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ABSTRACT: Providing new methods for the selective 
functionalization of small molecules is highly desirable, 
as installing molecular diversity in a desire position al-
lows, for example, to modulate bioactive molecules. This 
work reports a method for the selective functionalization 
of anilines using HFIP as a solvent to promote an acid-
catalyzed hydroarylation of olefins. Mechanistic experi-
ments revealed that HFIP both protonates the alkene and 
selectively enables anilines towards the electrophilic aro-
matic substitution. This powerful strategy has been ap-
plied to the functionalization of the anti-inflammatory 
mefenamic acid with chemo- and regiocontrol. 
KEYWORDS: Hydroarylation, aniline, alkene, HFIP, 
mefenamic acid. 

Bioactive molecules containing the aniline motif in 
their chemical structure represent an important and heter-
ogeneous toolbox to target a diverse array of medical is-
sues. The aniline fragment is a ubiquitous structure in the 
core of important commercialized drugs, including anaes-
thetic, antidepressant, anticancer or anti-inflammatory 
medicines (Figure 1). Developing novel and selective 
methods for the functionalization of anilines is highly de-
sirable and will provide a way to expand such a collection 
of active molecules.1 

 
Figure 1. Bioactive molecules containing the aniline structure. 

Electrophilic aromatic substitution, and in particular 
Friedel-Crafts alkylation or acylation, is probably one of 
the most recurrent tools to derivatise aromatic com-
pounds. While the traditional variants made use of acyl or 
alkyl halides as electrophilic partners,2 an alternative 
strategy employs alkenes in combination with strong ac-
ids to generate an electrophilic species in situ.3 However, 
the use of anilines in Friedel-Crafts reactions proved to be 
a challenging topic, as a results of: 1) low compatibility 
of the basic amino group and the commonly used Lewis 
acid catalysts, resulting in the deactivation of the latter, 2) 
poor chemo- and regioselectivity, compared to their meth-
oxy counterparts, for example.4 Pioneering work using 
gold catalysts in combination with weakly coordinating 
BARF salts 5 opened the door for anilines to be used in 
Lewis acid-catalyzed Friedel-Craft para-alkylation with 
alkenes as electrophilic component (Scheme 1, Previous 
work 2014).6 Later on this idea has been exploited using 
aryl phosphonium (Scheme 1, Previous work 2015) 7 and 
triphenylcarbenium salts (Scheme 1, Previous work 
2018) 8 as alternative strong Lewis acids. Despite of being 
great contributions, all without exception rely on the same 
expensive and elaborated catalysts using weakly coordi-
nating BARF counteranion, with or without expensive 
transition metal catalysts. 

Alternatively, Hexafluoroisopropanol (HFIP) has re-
cently emerged as an important solvent with interesting 
properties that allows it to promote a unique reactivity. 
HFIP is a non-nucleophilic fluorinated alcohol with 
strong hydrogen-bond donor properties, establishing a 
hydrogen-bond network that is responsible of its exacer-
bated acidity. 9 In this context HFIP has been reported to 
activate carbonyl compounds,10 epoxides,11 alcohols,12 
halides,13 phenols 14  and more recently alkynes 15 or al-
kenes,16 however the latter are still underexplored. 

This work reports a new strategy for the selective func-
tionalization of anilines with alkenes, using a very simple, 
cheap and atom-economic catalytic system, where HFIP 
plays the dual role of strong acid reacting with the olefin 
but also enhancing the reactivity of the aniline (Scheme 
1, this work). 
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Scheme 1. Hydroarylation of alkenes using anilines

 

The study began using equimolecular amounts of ani-
line 1a and alkene 2a in HFIP at room temperature, with 
a 14% yield of the hydroarylation product 3a (Table 1, 
entry 1). Increasing the temperature to 40 °C or 60 °C had 
little benefit, while using 80 °C doubled the yield up to 
29% (Table 1, entries 2-4). Using excess of alkene (2.0 
equivalents of 2a) has a positive effect with a 41% yield 
(Table 1, entry 5). Finally, the use of additives (see sup-
porting information for further details) revealed that sub-
stochiometric amount of sodium acetate has a notably ef-
fect in the outcome of the reaction with an 81% yield (Ta-
ble 1, entry 6). The important effect of the solvent was 
demonstrated using other acidic solvents, such as trifluo-
roethanol, acetic acid or trifluoroacetic acid providing no 
satisfactory results in the hydroarylation reaction (Table 
1, entries 7-9). 
Table 1. Screening of conditions.  

