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Abstract Rhodamine diaminomaleonitrile linked probe (RD-
1) shows highly sensitive colorimetric and selective turn-on
fluorescent response to Cd2+ over other metal ions. The fluo-
rescence intensity and absorbance of the probeRD-1 showed a
good linearity, with very low detection limits of 18.5 nm. The
probe RD-1 was preliminarily applied to the determination of
Cd2+ ion in water samples from river and tap water with satis-
fying results. The live cell image confocal microscopy, HeLa
cell demonstrated that RD-1 had low cytotoxicity with good
membrane permeable property is successfully applied to fluo-
rescence microscopic imaging for the detection of Cd2+ ions.
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Introduction

The development of luminescent chemical devices is an active
field of research in supramolecular chemistry [1–3]. An im-
portant area within this field is the development of lumines-
cent chemosensors [4–8]. Such sensors have the advantage of
possessing high sensitivity and selectivity, as well as provid-
ing on-line and real-time analysis that has revolutionized the
field of chemical analysis, particularly in critical care analysis
of blood and serum samples [9, 10].

Cadmium, an essential element in the earth, is widely used
in agriculture and industry. These sources of cadmium cause
excessive exposure to human society. Whereas Cd2+ is also
known for its toxicity, which can induce serious health and
environmental problem, such as renal dysfunction, Calcium
metabolism disorders, prostate cancer, etc. [11, 12]. The EPA
(United States Environmental Protection Agency) gives an
enforceable drinking water standard for Cd2+ of 5 ppb to pre-
vent kidney damage and other related diseases, while the
WHO (World Health Organization) provides a more strict
guideline value for Cd2+ of 3 ppb for drinking water [13].

Fluorescence is a powerful method to detect ions and neu-
tral molecules owing to its operational simplicity and high
sensitivity. The challenge in development of any fluorescent
sensor is the induced signal change when a target specifically
binds to the probe [14–17].

Several sensors have been developed and utilized for Cd2+

imaging in living cells [18, 19]. In spite of their fascinating
responses to Cd2+, these sensors still have some hang-ups, such
as simple response, UV excitation, and large spectral overlap
[20, 21]. To date, it is still a tremendous challenge to design
Cd2+ selective sensors for the accurate detection of Cd2+ in
aqueous solutions and biological environments [22, 23].

The well-known fluorophore rhodamine exists in two
forms; one is the spirolactam and the other is the amide form.

Highlights
• Rhodamine diaminomaleonitrile based probe for colorimetric and
fluorescent detection of Cd(II) was developed.

• The detection limit of sensor is 18.5 nm.
• The probe can be used to detect Cd(II) in live cells.
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The spirolactam form does not exhibit absorption and emis-
sion, whereas the amide form exhibits absorption and emis-
sion in the visible region. When metal ions or analyte binds
with the rhodamine dye, the spirolactam ring can be readily
converted into the amide form. This has been utilized for the
development of chemosensors for metal ions [24–34].

Diaminomaleonitrile represents a class of π conjugated
compound with electronic donor and acceptor parts with high
electron affinity nature and interesting binding properties [35].

There are very few reports on cadmium sensing based on
rhodamine dyes through spirocyclic ring opening mechanism
[36–38]. In this paper, we developed a rhodamine based probe
RD-1 linked to diaminomaleonitrile moiety (Scheme 1). This
could be used for the detection of Cd2+ with high sensitivity
and selectivity, good linearity, and showed significant colori-
metric and fluorometric response in a short time. The low
cytotoxicity and cell-membrane penetrability of RD-1 were
confirmed by MTT assay and cell imaging, respectively.

Experimental

Materials and General Methods

All reagents and solvents were used without purification.
Rhodamine B and diaminomaleonitrile were purchased from
Sigma Aldrich. Metal chloride salts procured from Merck
were used as the source for metal ions.

