 4.07 (s, 2H), 2.56 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.4, 140.3, 133.9, 133.2, 132.7, 129.2, 126.1, 114.0, 31.4, 21.7.

3-Oxo-3-(m-tolyl)propanenitrile (*3c*). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3c**. White solid (26.4 mg, 83%), mp 71–72 °C. Lit.¹³ 65–67 °C ¹H NMR (400 MHz, CDCl₃): δ 7.73–7.66 (m, 2H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.41– 7.37 (m, 1H), 4.09 (s, 2H), 2.41 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 187.3, 139.1, 135.4, 134.3, 128.9, 128.8, 125.6, 113.9, 29.3, 21.2.

3-Oxo-3-(p-tolyl)propanenitrile (**3d**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3d**. White solid (24.5 mg, 77%), mp 95–96 °C. Lit.¹³ 94–96 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 4.07 (s, 2H), 2.43 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.7, 145.9, 131.8, 129.8, 128.5, 113.9, 29.2, 21.7.

3-(4-(tert-Butyl)phenyl)-3-oxopropanenitrile (*3e*). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3e**. White solid (35.4 mg, 88%), mp 75–77 °C. Lit.¹⁴ 71–75 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 4.10 (s, 2H), 1.32 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.8, 158.7, 131.7, 128.4, 126.0, 114.0, 35.2, 30.8, 29.2.

3-($\hat{4}$ -lsopropylphenyl)-3-oxopropanenitrile (**3f**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3f**. White solid (35.2 mg, 94%), mp 94–96 °C. Lit.¹⁵ 92–94 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 4.08 (s, 2H), 2.97 (m, 1H), 1.25 (d, J = 6.9 Hz, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.7, 156.5, 132.1, 128.7, 127.1, 114.0, 34.3, 29.2, 23.4.

3-([1,1'-Biphenyl]-4-yl)-3-oxopropanenitrile (**3g**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3g**. White solid (35.4 mg, 80%), mp 112–113 °C. Lit.^{8e} 112.1–113.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.02–7.95 (m, 2H), 7.76–7.71 (m, 2H), 7.66–7.60 (m, 2H), 7.51–7.48 (m, 2H), 7.45–7.42 (m,

1H), 4.12 (s, 2H); ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ . 186.6, 147.5, 139.2, 133.0, 129.1, 128.7, 127.7, 127.3, 113.8, 29.3.

3-(Naphthalen-1-yl)-3-oxopropanenitrile (**3h**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3h**. White solid (29.6 mg, 76%), mp 96–97 °C. Lit.¹⁵ 98–100 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.82 (d, *J* = 8.4 Hz, 1H), 8.11 (d, *J* = 8.0 Hz, 1H), 7.88–7.92 (m, 2H), 7.68–7.65 (m, 1H), 7.61–7.52 (m, 2H), 4.21 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 189.5, 135.2, 134.1, 131.6, 130.4, 129.5, 129.2, 128.7, 127.1, 125.6, 124.2, 114.0, 31.8.

3-(Naphthalen-2-yl)-3-oxopropanenitrile (3i). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford 3i. White solid (36.3 mg, 93%), mp 107–108 °C. Lit.¹⁵ 97–101 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.42 (s, 1H), 8.00–7.90 (m, 4H), 7.69–7.66 (m, 1H), 7.63–7.60 (m, 1H), 4.22 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.9, 136.2, 132.3, 131.7, 130.7, 129.7, 129.5, 129.2, 127.9, 127.4, 123.4, 113.8, 29.4.

3-(2-Fluorophenyl)-3-oxopropanenitrile (**3***j*). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3***j*. White solid (3.9 mg, 12%), mp 54–56 °C. Lit.¹⁸ 60–61 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.00–7.95 (m, 1H), 7.65–7.63 (m, 1H), 7.33–7.29 (m, 1H), 7.23–7.18 (m, 1H), 4.10 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 185.0 (C–F, ⁴J_{C–F} = 3.8 Hz), 162.2 (C–F, ¹J_{C–F} = 252.5 Hz), 136.6 (C–F, ³J_{C–F} = 8.8 Hz), 131.2 (C–F, ⁴J_{C–F} = 2.5 Hz), 125.2 (C–F, ⁴J_{C–F} = 2.5 Hz), 122.7 (C–F, ³J_{C–F} = 12.5 Hz), 116.9 (C–F, ²J_{C–F} = 22.5 Hz), 113.4 (C–F, ⁴J_{C–F} = 5.0 Hz), 33.7 (C–F, ³J_{C–F} = 12.5 Hz).

