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ABSTRACT: We report the development of a new aminoxyl 
radical catalyst, CHAMPO, for the electrochemical 
diazidation of alkenes. Mediated by an anodically generated 
charge-transfer complex in the form of CHAMPO–N3, 
radical diazidation was achieved across a broad scope of 
alkenes without the need for a transition metal catalyst or a 
chemical oxidant. Mechanistic data support a dual catalytic 
role for the aminoxyl serving as both a single-electron 
oxidant and a radical group transfer agent.

The discovery of reactions mediated by organic radicals 
continues to provide solutions to challenging synthetic 
problems in traditional two-electron chemistry.1 In this 
context, design and implementation of new catalytic 
strategies have both expanded the toolbox available for 
accessing new synthetic targets and transformed the 
fundamental understanding of reactions involving open-
shell pathways.2 For example, persistent aminoxyl radicals 
[e.g., (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)] 
have been extensively explored in catalytic oxidation 
reactions with both conventional chemical3 and 
electrochemical techniques,4 which has given rise to 
synthetically useful processes for small-molecule and 
polymer syntheses. 

Despite significant advances, we contend that the scope of 
TEMPO chemistry remains to be fully explored. TEMPO 
and related N-oxyl radicals can undergo one-electron redox 
processes, granting access to three discrete oxidation states.4 
This feature distinguishes these radicals from common 
organic compounds and likens them to many transition metal 
complexes. In this fashion, TEMPO has been shown to 
enable single-electron oxidation events in an inner-sphere 
manner via the formation of metastable closed-shell 
intermediates.5,6 Nevertheless, the systematic use of the 
“metallic” character of N-oxyls in catalyst development 
remains meager.7 To date, reactions catalyzed by N-oxyls 
are largely confined to oxidations of alcohols,8 aldehydes,9 
amines,10 (thio)amides,11 and peroxyl radicals.12 In these 
transformations, the persistent radical is used primarily in 
two capacities—as a single/two-electron oxidant or an H 
atom abstractor. In this report, we expand the scope of N-

oxyl catalysis in the development of metal-free 
electrochemical diazidation of alkenes. 

We previously reported a first-generation electrochemical 
protocol for the diazidation of alkenes catalyzed by Mn 
(Scheme 1A, Eq 1).13 This work was built on foundational 
contributions by Minisci,14 Magnus,15 Snider,16 Xu,17 and 
others18 in alkene diazidation using conventional chemical 
methods. These reactions provide 1,2-diazides in a single 
step from common alkenes, giving access to vicinally 
dinitrogenated structures that are highly prevalent in 
biomedically and synthetically relevant molecules.19 
Nevertheless, all methods reported to date require the use of 
a transition metal or a chemical oxidant, or both. These 
reactive species often lead to environmentally deleterious 
wastes and present an explosion hazard when used alongside 
N3

–. Although our electrochemical protocol13 circumvents 
the use of strong chemical oxidants, the need for a metal 
catalyst and a Brønsted acid (HOAc) as the sacrificial 
oxidant remains undesirable from a safety perspective.
Scheme 1. Mechanistic hypothesis for N-oxyl-catalyzed 
alkene diazidation
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While studying the electrochemical alkene diazidation, we 
discovered a new electrochemical method for the 
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azidooxygenation of alkenes mediated by TEMPO (Scheme 
1A, Eq 2).20 Detailed mechanistic investigation showed that 
TEMPO plays two roles in this reaction. Aside from being a 
radical trap, TEMPO also promotes the single-electron 
oxidation of N3

– to N3
●.21 This process is mediated by a 

metastable charge-transfer complex (CTC) formed between 
anodically generated TEMPO+ and N3

–. Upon azidyl 
addition, the nascent carbon-centered radical I rapidly 
combines with TEMPO to deliver the masked vicinal 
aminoalcohol (Scheme 1B, black-red pathway). 