Absorption measurements were carried out using an
Antech (AN-UV-7000) UV-vis spectrophotometer.
Fluorescence spectra were recorded on F-4500 Hitachi fluo-
rescence spectrophotometer. The slit width was 5 nm for both
excitation and emission. NMR spectra were recorded on a
Bruker (Avance) 300 MHz instrument using TMS as internal

standard. ESI-MS spectral analysis was performed in positive
ion mode on a liquid chromatography-ion trapmass spectrom-
eter (LCQ Fleet, Thermo Fisher Instruments Limited, US).
Fluorescence microscopic images were taken with a Nikon
fluorescence microscope using a filter.

Synthesis

Synthesis of 2-Amino-3″,6″-Bis(Diethylamino)
Spiro[Isoindoline-1,9″-Xanthen]-3-One 1:

Rhodamine B hydrazide was synthesized for the following
reported procedure [39]. Rhodamine B 4 g (6.26 mmol) was
dissolved in 40 ml of methanol and added excess amount of
hydrazine hydrate drop wise to the solution. The reaction mix-
ture was refluxed until red colour disappeared. After comple-
tion of reaction, the reaction mixture was cooling to room
temperature and the solution was poured into 400 ml of dis-
tilled water for 6 h. Then the solid precipitate was filtered and
dried in vacuum to give compound 1 in pale pink solid. Yield:
(88%).

Synthesis of (E)-2-((3″,6″-Bis(Diethylamino)
-3-Oxospiro[Isoindoline-1,9″-Xanthen]-2-Yl)Imino)
Acetaldehyde 2:

The compound 1 (700mg, 1.54mmol) was dissolved in 40ml
of ethanol, an excess amount of 40% aqueous glyoxal was
added drop wise to the reaction mixture and stirred at room
temperature for 12 h. After the reaction is completed 50 ml of
saturated sodium chloride solution was added to obtain the
pale yellow precipitate. The precipitate was filtered and dried
in vacuum and purified by column chromatography in hexane/
ethyl acetate mixture (9:1) afforded 0.38 g of compound 2 in
68% yield.

1H NMR (300 MHz, CDCl3), δ (ppm): 9.38–9.36 (d, 1H,
J = 7.5 Hz), 7.98–7.96 (d, 1H, J = 7.2 Hz), 7.48–7.41 (m, 4H),
7.27 (d, 1H, J = 7.5 Hz), 7.05 (d, 1H, J = 6.83 Hz), 6.32–6.40
(m, 2H), 6.15–6.19 (m, 2H), 3.21 (q, 8H, J = 6.9 Hz), 1.07 (t,
12H, J = 6.9 Hz).

Synthesis of (2-Amino-3-(((1E,2E)
-2-((3″,6″-Bis(Diethylamino)
-3-Oxospiro[Isoindoline-1,9″-Xanthen]-2-Yl)Imino)
Ethylidene)Amino)Maleonitrile) RD-1:

The compound 2 (500mg, 1.01mmol) was dissolved in 30ml
of ethanol and diamino maleonitrile (1.01mmol) was added to
the solution and refluxed 70 °C for 6 h. After completion of
reaction the precipitate was filtered and washed with ethanol.
The crude product was purified by column chromatography
with hexane/ethyl acetate (8/2, v/v), brown solid was obtained
(0.38 g, 65%).
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Scheme 1 Synthesis of Probe RD-1 a Hydrazine-hydrate, MeOH,
reflux, 65 °C, 12 h. b Glyoxal, EtOH, rt. c 2,3-diaminomaleonitrile,
EtOH, 70 °C, 6 h
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FT-IR (KBr, cm−1): 699, 787, 1115, 1222, 1262, 1307,
1374, 1513, 1591, 1613, 1699, 2205 and 2967.

1H NMR (300 MHz, CDCl3), δ (ppm): 8.41–8.38 (d, 1H,
J = 7.8 Hz), 8.01–7.97 (m, 2H), 7.54–7.46 (m, 3H, ArH), 7.13–
7.10 (d, 1H, J = 7.8 Hz), 6.49–6.43(m, 3H), 6.28–6.25 (m, 2H),
5.29 (s, 2H), 3.30 (q, 8H, J = 6.6 Hz), 1.15 (t, 12H, J = 6.9 Hz).