3-(3-Fluorophenyl)-3-oxopropanenitrile (*3k*). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3k**. White solid (24.2 mg, 75%), mp 69–71 °C. Lit.¹⁸ 71–72 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.68 (m, 1H), 7.63–7.60 (m, 1H), 7.55–7.50 (m, 1H), 7.39–7.35 (m, 1H), 4.10 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.1, 162.9 (C–F, ¹J_{C-F} = 248.8 Hz), 136.2 (C–F, ³J_{C-F} = 6.3 Hz), 130.9 (C–F, ³J_{C-F} = 7.5 Hz), 124.2 (C–F, ⁴J_{C-F} = 3.8 Hz), 121.9 (C–F, ²J_{C-F} = 21.3 Hz), 115.2 (C–F, ²J_{C-F} = 22.5 Hz), 113.4, 29.6.

3-(4-Fluorophenyl)-3-oxopropanenitrile (31). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford 31. White solid (22.8 mg, 76%), mp 72–74 °C. Lit.¹³ 75–77 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.99–7.95 (m, 2H), 7.23–7.19 (m, 2H), 4.06 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 185.6, 166.6 (C–F, ¹J_{C-F} = 256.3 Hz), 131.3 (C–F, ³J_{C-F} = 10.0 Hz), 130.8 (C–F, ⁴J_{C-F} = 3.0 Hz), 116.4(C–F, ²J_{C-F} = 22.5 Hz), 113.6, 29.3.

3-(3-Chlorophenyl)-3-oxopropanenitrile (3m). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford 3m. White solid (21.4 mg, 60%), mp 80–81 °C. Lit.¹³ 72–73 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (s, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.50–7.46 (m, 1H), 4.07 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.0, 135.7, 135.6, 134.7, 130.5, 128.5, 126.5, 113.3, 29.5.

3-(4-Chlorophenyl)-3-oxopropanenitrile (**3n**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3n**. White solid (25.8 mg, 72%), mp 123–125 °C. Lit.¹³ 121–123 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 4.09 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.0, 141.4, 132.6, 129.8, 129.5, 113.5, 29.4.

3-(3-Bromophenyl)-3-oxopropanenitrile (**30**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **30**. Yellow solid (28.3 mg, 64%), mp 91–93 °C. Lit.¹⁹ 92–94 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.04 (s, 1H), 7.81 (dd, ¹J = 21.6, ²J = 7.2 Hz, 2H), 7.43–7.39 (m, 1H), 4.08 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.0, 137.5, 135.8, 131.4, 130.7, 126.9, 123.4, 113.3, 29.5.

3-(4-Bromophenyl)-3-oxopropanenitrile (**3p**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3p**. White solid (30.9 mg, 70%), mp 153–155 °C. Lit.¹³ 156–157 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 4.06 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.2, 133.0, 132.6, 130.3, 129.9, 113.4, 29.3.

3-(4-lodophenyl)-3-oxopropanenitrile (3q). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford 3q. White solid (38.5 mg, 71%), mp 173–174 °C. Lit.¹³ 173–175 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H), 4.03 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.5, 138.6, 133.6, 129.6, 113.3, 103.2, 29.3.

3-(4-Methoxyphenyl)-3-oxopropanenitrile (3r). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford 3r. White solid (23.5 mg, 67%), mp 126–127 °C. Lit.^{8e} 129.2–131.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 4.03 (s, 2H), 3.88 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 185.4, 164.7, 130.9, 127.3, 114.3, 114.1, 55.6, 29.0.

3-Oxo-3-(4-phenoxyphenyl)propanenitrile (3s). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford 3s. White solid (35.5 mg, 75%). mp 98–100 °C. Lit.⁸⁴ ¹H NMR (500 MHz, CDCl₃): δ 7.89 (d, J = 8.5 Hz, 2H), 7.43–7.40 (m, 2H), 7.25–7.22 (m, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 9.0 Hz, 2H), 4.04 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 185.6, 163.4, 154.8, 130.9, 130.2, 128.7, 125.1, 120.4, 117.4, 113.9, 29.1.