We envisioned that the TEMPO-consuming 
azidooxygenation reaction could be engineered into a 
TEMPO-catalyzed alkene diazidation if intermediate I was 
terminated by an N3

● equivalent instead of directly by 
TEMPO (Scheme 1B, black-blue pathway). Specifically, we 
hypothesize that the TEMPO–N3 adduct may behave as an 
azidyl group transfer agent akin to the function of a redox-
active transition metal complex (e.g., [MnIII]–N3). This 
operation will furnish the desired vicinal diazide while 
returning the aminoxyl from an oxoammonium ion to a 
neutral radical oxidation state.  

We investigated the plausibility of N-oxyl-catalyzed 
electrochemical diazidation (Table 1). In our alkene 
azidooxygenation, diazidation products were occasionally 
observed in small quantities when sterically encumbered 
alkenes were used. The diazide formation was more 
pronounced at a higher applied voltage and using less 
TEMPO. Under these conditions, the [TEMPO+]/[TEMPO] 
ratio is maximized to favor the formation of the CTC and 
mitigate the undesired azidooxygenation. For example, the 
electrolysis of alkene 1a, NaN3, and 1 equiv TEMPO in 
MeCN/H2O at a cell voltage of 2.7 V22 yielded 36% 1,2-
diazide 2a in addition to 45% 3a (entry 1). Decreasing 
TEMPO loading to a catalytic amount still provided 
encouragingly 11% 2a alongside 7% 3a (entry 2). However, 
the catalyst was unproductively consumed in the 
azidooxygenation pathway, which was also indicated by the 
color change of the reaction medium. Upon starting 
electrolysis, the solution turned dark red, which is 
characteristic of the TEMPO–N3 CTC. This color 
disappeared after a mere 10 minutes as a result of TEMPO 
depletion. This visual indicator thus provided a convenient 
readout for reaction optimization.
Table 1. Reaction optimizationa

We reasoned that heating the reaction would promote 
homolysis of the C–O bond in byproduct 3a, thus returning 
both TEMPO and the carbon-centered radical to the catalytic 
cycle.23 Counterintuitively, this operation led to rapid 
decomposition of the CTC and suppressed diazidation. 
Instead, cooling the reaction improved the yield to 46% at 0 
°C and 61% at –10 °C (entries 3, 4). However, the color of 
the CTC decayed after 2 h with concomitant formation of 3a 
(ca. 5%).

Studies by Bobbitt,8k Minteer/Sigman24, and Stahl25 
showed that the distal C4 substituent of the aminoxyl has a 
profound influence on its reactivity in alcohol oxidation. 
Accordingly, we surveyed various catalysts26 and found that 
4-acetamido-TEMPO (ACT) proved the most promising, 
furnishing 71% 2a and <5% 3a (entry 4). However, the CTC 
decayed after ca. 3 h. We hypothesized that catalyst 
degradation could also occur via β-H+ elimination of the 
corresponding oxoammonium ion27 in a manner akin to the 
Hofmann elimination. 

We reasoned that increasing the steric encumbrance about 
the N-oxyl center should disfavor catalyst consumption via 
azidooxygenation28 and β-elimination.29 Accordingly, we 
synthesized cyclohexane-substituted (4-acetamidopiperidin-
1-yl)oxyl (CHAMPO).27,30 With CHAMPO as the 
electrocatalyst, the lifetime of the CTC significantly 
improved and the color of the solution persisted upon full 
conversion of the alkene (4 h).31 Diazide 2a was obtained in 
97% isolated yield with complete elimination of the N-oxyl 
trapping product (entry 5). Importantly, exclusion of catalyst 
led to olefin consumption but negligible diazide formation 
(entry 6).32 In addition, common single-electron oxidants in 
lieu of electricity did not provide appreciable diazide.33 We 
observed the same catalyst trend using trisubstituted alkene 
1b: from TEMPO to ACT to CHAMPO, improvement in 
product yield and catalyst stability was evident (entries 7–
9).
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We subsequently explored the scope of this new 
electrochemical diazidation (Table 2). A broad range of 
alkenes with diverse structures and electronic properties 
underwent the desired transformation with high efficiency 
(2c–p). Unactivated monosubstituted alkenes were less 
reactive toward N3

● addition and more prone to 
azidooxygenation due to reduced steric hindrance.20a,34 
Therefore, 15 mol% CHAMPO was used to ensure 
synthetically useful yields (2c, d). 