Entry  Additive Solvent Temperature 3a yield (%)a 

1b - HFIP 25 °C 14 

2 b - HFIP 40 °C 19 

3 b - HFIP 60 °C 25 

4 b - HFIP 80 °C 29 

5 c - HFIP 80 °C 41 

6 c 25 mol% NaOAc HFIP 80 °C 81 

7 c 25 mol% NaOAc TFE 80 °C 0 

8 c 25 mol% NaOAc AcOH 80 °C traces 

9 c 25 mol% NaOAc TFA 80 °C 0 

a NMR yield using 1,3,5-trimethoxybenzene as standard. b 1.0 equivalent 
of alkene 2a was used. c 2.0 equivalent of alkene 2a was used. 

With those optimal conditions in hand, the scope of the 
reaction was then evaluated. With respect to the aniline 
component, substitution on the nitrogen is well tolerated. 
Among the model substrate with a methyl substituent 
(Figure 2, 3a), other aliphatic mono-substituted examples 
include benzylic, allylic or derivatives containing extra 
functional groups (Figure 2, 3b, 3c and 3d). Aromatic 
substitution is also viable, exclusively reacting via the ar-
omatic ring with the unsubstituted para position (Figure 
2, 3e). Disubstituted anilines perform well in the reaction 
and both acyclic and heterocyclic piperazine derivative 
afforded the expected products (Figure 2, 3f and 3g). Fi-
nally, the challenging free aniline can be selectively al-
kylated, increasing the loading of NaOAc, to achieve a 
respectable 60% isolated yield (Figure 2, 3h).  

The aromatic ring of the aniline can be extensively 
modified and both ortho and meta positions have been in-
terrogated. Concerning the ortho position methyl, ethyl or 
benzyl substituents are competent substrates (Figure 2, 3i, 
3j and 3k), while aromatic substitution affords a beautiful 
biphenyl derivate (Figure 2, 3l). Electron donating het-
eroatoms can be easily incorporated, for example, both 
methoxy and hydroxy groups give the expected product 
in excellent yields and exquisite para regiocontrol (Fig-
ure 2, 3m and 3n). Another interesting example of an 
electron-rich hetero-substitution is the product of reacting 
ortho-phenylenediamine where the monoalkylation is 
achieved in high yields (Figure 2, 3o). Electron-with-
drawing substituents, such as halides performed ex-
tremely well, and both fluorine and chlorine derivatives 
are formed in high yields (Figure 2, 3p and 3q). Unfortu-
nately, aldehyde and ester derivatives do not react (prob-
ably because HFIP interacts with the carbonyl moieties 
and deactivate the aromatic ring). However, a carboxylic 
acid is well tolerated and the product of reacting an-
thranilic acid is isolated in a respectable 69% (Figure 2, 
3r). The meta position of the aromatic ring was investi-
gated in a similar manner and some representative exam-
ples illustrate the versatile scope. Both aliphatic and elec-
tron rich heteroatoms can be accommodated, albeit in 
slightly diminished yield (Figure 2, 3s and 3t). Electron 
deficient halides provide from excellent to good yields 
starting from fluoro and moving to chloro or bromo sub-
stitution (Figure 2, 3u, 3v and 3w). In view of these re-
sults, where fluoro-containing example behaves ex-
tremely well and the productivity of methyl derivative is 
compromised, it is sensible to state that the limitation in 
the meta position might well be related to steric factors 
rather than electronics. Not only does monosubstitution 
works, but substrates bearing several substituents in 
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different combinations complete the scope. Substituting 
both ortho positions either with aliphatic substituents 
(Figure 2, 3x) or with an aliphatic and a halide (Figure 2, 
3y) gives very good results. Simultaneous ortho and meta 
substitution is well tolerated, even in the bicyclic 1-ami-
nonaphthalene (Figure 2, 3z and 3aa). 