3-Oxo-3-(4-(trifluoromethoxy)phenyl)propanenitrile (**3t**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3t**. White solid (40.3 mg, 88%), mp 88–89 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.01–7.98 (m, 2H), 7.35 (d, J = 8.0 Hz, 2H), 4.08 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 185.6, 153.8, 132.3, 130.7, 120.2 (C-F, ¹ J_{C-F} = 257.5 Hz), 120.7, 113.3, 29.4. HRMS (ESI): calcd for C₁₀H₆F₃NO₂ [M + Na]⁺, 252.0249; found, 252.0239.

3-(4-Acetylphenyl)-3-oxopropanenitrile (*3u*). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3u**. Yellow solid (6.4 mg, 17%), mp 121–123 °C. Lit. ^{8e} 121.7–122.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 8.0 Hz, 2H), 8.01 (d, *J* = 8.4 Hz, 2H), 4.13 (s, 2H), 2.66 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 196.9, 186.7, 141.4, 137.2, 128.9, 128.7, 113.3, 29.7, 26.9.

Ethyl 4-(2-*Cyanoacetyl)benzoate* (**3***v*). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3***v*. Orange oil (6.4 mg, 17%). ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, *J* = 8.4 Hz, 2H), 7.98 (d, *J* = 8.4 Hz, 2H), 4.42 (q, *J* = 7.2 Hz, 2H), 4.11 (s, 2H), 1.42 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.7, 165.2, 137.2, 135.8 130.2, 128.4, 113.3, 61.8, 29.7, 14.2. HRMS (ESI): calcd for C₁₂H₁₁NO₃ [M + Na]⁺, 240.0637; found, 240.0638.

3-Oxo-3-(4-(trifluoromethyl)phenyl)propanenitrile (**3w**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/ v) to afford **3w**. Yellow solid (6.4 mg, 17%), mp 141–143 °C. Lit.¹⁸ 143–144 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, *J* = 8.0 Hz, 2H), 7.80 (d, *J* = 8.0 Hz, 2H), 4.12 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 186.3, 135.9 (C-F, ²*J*_{C-F} = 32.5 Hz), 128.8, 126.3 (C-F, ⁴*J*_{C-F} = 3.8 Hz), 123.2 (C-F, ¹*J*_{C-F} = 27.1.3 Hz), 113.2, 297.

3-Oxo-3-(thiophen-2-yl)propanenitrile (3x). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford 3x. Yellow solid (8.9 mg, 30%), mp 137–138 °C. Lit.^{8e} 136.3–138.3 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.80–7.78 (m, 2H), 7.21–7.19 (m, 1H), 4.01 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 179.5, 140.9, 133.7, 128.7, 113.4, 29.6.

3-(*Benzo[b]thiophen-2-yl*)-3-oxopropanenitrile (**3y**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 6/1, v/v) to afford **3y**. Yellow solid (14.3 mg, 36%), mp 136–137 °C. Lit.^{8e} 118.4–125.6 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.04 (s, 1H), 7.91 (dd, J_1 = 23.5 Hz, J_2 = 8.0 Hz, 2H), 7.55–7.52 (m, 1H), 7.47–7.44 (m, 1H), 4.11 (s, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 181.1, 143.1, 140.1, 138.6, 131.1, 128.5, 126.4, 125.6, 123.0, 113.3, 29.5.

2,2-Dimethyl-3-oxo-3-phenylpropanenitrile (4a).¹⁶ Flash column chromatography on silica gel (eluent: PE/EtOAc = 16/1, v/v) to afford 4a. Pale-yellow oil (32.9 mg, 95%). Lit.¹⁶ ¹H NMR (500 MHz, CDCl₃): δ 8.17–8.15 (m, 2H), 7.63–7.60 (m, 1H), 7.52–7.49 (m, 2H), 1.72 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 193.9, 133.7, 133.6, 129.3, 128.7, 122.6, 40.8, 25.6.