Alkenes with a catalog of labile functional groups 
underwent electrochemical diazidation smoothly (2q–y). 
For example, electrophiles prone to nucleophilic 
displacement by N3

–, such as alkyl bromide and epoxide 
groups, remained intact. Oxidatively sensitive 
functionalities, such as enolizable ketone, aldehyde, sulfide, 
and ferrocene groups, also were tolerated. Intriguingly, a 
primary alcohol-derived alkene was converted to the 
corresponding diazide in 60% yield with traces of aldehyde 
byproducts. Chemoselectivity between various C=C bonds 
was observed with carvone or N-allyl-N-
prenyltoluenesulfonamide as substrate. Owing to the 
electrophilic nature of N3

●, the more electron-releasing 
alkene was preferentially diazidated.35 
Table 2. Substrate scopea

CHAMPO (10 mol%)
NaN3 (1.5 equiv per C–N)

LiClO4 (0.1 M), H2O/MeCN (1:12)
C(+)/Pt(–), Ecell = 2.7 V, –10°C

R
N3

N3

1 2
R

MeN3
N3

2g, 79%b

Reactive functional groups:

Br

Me

N3

N3

MeMe

Me N3

O
N3Me

Fe Me N3

N3

2v, 97%

N

O

N3

N3

2f, 85%

N3 N3

2n, 55% (dr = 5:1)

N3

N3

OMe

O

8

2d, 49%b

2q, 82% (dr = 1:1) 2r, 77% (dr = 1:1 at C9)c

Ph

N3
N3

2c, 70%b

PhO

N3

N3

2e, 68%

PhS

N3
N3

2t, 43%b

N3Me
N3

2h, 88%

BocN

Ph

N3

N3 N3

N3

2i, 72%, dr = 11:1

2m, 79%

O

Me

N3

N3

MeMe

2s, 54% (dr = 1:1)

N

O

O

N3

Me N3

2j, 82%

Ph
Me

N3Me

Me N3

2p, >99%

MeO

Me N3

N3

Me

2o, 92%b (dr = 1:1)

Me

O

N3

N3

MeMe

2b, 87%

Ph
N3

N3Me

2k, >99%

TBSO
N3

N3Me

2a, 97%

Me
O

N3
Me

N3

2x, 90% (dr = 1:1)

Me

Me

NHFmoc

O

O

MeN3
N3

2l, 81% (dr = 1:1)

HO
N3

MeN3

2u, 60%d

H

H

aConditions: 1 (0.2 mmol, 1 equiv), CHAMPO (10 mol%), NaN3 (3 equiv), LiClO4
(1.8 equiv), MeCN/H2O (3.8 mL, 12:1). b15 mol% CHAMPO. cLimonene-1,2-oxide
(1r) was purchased as a pair of diastereomers at C1,2. dDetermined by 1H NMR
owing to the volatility of the product. eConditions: 2v, PPh3, H2O/THF, reflux; then
pTSA. fConditions: 2k, PPh3, H2O/THF, reflux; then Ac2O, NEt3, DCM, 0 °C.
gConditions: 2a, H2, Pd/C, EtOAc, Boc2O.