Finally, the alkene component was studied modifying 
the model 1,1-disubstituted alkene, a-methylstyrene. 
Both lineal, branched and cyclic aliphatic substitution is 
well tolerated with excellent results (Figure 2, 3ab, 3ac 
and 3ad). The aromatic ring tolerates functional groups 
that can be used as a handle for further diversification, for 
example an iodide in cross-coupling reactions (Figure 2, 
3ae). Aromatic heterocycles can be accommodated and 

thiophene derivative is isolated in 93% yield (Figure 2, 
3af). Two aromatic rings can be incorporated and inter-
esting triarylmethane can be easily accessed (Figure 2, 
3ag). Cyclic alkenes are viable substrates and tetrahy-
dronaphthyl derivative gives the expected product (Fig-
ure 2, 3ah). Lastly, trans-anethole, a 1,2-disubstituted al-
kene, can engage in the reaction, thus expanding the sub-
strate scope with an example that does not contain an all-
carbon quaternary centre (Figure 2, 3ai). While para-
methoxystyrene also works, styrene gives traces of the 
product and other aliphatic alkenes, including 1-hexene, 
3-hexene, 1-methylcyclohexene, 1-methylcyclopentene 
or an internal cyclobutene, did not provide the desired 
product, recovering the alkene starting material. 

 
Figure 2. Scope of the hydroarylation of alkenes using anilines in HFIP. 
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It is important to emphasize that in all cases an exquis-
ite C- (vs. N-) and para (vs. ortho) regiocontrol was ob-
served, a challenging limitation commonly stated in the 
literature.17 

With the aim of fully understanding the role of HFIP 
mechanistic experiments were designed to shed light into 
this effective transformation. Using deuterated HFIP-OD, 
the model aniline 1a and terminal alkene 2a, full incorpo-
ration of deuterium on the olefinic carbon confirms the 
protonation of the alkene by the solvent HFIP. Moreover, 
the ortho positions of the aniline suffer a high degree of 
deuterium exchange (Figure 3a, 3a-D3) and treating ani-
line 1a with NaOAc in HFIP-OD (with no added alkene) 
ratifies this H-D exchange in both ortho and para 

positions (see supporting information). Reacting anilines 
1a or 1x with 1,2-disubstituted alkene 2i results in the 
same deuterium labelling pattern (full D-incorporation in 
the olefin carbon and high D-exchange in the ortho posi-
tions) and high anti/syn diastereoselection (Figure 3a, 
3ai-D3 and 3an-D).18 A striking behaviour observed dur-
ing the scope evaluation is the total para selectivity in fa-
vour of the amino vs. the methoxy group (Figure 2, 3m 
and 3t). In a competition experiment using equimolecular 
amounts of aniline 1a and the exceptionally good Friedel-
Crafts substrate trimethoxybenzene 4,19 the hydroaryla-
tion product 3a is exclusively formed (Figure 3b), rein-
forcing the selective activation of anilines using 
NaOAc/HFIP.  