2,2-Dimethyl-3-oxo-3-(p-tolyl)propanenitrile (4b). Flash column chromatography on silica gel (eluent: PE/EtOAc = 16/1, v/v) to

afford **4b**. White solid (33.7 mg, 90%), mp 43–45 °C. Lit.⁹ 44–46 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 2.42 (s, 3H), 1.71 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 193.3, 144.7, 130.9, 129.5, 129.3, 122.7, 40.6, 25.5, 21.5.

2,2-Dimethyl-3-(naphthalen-1-yl)-3-oxopropanenitrile (4c). Flash column chromatography on silica gel (eluent: PE/EtOAc = 16/1, v/v) to afford 4c. Colorless oil (40.8 mg, 91%). Lit.⁹ ¹H NMR (500 MHz, CDCl₃): δ 7.98–7.90 (m, 4H), 7.57–7.54 (m, 3H), 1.75 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 199.1, 134.0, 133.7, 132.0, 129.9, 128.6, 127.8, 126.6, 125.5, 124.8, 123.9, 121.9, 44.0, 25.2.

2,2-Dimethyl-3-oxo-3-(p-tolyl)propanenitrile (4d). Flash column chromatography on silica gel (eluent: PE/EtOAc = 16/1, v/v) to afford 4d. Colorless oil (30.5 mg, 75%). Lit.⁹ ¹H NMR (500 MHz, CDCl₃): δ 8.18 (d, J = 8.9 Hz, 2H), 6.96 (d, J = 8.9 Hz, 2H), 3.88 (s, 3H), 1.70 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 192.0, 164.0, 131.9, 126.2, 123.0, 113.9, 55.5, 40.3, 25.7.

2,2-Dimethyl-3-oxo-3-(4-(trifluoromethyl)phenyl)propanenitrile (4e). Flash column chromatography on silica gel (eluent: PE/EtOAc = 16/1, v/v) to afford 4e. White solid (23.4 mg, 49%), mp 95–97 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, *J* = 8.8 Hz, 2H), 7.77 (d, *J* = 8.8 Hz, 2H), 1.73 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 193.4, 136.6, 135.0 (q, ²*J*_{C-F} = 32.5 Hz, 3C), 129.6, 125.8 (q, ⁴*J*_{C-F} = 3.7 Hz, 3C), 123.3 (q, ¹*J*_{C-F} = 271.3 Hz, 3C), 122.0, 41.1, 25.4. HRMS (ESI) calcd for C₁₂H₁₀F₃NO [M + Na]⁺, 264.0612; found, 264.0604.

3-(4-Chlorophenyl)-2,2-dimethyl-3-oxopropanenitrile (**4f**). Flash column chromatography on silica gel (eluent: PE/EtOAc = 16/1, v/ v) to afford **4f**. White solid (38.4 mg, 92%). mp 74–75 °C. Lit.⁹ 74–76 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.09 (d, *J* = 9.0 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 2H), 1.69 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 192.7, 140.3, 131.8, 130.7, 129.0, 122.3, 40.7, 25.4.

2-Benzyl-3-oxo-3-phenylpropanenitrile (4g). Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford 4g. White solid (44.5 mg, 95%). mp 85–86 °C. Lit.⁹ 80–83 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.66–7.63 (m, 1H), 7.53–7.50 (m, 2H), 7.35–7.27 (m, 5H), 4.58–4.55 (m, 1H), 3.36 (dd, *J*₁ = 14.0, *J*₂ = 6.0 Hz, 1H), 3.24 (dd, *J*₁ = 14.0, *J*₂ = 8.5 Hz, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 190.0, 135.9, 134.5, 134.1, 129.1, 129.0, 128.9, 128.8, 127.6, 116.9, 41.8, 35.5.

2,2-Dibenzyl-3-oxo-3-phenylpropanenitrile (4h). Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford 4h. Light-yellow oil (26.8 mg, 42%). ¹H NMR (500 MHz, CDCl₃): δ 7.38–7.35 (m, 1H), 7.33–7.27 (m, 10H), 7.20–7.13 (m, 4H), 3.58 (d, *J* = 13.5 Hz, 2H), 3.21 (d, *J* = 13.5 Hz, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 197.7, 137.0, 134.3, 132.5, 130.5, 128.6, 128.0, 127.82, 127.80, 120.9, 56.3, 44.7. HRMS (ESI): calcd for C₂₃H₁₉NO [M + Na]⁺, 348.1359; found, 348.1356.