Ts
NMe

Me

N3
N3

N

N Me
N3

N3

2w, 84% 2y, 70%

MeO

6, 63%g

Fe Me NH3OTs
NH3OTs

4, 72%e

Ph
NHAc

N3Me

5, 52%f

TBSO
NHBoc

NHBocMe

Product derivatization:

9

2
1

The 1,2-diazide products can be readily reduced to the 
corresponding vicinal diamines using Staudinger reduction 
or catalytic hydrogenation. Notably, the different steric 
environments of the two azido groups in 2k enabled 
chemoselective reduction to form β-azidoamide 5. The 
diazides could also be readily converted to bistriazoles or 
1,2-dinitro compounds,36 which are common structures in 
energetic materials.

Compared with our first-generation Mn-catalyzed alkene 
diazidation, the new protocol presents several practical 
advances. For example, replacing the transition metal 
catalyst with an organocatalyst and the protic acid (HOAc) 
with H2O eliminates the generation of hazardous metal 
azides and hydrazoic acid. These features make the diazide 
synthesis safer and more amenable to practical applications. 

Page 3 of 8

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



We conducted further experiments to exemplify the user 
friendliness of the protocol (Table 3). Using inexpensive Ni 
foam as the cathode instead of Pt only marginally decreased 
product yield (entry 2). Using carbon as both cathode and 
anode did not provide 2k in appreciable amounts. To make 
the reaction system metal-free, we carried out electrolysis in 
a divided cell that completely separates the diazidation from 
the cathodic proton reduction on Pt (entry 3). The 
electrolysis was also successfully performed using 
commercial ElectraSyn 2.037 or AA batteries as the power 
source (entries 4, 5). Electrolyte choice proved unimportant 
(entry 6). In fact, given the ionic nature of NaN3, electrolysis 
in the absence of an additional electrolyte yielded 2k 
quantitatively (entry 7). Finally, diazidation on a 
synthetically relevant scale resulted in a promising isolated 
yield of 69% (entry 8). 
Table 3. Optimization of the electrolysis setupa

 

Entry Variation from “standard conditions” Yield (%)

1

“Standard conditions”:
CHAMPO (10 mol%)

NaN3 (1.5 equiv per C–N)

LiClO4 (0.1 M), MeCN/H2O (12:1)
C(+)/Pt(–), Ecell = 2.7 V, –10 °C

N3

N3

1k 2k

>99

2 92

3 81

4 82

5 89

6 95

7 >99

None

Ni(–) instead of Pt(–)

Divided cell, constant current of 8 mA

ElectraSyn 2.0 as power source, 0.3 mmol 1k

Using TBAPF6 instead of LiClO4

No LiClO4, Ecell = 3.4 Vb

aReaction conditions: see Table 1, entry 5. bA higher cell voltage
is applied to compensate for the increased solution resistance
between cathode and anode. cIsolated yield; reaction was 
carried out at a higher substrate concentration (see SI);

MeMe

Ph Ph

AA batteries (x2) as power source

8 69c1 mmol scale

Aside from the radical pathway in our initial working 
mechanistic hypothesis (see Scheme 1B), two additional 
reaction pathways may be plausible to account for 
diazidation reactivity. Carbon-centered radical I may 
undergo single-electron oxidation, either directly on the 
anode or by CHAMPO+, to generate the corresponding 
carbocation (II; Scheme 2A). The cation would 
subsequently react with N3

– to form the diazide. 
Alternatively, azidooxygenated product 3 could be an 
intermediate en route to the diazide via oxidation and 
mesolytic cleavage38 to form II (Scheme 2B). 
Scheme 2. Plausible mechanistic pathways

 

R
N3

CHAMPO+ or anode
R

N3
N3

–

R
N3

N3

single-electron oxidation

(A) Cationic pathway I: Direct oxidation of carbon-centered radical I

(B) Cationic pathway II: Oxidation of the azidooxygenation product 3

R
N3

O
N(R’)2
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–

R
N3
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–

R

R
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CHAMPO–N3
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•

(I)

–e–

CHAMPO+

N3
–

CHAMPO–N3
R

N3

N3
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anode

cathode
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+ 2OH–

2e–

(C) Radical pathway

CHAMPO

CHAMPO

3

(I) (II)