ESI-Ms.: m/z [M + H]+: 586.28; found: 586.58.

Stock Solution Preparation for Spectral Detection

The chloride or nitrate salts of Ag+, Al3+, Ba2+, Ca2+, Cd2+,
Co2+, Cr3+, Cu2+, Fe3+, Hg2+, K+, Mg2+, Mn2+, Na+, Ni2+,
Pb2+ and Zn2+ were prepared in acetonitrile-water (7:3) mix-
ture as stock solutions (1 mmol). The RD-1 stock solution
(1 mmol) was prepared in acetonitrile-water (7:3) mixture.
The working solutions of RD-1 were freshly prepared by di-
luting the highly concentrated stock solution to the desired
concentration prior to spectroscopic measurements.

UV-Vis and Fluorescence Titration Studies

The absorption and fluorescence responses of the probeRD-1
towards various metal ions was investigated by UV-vis spec-
troscopy and fluorescence spectroscopy respectively in
acetonitrile-water (7:3) mixture.

MTTAssay

The cell viability of the probe RD-1 were tested against HeLa
cell lines using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) assay. The cells were seeded into a
well plate at a density of 1.5 × 104 cells per well and incubated
in medium containing RD-1 at concentrations ranging from 0
to 50 μM for 30 min. To each well, 100 μL ofMTTwas added
and the plates were incubated at 37 °C for 1 h to allowMTT to
form formazan crystals by reacting with metabolically active
cells. The medium with MTT was removed from the wells.
Intracellular formazan crystals were dissolved by adding
100 μL of DMSO to each well and the plates were shaken
for 10 min. The absorbance was recorded using Plate reader.

Cell Culture and Fluorescence Imaging

HeLa cells were grown in modified Eagle^s medium supple-
mented with 10% FBS (fetal bovine serum) at 37 °C. The
HeLa cells were incubated with the probe RD-1 (10 μM in
DMSO/H2O (7:3, v/v) buffered with HEPES buffer) and im-
aged through fluorescencemicroscope. The cells were washed
with HEPES three times to remove the excess of the probe
RD-1 in the extra cellular parts and growth medium. Again
the probe treated cells were further incubated with Cd(NO3)2
(10 μM) for 10 min at 37 °C and imaged with Nikon fluores-
cence microscope.

Results and Discussion

Synthesis of RD-1

Compound 2 (1 mmol) and diaminomaleonitrile (1 mmol)
were mixed with 20 mL ethanol and the mixture was stirred
under reflux condition for 6 h. The suspension was filtered,
and then the solid was dried in vacuum. The residue was
purified by column chromatography hexane/ethyl acetate
(8/2, v/v) as elutent to afford brown solid in a yield of 65%.
RD-1 was characterized by FT-IR, NMR and Mass spectral
analysis (Fig. S1-S3).

The absorption spectra of probeRD-1 (1:1) toward various
metal ions such as Na+, K+, Ca2+, Cu2+, Cd2+, Zn2+, Cd2+,
Hg2+, Pb2+, Fe2+, Cr3+, Ni2+, Al3+, Ag+ and Co2+ were inves-
tigated (Fig. 1). Upon addition of Cd2+, an absorption peak
emerged at 530 nm. The development of the noticeable naked-
eye detection of the magenta colour in the probe upon addition
of Cd2+ involves a metal-induced delactonization of rhoda-
mine. Upon complexation, colourless spirolactam form is con-
verted into its (colorless to pink) colored ring opened amide
form. The change in the color and absorbance wavelength
makes it feasible to distinguish Cd2+ from other metal ions.
Upon addition of Cd2+ ion the probe RD-1 leads to a linear
relationship of gradual enhancement of the intensity at 530 nm
(Fig. S4).