2-Benzyl-2-methyl-3-oxo-3-phenylpropanenitrile (4i). Flash column chromatography on silica gel (eluent: PE/EtOAc = 12/1, v/v) to afford 4i. Light-yellow oil (48.5 mg, 97%). Lit.⁹ ¹H NMR (400 MHz, CDCl₃): δ 8.00–7.97 (m, 2H), 7.60–7.56 (m, 1H), 7.48–7.44 (m, 2H), 7.34–7.289 (m, 5H), 3.50 (d, *J* = 13.6 Hz, 1H), 3.11 (d, *J* = 13.6 Hz, 1H), 1.69 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 194.8, 134.7, 134.3, 133.5, 130.4, 129.1, 128.50, 128.48, 127.7, 121.6, 47.5, 43.8, 24.0.

2-Benzylmalononitrile (1c). Flash column chromatography on silica gel (eluent: PE/EtOAc = 16/1, v/v) to afford 1c. White solid (589.9 mg, 38%), mp 90–91 °C. Lit.¹⁷ 84–86 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.39 (m, 3H), 7.33 (d, J = 7.0 Hz, 2H), 3.92 (t, J = 7.0 Hz, 1H), 3.27 (d, J = 7.0 Hz, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 132.9, 129.2, 129.1, 128.7, 112.2, 36.5, 24.9.

2,2-Dibenzylmalononitrile (1d). Flash column chromatography on silica gel (eluent: PE/EtOAc = 16/1, v/v) to afford 1d. White solid (277.0 mg, 23%), mp 125–127 °C. Lit.¹⁷ 128–130 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.42–7.41 (m, 10H), 3.25 (s, 4H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 132.0, 130.3, 129.0, 128.8, 114.9, 43.5, 41.2.

pubs.acs.org/joc

Article

2-Benzyl-2-methylmalononitrile (1e). Flash column chromatography on silica gel (eluent: PE/EtOAc = 16/1, v/v) to afford 1e. White solid (166.4 mg, 98%), mp 94–95 °C, Lit.¹² 94.3–95.3 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.42–7.39 (m, 3H), 7.38–7.36 (m, 2H), 3.21 (s, 2H), 1.81 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 131.9, 130.2, 129.0,128.9, 115.9, 44.5, 33.1, 24.4.

ASSOCIATED CONTENT

③ Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.0c02388.

Reaction optimization of β -ketonitrile and ¹H and ¹³C NMR spectra for all products (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Jiuxi Chen College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China;
 orcid.org/0000-0001-6666-9813; Email: jiuxichen@ wzu.edu.cn
- Renhao Li School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P. R. China; orcid.org/0000-0003-2451-2142; Email: lirh@ wmu.edu.cn

Authors

- Ge Zeng School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P. R. China; College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Jichao Liu College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Yinlin Shao College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China;
 orcid.org/0000-0003-1935-0345
- Fangjun Zhang School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P. R. China
- Zhongyan Chen College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Ningning Lv College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China; orcid.org/0000-0002-6111-0188

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.0c02388

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (no. 21572162) and the Natural Science Foundation of Zhejiang Province (no. LY20B020015) for financial support.

REFERENCES

(1) Klahn, P.; Kirsch, S. F. IBX-Mediated Dehydrogenation of Substituted β -Oxonitriles. *Eur. J. Org. Chem.* **2014**, 3149.

(2) (a) Sirichaiwat, C.; Intaraudom, C.; Kamchonwongpaisan, S.; Vanichtanankul, J.; Thebtaranonth, Y.; Yuthavong, Y. Target Guided Synthesis of 5-Benzyl-2,4-diamonopyrimidines: Their Antimalarial Activities and Binding Affinities to Wild Type and Mutant Dihydrofolate Reductases from Plasmodium falciparum. *J. Med. Chem.* **2004**, *47*, 345. (b) Zhu, X.; Zhang, M.; Liu, J.; Ge, J.; Yang,

The Journal of Organic Chemistry

G. Ametoctradin is a Potent Q_{o} Site Inhibitor of the Mitochondrial Respiration Complex III. J. Agric. Food Chem. **2015**, 63, 3377.