 Figure 3. Mechanistic experiments.
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In order to elucidate the potential interactions between 
the base (NaOAc), the aniline and HFIP, a set of NMR 
experiments were designed, with CDCl3 as the supporting 
solvent for its neutral behavior with respect to any inter-
actions between species, TMS was added as a reference 
and Bu4NOAc (that also catalyzes the reaction, see sup-
porting information, additive screening) was used instead 
of NaOAc for its better solubility in CDCl3. First the 1H-
NMR of individual species (HFIP, 1a, 2a and Bu4NOAc) 
and binary mixtures of HFIP and every single species (1a, 
2a and Bu4NOAc) were recorded (see supporting infor-
mation). This was followed by the 1H-NMR of all species 
mixed together (1a, 2a and Bu4NOAc) with and without 
HFIP (Figure 3c, left) where an upfield shift of the acetate 
(Figure 3c left, pink) and a downfield shift of the aniline 
(Figure 3c left, red) and HFIP (Figure 3c left, green) sig-
nals is clearly observed. Finally, both 1D-nOe (see sup-
porting information) and 2D-NOESY (Figure 3c right) 
experiments revealed a strong spatial connection between 
both the CH and OH of HFIP with the aniline and the ac-
etate signals (Figure 3c right, red and pink boxes respec-
tively and see supporting information for further details). 
Taken together these results support the hydrogen-bond-
ing between the exceptionally acidic OH of the HFIP net-
work 20 and both the aniline and the acetate.21  

The overall reaction pathway would be in agreement 
with an electrophilic aromatic substitution mechanism 
(Figure 3d).22 While the alkene is protonated by HFIP, 
producing a stabilized carbocationic intermediate, the 
amino group of the aniline becomes “protected” via H-
bonding to HFIP. Therefore the aniline reacts selectively 
with the electrophilic species via the aromatic ring (C- vs. 
N-), generating a Wheland-type intermediate, what is 
thought to be the rate determining step.22f Proton abstrac-
tion to rearomatize the aniline is achieved either by the 
conjugated base of the proton source, or by the added base 
(acetate) in a more productive manner, affording the ob-
served product. 

To illustrate the application of this method in the selec-
tive functionalization of bioactive molecules the anti-in-
flammatory mefenamic acid, also evaluated against Alz-
heimer’s disease with promising results, was used as a tar-
get.23 Efforts to build a library of derivatives from 
mefenamic acid have previously used either the alkyla-
tion or acylation of the amino group and the amidation of 
the carboxylic acid as diversity points. This simple strat-
egy has produced analogues of the parent compound 
where the bioactivity was compromised, meaning that 
both the amino and the carboxylic acid are essential to 
preserve the active function.24 Selective modification of 
the aromatic rings introducing molecular diversity would 
open the door for a new family of derivatives. Mefenamic 
acid is a particularly challenging example that exceeds the 
scope presented above, where the amine shares two dis-
tinct aromatic groups, each one bearing different substit-
uents, both of them potentially reactive towards the hy-
droarylation process described. Thus a chemoselective 

process is also required. Slightly modifying the general 
conditions, lowering the temperature to 60 °C to prevent 
decarboxylation observed at 80 °C,25 results in a remark-
ably highly selective and productive functionalization of 
mefenamic acid. Four different alkenes from the scope 
above were used to illustrate the viability of the process, 
introducing the model dimethylbenzyl structure (Scheme 
2, 3aj) but also diverse chemical motifs, such as a cyclo-
hexyl (Scheme 2, 3ak), an aryl iodide, that could poten-
tially be further functionalized (Scheme 2, 3al) or the het-
eroaromatic thiophene (Scheme 2, 3am). 

 
Scheme 2. Mefenamic acid selective derivatization. 

 

In summary a new protocol for the hydroarylation of 
alkenes using anilines has been developed, that entails the 
use of HFIP as a unique solvent to promote the reaction. 
Mechanistic experiments revealed that the acidic nature 
of HFIP both serves to protonate the alkene and to pro-
mote the selective reaction of the aniline via hydrogen 
bonding. The application of this new method has been 
found in the selective functionalization of the anti-inflam-
matory drug mefenamic acid. 
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8 

A new method for the selective functionalization of anilines with olefins using HFIP as a unique solvent to promote the reaction 
has been developed. This new protocol involves cheap, mild and atom-economic conditions, where HFIP plays a double role 
as strong acid protonating the alkene and activating the aniline towards the hydroarylation. This powerful method has been 
applied in the selective derivatization of the anti-inflammatory mefenamic acid. 
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