Fluorescence Titration and Selectivity

Changes of fluorescence emission spectra of the probe RD-1
in the presence of various cations were studied in HEPES
buffer (10 μM, pH 7.54). Fluorescence titration was used to
further investigate the binding capability of RD-1 for Cd2+.
The probeRD-1weak fluorescence upon excitation at 530 nm

Fig. 1 UV-vis absorption spectra of probe RD-1 (10 μM) upon addition
of various metal ions in 10 μM HEPES buffer solution
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because of its spirocyclic structure did not open upon the free
RD-1 (Fig. 2). Upon gradual addition of Cd2+ develops a
significantly strong emission band at 553 nm (Fig. 3).

The addition of Cd2+ (0–20μM) increased the fluorescence
intensity by approximately 200-fold. The fluorescence inten-
sity remained constant following the addition of greater than
50 μM (excess) Cd2+. The enhancement in fluorescence in-
tensity was likely due to the Cd2+-triggered rhodamine
spiroring opening reaction [40].

These results show that the probe RD-1 is very selective
and sensitive towards Cd2+ over other metal ions (Fig. 4).
Job^s Plot analysis was used to find the stoichiometry for
RD-1/Cd2+ complex. Job^s Plots exhibited the same

maximum absorbance when the molar fraction of 0.5, indicat-
ing a 1:1 stoichiometry. ESI mass spectrometric analysis pro-
vided further support for the formation of the 1:1 complexes
RD-1+ Cd2+. A signal at 701.1776 corresponded to RD-1+
Cd2++H+ were observed when Cd2+ was added to RD-1 in
methanol (Fig. S5 and S6).

On the basis of the 1:1 stoichiometry and UV–Vis titration
data, the association constants (Ka) of the probe RD-1 with
Cd2+ were calculated using the Benesi–Hildebrand eq. [41]
the measured fluorescence intensity [1/(F − F0)] at 553 nm
showed a linear relationship with 1/[Cd2+], where F0 and F
are respectively the fluorescence intensities of the blank and
sample solution containingRD-1 and Cd2+, and [Cd2+] are the
concentrations of Cd2+ in the sample solutions. The associa-
tion constant between RD-1 and Cd2+ was 2.33 × 105 M−1

Fig. 4 Fluorescence response of 10 μM RD-1 to various metal ions.
Black bars represent the addition of metal ion to RD-1. Red bars
represent the change of the emission upon the subsequent addition of
Cd2+ to the above solution

Fig. 3 Concentration-dependent fluorescence enhancement of RD-1
(10 μM) on the addition of various amounts of Cd2+ (0–1.5 equiv) in
10 μM HEPES buffer solution (pH 7.54), λex = 530 nm

Fig. 2 Fluorescence spectra of probe RD-1 (10 μM) upon addition of
various metal ions in 10 μM HEPES buffer, λex = 530 nm

Fig. 5 Plot of change of fluorescence intensity at λEmm = 553 Vs
concentration of Cadmium ions added to the probe RD-1
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determined from fluorometric titration data [42]. Also, the
detection limit of Cd2+ was determined from the absorbance
titration profile as 18.5 nm based on 3σ/slope. The perfect
linearity relationship between fluorescence intensity and the
concentration of Cd2+ in the range of 1.0 * 10−7 to 1.0
*10−5 mol L−1 with a correlation coefficient of R2 = 0.9908
was observed (Fig. 5). The LOD for Cd2+ detection by the
probeRD-1 is sufficient to detect Cadmium ions in living cells
and biological systems.

The pH changes were investigated after the addition of
different amounts of Cd2+ ion results indicated that the fluo-
rescence enhancement is due to the coordination of Cd2+,
which induced the formation of a strongly fluorescent ring
opened RD-1-Cd2+ complex. The pH study clearly elaborates
the applicability of the probe for sensing Cd2+ in the physio-
logical pH range (Fig. S7).