(3) Velcicky, J.; Miltz, W.; Oberhauser, B.; Orain, D.; Vaupel, A.; Weigand, K.; Dawson King, J.; Littlewood-Evans, A.; Nash, M.; Feifel, R.; Loetscher, P. Development of Selective, Orally Active GPR4 Antagonists with Modulatory Efffects on Nociception, Inflfammation, and Angiogenesi. J. Med. Chem. **2017**, 60, 3672.

(4) Krasavin, M.; Korsakov, M.; Zvonaryova, Z.; Semyonychev, E.; Tuccinardi, T.; Kalinin, S.; Tanç, M.; Supuran, C. T. Human carbonic anhydrase inhibitory profile of mono- and bis-sulfonamides synthesized via a direct sulfochlorination of 3- and 4-(hetero)arylisoxazol-5-amine scaffolds. *Bioorg. Med. Chem.* **2017**, *25*, 1914.

(5) Marković, R.; Baranac, M.; Dzambaski, Z.; Stojanovic, M.; Steel, P. J. High regioselectivity in the heterocyclization of b-oxonitriles to 4-oxothiazolidines: X-ray structure proof. *Tetrahedron* **2003**, *59*, 7803.

(6) (a) Lee, S.; Kim, T.; Lee, B. H.; Yoo, S.-e.; Lee, K.; Yi, K. Y. 3-Substituted-(S-arylfuran-2-ylcarbonyl)guanidines as NHE-1 inhibitors. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 1291. (b) Farghaly, T. A.; Abdel Hafez, N. A.; Ragab, E. A.; Awad, H. M.; Abdalla, M. M. Synthesis, anti-HCV, antioxidant, and peroxynitrite inhibitory activity of fused benzosuberone derivatives. *Eur. J. Med. Chem.* **2010**, *45*, 492. (c) Hughes, T. V.; Emanuel, S. L.; Beck, A. K.; Wetter, S. K.; Connolly, P. J.; Karnachi, P.; Reuman, M.; Seraj, J.; Fuentes-Pesquera, A. R.; Gruninger, R. H.; Middleton, S. A.; Lin, R.; Davis, J. M.; Moffat, D. F. C. 4-Aryl-5-cyano-2-aminopyrimidines as VEGF-R2 inhibitors: Synthesis and biological evaluation. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3266.

(7) (a) Ji, Y.; Trenkle, W. C.; Vowles, J. V. A High-Yielding Preparation of β-Ketonitriles. Org. Lett. **2006**, 8, 1161. (b) Sureshbabu, V.; Nagendra, G.; Sureshbabu, V. V. Synthesis of N-Urethane Protected α-Aminoalkyl-α'-cyanomethyl Ketones; Application to the Synthesis of 3-Substituted 5-Amino-1H-pyrazole Tethered Peptidomimetics. Synlett **2012**, 23, 1913. (c) Yoo, B. W.; Hwang, S. K.; Kim, D. Y.; Choi, J. W.; Ko, J. J.; Choi, K. I.; Kim, J. H. Indium-mediated coupling of bromoacetonitriles with aromatic acyl cyanides: convenient synthesis of aromatic α-cyano ketones. Tetrahedron Lett. **2002**, 43, 4813. (d) Sim, M. M.; Lee, C. L.; Ganesan, A. Solid-phase C-acylation of active methylene compounds. Tetrahedron Lett. **1998**, 39, 2195.