(II)

Innersphere 
SET cycle

Group transfer
cycle

slow

fast

Experimental evidence (Scheme 3) is consistent with our 
original mechanistic proposal in which the aminoxyl–N3 
adduct mediates the radical diazidation, whereas for certain 
types of substrates, carbocation pathway I also might 
operate. Reactions with radical clocks showed that 
cyclopropane 7 and bisallylamine 9/10 underwent radical-
induced ring rupture or 5-exo-trig cyclization, respectively. 
In all cases, no direct alkene diazidation was observed. In 
principle, upon radical ring opening or cyclization, the 
resultant carbon-centered radical could be further oxidized 
to the cation before nucleophilic azidation; however, these 
carbocations, either highly electron-deficient or at a primary 
carbon, would be rather unstable. We also carried out 
diazidation of amide 13, which—if operating via a 
carbocation mechanism—would cyclize to furnish 
oxazoline 15.39 However, electrolysis produced diazide 14 
cleanly as the only observable product. Together, these data 
strongly support the radical mechanism.
Scheme 3. Mechanistic probes. Structures in purple are 
expected products if the second C–N3 formation were via a 
cationic pathway.
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We further studied alkene substrates that would lead to 
resonance-stabilized carbocation intermediates (Scheme 3C) 
and observed radical-to-carbocation oxidation. For example, 
camphor-derived alkene 16 was converted to 11% diazide 
17 in addition to 42% 1,3-azidoalcohol 18 via carbocation 
rearrangement. We reasoned that the norbornyl structure 
selectively stabilizes carbocation (II) but not its radical 
precursor (I), thus favoring the oxidation of I to II. Notably, 
neither rearrangement-azidation (19) or direct 1,2-
azidohydroxylation products were observed. This result 
strongly supports the hypothesis that the alkene diazidation 
undergoes predominantly a radical pathway,17b,40 whereas 
the azidohydroxylation adopts a cationic pathway that 
triggers the rearrangement.41 Furthermore, 4-methoxy-α-
methylstyrene (1g) was converted to diazide 2g (major) and 
azidoalcohol 20 (minor). A key finding from these 
experiments is that if a carbocation is formed, its capture by 
H2O is inevitable. Importantly, the majority of the substrates 
we investigated (see Table 2) produced no appreciable 
amounts of azidoalcohol products. This piece of information 
lends further support for the radical mechanism involving N-
oxyl-mediated azidyl transfer.

Finally, we conducted a control experiment using 
azidooxygenated product 21 instead of the alkene as the 
substrate for electrolysis and observed no diazide formation. 
This result excluded the possibility that N-oxyl adducts are 
key intermediates in the alkene diazidation (see Scheme 2B). 

Accordingly, we propose a CHAMPO–N3-mediated 
electrocatalytic cycle (Scheme 2C). We previously showed 
that N-oxyl radicals trigger an inner-sphere oxidation 
pathway that substantially lowers the potential required for 

accessing N3
● from N3

–.21 In light of our new mechanistic 
information, we conclude that the CHAMPO–N3 CTC plays 
two key roles—promoting the generation of free N3

● and 
mediating the second azidation through a putative radical 
group transfer event. Preliminary data suggest that the CTC 
is the resting state of the catalyst under a sufficient anodic 
potential. The first C–N3 bond formation is slower than the 
second owing to the relatively slow, endergonic 
fragmentation of the CTC to CHAMPO and N3

●. This rate 
difference allows the two distinct radical addition events to 
take place successively with high chemoselectivity toward 
diazidation over side pathways that unproductively 
consumes I. In this mechanistic hypothesis, the metal-like 
behavior of N-oxyl radicals in the alkene diazidation is 
particularly intriguing. Our ongoing efforts will be devoted 
to further evaluating the mechanistic proposal and using the 
knowledge to guide the discovery of other synthetically 
useful transformations. 
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