To further explore the complexation mode, FT-IR spec-
trometry was used to investigate the free ligand RD-1 and
their Cd2+- complex (Fig. S8). We observed a shift of the
stretching vibration frequency of the C = N bands from
1613 cm−1 and 1513 cm−1 (free RD-1), to slightly changes
RD-1+ Cd2+ complex the C = N bands 1591 cm−1 and
1374 cm−1, the stretch vibration of the carbonyl group of
RD-1 is 1699 cm−1 almost disappeared in the (RD-1+ Cd2+)
complex, these data indicate that the carbonyl and imines
bond take part in coordination with Cd2+ complex.

Application in Living Cells

We next evaluated RD-1 with HeLa cells to investigate the
potential biological application of RD-1 for fluorescence im-
aging. The cytotoxicity was evaluated by standard MTT

Fig. 6 a Brightfield images of
HeLa cells incubated with RD-1
(10 μM) for 30 min at 37 °C. b
Fluorescence microscopic images
of HeLa cells incubated with RD-
1 (10 μM). cMerged images of a
and b. d Brightfield images RD-1
pretreated HeLa cells and again
treated with 10 μM Cd(NO3)2 for
10 min. e Fluorescence
microscopic images HeLa cells
incubated with Probe RD-1 and
10 μM Cd(NO3)2 for 10 min. f
Merged images of d and e

Fig. 7 Frontier molecular
orbitals of RD-1 and RD-1 +
Cd2+ obtained from the DFT
calculations using Gaussian 09
program
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(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide) assay. The results indicate that the RD-1 was non-
toxic to the cells under the experimental conditions. The cells
were incubated with a 10 μM solution of RD-1 for 30 min at
37 °C in growth medium, and a very weak fluorescence was
observed (Fig. 6b). In succession, the cells were added with
Cd(NO3)2 (10 μM) for 10 min at 37 °C. After the cells were
washed with 3 × 1 mL of PBS three times, an obvious fluo-
rescence response from the intracellular region was observed.
The bright field image confirmed that the cells were viable
throughout the imaging experiments and the probe RD-1
had good cell-membrane permeability, which could be used
for detecting intracellular Cd2+ (Fig. 6, Fig. S9 and Fig. S10).

Density Functional Theory Studies

To get an insight into the electronic structure and the photo
physical properties of RD-1 and RD-1+ Cd2+ adduct, density
functional theory (DFT) calculations was carried out with the
Gaussian 09 program [43] with the B3LYP/6-311G and
LANL2DZ for cadmium ions respectively. From the opti-
mized geometries the DFT calculations were carried out using
above mentioned sets. Frontier molecular orbital’s derived
from the optimized geometries, the HOMO and LUMO of
RD-1 is localized over the whole xanthenyl ring and
diaminomaleonitrile unit, respectively, whereas in RD-1 +
Cd2+ the xanthenyl unit has HOMO character and the
diaminomaleonitrile unit with reasonable contribution from
Cd2+ has LUMO character (Fig. 7 and Fig. S11).

Practical Application

The potential utilities of RD-1 for Cd2+ analysis in environ-
mental water were performed. On the addition of water sample

to the probeRD-1 (10 μM), there is no change in the emission
intensity whereas Cd2+ salts treated water samples showed a
good linear dependences of fluorescence intensity enhance-
ment. This result indicated that RD-1 could detect Cd2+ in
solutions thereby confirming its potential application for
Cd2+ analysis in water. The recovery and RSD values for the
addition of different concentrations of Cd2+ ions in water sam-
ples are given in Table 1.

Conclusions

In conclusion, herein we report the synthesis of a new probe
RD-1 based on rhodamine dye, conjugated with
diaminomaleonitrile moiety, the colorimetric and fluorescent
recognition of Cd2+ by RD-1 were free from the interference
of other metal ions. The chemosensor worked in aqueous so-
lution at physiological pH ions with a very low detection limit
of 18.5 nm. Further the non-toxicity of the probe makes it
useful as an imaging agent for the detection of Cd2+ in living
cells under physiological conditions.
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