(8) (a) Shen, J.; Yang, D.; Liu, Y.; Qin, S.; Zhang, J.; Sun, J.; Liu, C.; Liu, C.; Zhao, X.; Chu, C.; Liu, R. Copper-Catalyzed Aerobic Oxidative Coupling of Aromatic Alcohols and Acetonitrile to β -Ketonitriles. Org. Lett. 2014, 16, 350. (b) Park, A.; Lee, S. Palladium-Catalyzed Carbonylative α -Arylation of tert-Butyl Cyanoacetate with (Hetero)aryl Bromides. J. Org. Chem. 2016, 81, 1358. (c) Lee, S.; Pyo, A.; Park, A.; Jung, H. M. Palladium-Catalyzed Carbonylation with Mo(CO)₆ for the Synthesis of Benzoylacetonitriles. Synthesis 2012, 44, 2885. (d) Lee, S.; Kim, H.-S.; Min, H.; Pyo, A. One-pot synthesis of benzoylacetonitriles through sequential Pd-catalyzed carbonylation and decarboxylation. Tetrahedron Lett. 2016, 57, 239. (e) Jensen, M. T.; Juhl, M.; Nielsen, D. U.; Jacobsen, M. F.; Lindhardt, A. T.; Skrydstrup, T. Palladium-Catalyzed Carbonylative α -Arylation of tert-Butyl Cyanoacetate with (Hetero)aryl Bromides. J. Org. Chem. 2016, 81, 1358. (f) Schranck, J.; Burhardt, M.; Bornschein, C.; Neumann, H.; Skrydstrup, T.; Beller, M. Palladium-Catalyzed Carbonylative α -Arylation to β -Ketonitriles. Chem.—Eur. J. 2014, 20, 9534. (g) Kiyokawa, K.; Minakata, S.; Nagata, T. Recent Advances in the Synthesis of β -Ketonitriles. Synthesis **2018**, 50, 485.

(9) (a) Malapit, C. A.; Reeves, J. T.; Busacca, C. A.; Howell, A. R.; Senanayake, C. H. Rhodium-Catalyzed Transnitrilation of Aryl Boronic Acids with Dimethylmalononitrile. *Angew. Chem., Int. Ed.* **2016**, 55, 326. (b) Reeves, J. T.; Malapit, C. A.; Buono, F. G.; Sidhu, K. P.; Marsini, M. A.; Sader, C. A.; Fandrick, K. R.; Busacca, C. A.; Senanayake, C. H. Transnitrilation from Dimethylmalononitrile to Aryl Grignard and Lithium Reagents: A Practical Method for Aryl Nitrile Synthesis. J. Am. Chem. Soc. **2015**, 137, 9481. (c) Mills, L. R.; Graham, J. M.; Patel, P.; Rousseaux, S. A. L. Ni-catalyzed reductive cyanation of aryl halides and phenol derivatives via transnitrilation. J. Am. Chem. Soc. **2019**, 141, 19257. (d) Malapit, C. A.; Luvaga, I. K.; Reeves, J. T.; Volchkov, I.; Busacca, C. A.; Howell, A. R.; Senanayake, C. H. 1,4-Dicarbofunctionalization of 4-Fluoroaryl Grignard and Lithium Reagents with Disubstituted Malononitriles. *J. Org. Chem.* **2017**, *82*, 4993.

(10) Malapit, C. A.; Caldwell, D. R.; Luvaga, I. K.; Reeves, J. T.; Volchkov, I.; Gonnella, N. C.; Han, Z. S.; Busacca, C. A.; Howell, A. R.; Senanayake, C. H. Rhodium-Catalyzed Addition of Aryl Boronic Acids to 2,2-Disubstituted Malononitriles. *Angew. Chem., Int. Ed.* **2017**, 56, 6999.

(11) (a) Chen, L.; Gong, J.; Zhang, Y.; Shao, Y.; Chen, Z.; Li, R.; Chen, J. Palladium-catalyzed tandem C-C activation/cyclization induced by carbopalladation of functionalized nitriles: synthesis of benzo dipyrromethenes. Org. Lett. 2020, 22, 6943. (b) Dai, L.; Yu, S.; Xiong, W.; Chen, Z.; Xu, T.; Shao, Y.; Chen, J. Divergent palladiumcatalyzed tandem reaction of cyanomethyl benzoates with arylboronic acids: synthesis of oxazoles and isocoumarins. Adv. Synth. Catal. 2020, 362, 1893. (c) Xiong, W.; Hu, K.; Lei, Y.; Zhen, O.; Zhao, Z.; Shao, Y.; Li, R.; Zhang, Y.; Chen, J. Palladium-catalyzed cascade reactions of 2-(cyanomethoxy)chalcones with arylboronic acids: selective synthesis of emissive benzofuro[2,3-c]pyridines. Org. Lett. 2020, 22, 1239. (d) Qi, L.; Li, R.; Yao, X.; Zhen, Q.; Ye, P.; Shao, Y.; Chen, J. Syntheses of pyrroles, pyridines, and ketonitriles via catalytic carbopalladation of dinitriles. J. Org. Chem. 2020, 85, 1097. (e) Zhen, Q.; Li, R.; Qi, L.; Hu, K.; Yao, X.; Shao, Y.; Chen, J. Nickel(II)-catalyzed C-C, N-C cascade coupling of ketonitriles into substituted pyrroles and pyridines. Org. Chem. Front. 2020, 7, 286. (f) Xiong, W.; Chen, Z.; Shao, Y.; Li, R.; Hu, K.; Chen, J. The synthesis of fluorescent benzofuro[2,3-c]pyridines via palladiumcatalyzed heteroaromatic C-H addition and sequential tandem cyclization. Org. Chem. Front. 2020, 7, 756. (g) Rakshit, A.; Kumar, P.; Alam, T.; Dhara, H.; Patel, B. K. Visible-Light-Accelerated Pd-Catalyzed Cascade Addition/Cyclization of Arylboronic Acids to yand β -Ketodinitriles for the Construction of 3-Cyanopyridines and 3-Cyanopyrrole Analogues. J. Org. Chem. 2020, 85, 12482. (h) Ye, X.; Xu, B.; Sun, J.; Dai, L.; Shao, Y.; Zhang, Y.; Chen, J. Pd-Catalyzed Approach for Assembling 9-Arylacridines via a Cascade Tandem Reaction of 2-(Arylamino)benzonitrile with Arylboronic Acids in Water. J. Org. Chem. 2020, 85, 13004.

(12) Wu, Z.-L.; Li, Z.-Y. Practical Synthesis of Optically Active α , α -Disubstituted Malonamic Acids through Asymmetric Hydrolysis of Malonamide Derivatives with Rhodococcus sp. CGMCC 0497. *J. Org. Chem.* **2003**, *68*, 2479.

(13) Shen, H.; Li, J.; Liu, Q.; Pan, J.; Huang, R.; Xiong, Y. Umpolung Strategy for Synthesis of β -Ketonitriles through Hypervalent Iodine-Promoted Cyanation of Silyl Enol Ethers. *J. Org. Chem.* **2015**, *80*, 7212.

(14) Havel, S.; Khirsariya, P.; Akavaram, N.; Paruch, K.; Carbain, B. Preparation of 3,4-Substituted-5-Aminopyrazoles and 4-Substituted-2-Aminothiazoles. *J. Org. Chem.* **2018**, *83*, 15380.

(15) Yang, Z.; Son, K.-I.; Li, S.; Zhou, B.; Xu, J. Specific 1,2-Hydride Shift in the Boron Trifluoride Catalyzed Reactions of Aromatic Aldehydes with Diazoacetonitrile: Simple Synthesis of β -Ketonitriles. *Eur. J. Org. Chem.* **2014**, 6380.

(16) Schranck, J.; Burhardt, M.; Bornschein, C.; Neumann, H.; Skrydstrup, T.; Beller, M. Palladium-Catalyzed Carbonylative α -Arylation to β -Ketonitriles. *Chem.*—*Eur. J.* **2014**, *20*, 9534.

(17) Doni, E.; Murphy, J. A. Reductive decyanation of malononitriles and cyanoacetates using photoactivated neutral organic super-electron-donors. *Org. Chem. Front.* **2014**, *1*, 1072.

(18) Xu, K.; Liu, H.; Hou, Y.; Shen, J.; Liu, D.; Zhang, W. A Pdcatalyzed asymmetric allylic substitution cascadeviaan asymmetric desymmetrization for the synthesis of bicyclic dihydrofurans. *Chem. Commun.* **2019**, *55*, 13295.

(19) Lee, S.; Pyo, A.; Park, A.; Jung, H. M. Palladium-Catalyzed Carbonylation with $Mo(CO)_6$ for the Synthesis of Benzoylacetonitriles. *Synthesis* **2012**, *44*, 2885.