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Abstract 

Pyridine-4-carboxylic acid (PYCA) functionalized Fe3O4 nanoparticles as an organic–inorganic 

hybrid heterogeneous catalyst was fabricated and characterized by FT-IR, XRD, TGA, TEM, 

SEM and VSM techniques. The catalytic activity of the magnetic catalyst was probed through 

one-pot synthesis of tetrahydrobenzo[b]pyran derivatives from three component reactions of 

aromatic aldehydes, malononitrile and dimedone under solvent-free conditions. Simple 

procedure, high yields, short reaction time and environmentally benign method are advantages of 

this protocol. The catalyst was readily separated using an external magnet and reusable without 

significant loss of its catalytic efficiency. 
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Introduction 

Environmentally benign, economical, practical and efficient processes for the catalyst 

separation and reuse have been increasingly important goals in the chemical community [1]. 

Magnetic nanoparticles are efficient, readily available, high-surface-area resulting in high 

catalyst loading capacity and outstanding stability heterogeneous supports for catalyst. They 

show identical and sometimes even higher activity than their corresponding homogeneous 

analogues [2-4]. Magnetic nanocatalysts can easily be separated and recycled from the products 

by an external magnet [5]. Surface functionalized iron oxide magnetic nanoparticles (MNPs) are 

a kind of novel functional materials, which have been widely used in biotechnology and catalysis 

[6-8]. Good biocompatibility and biodegradability as well as basic magnetic characteristics could 

be denoted for functional organic materials grafted to MNPs [9-11].  

Multi-component reactions (MCRs) have proven to be a valuable asset in organic and 

medicinal chemistry [12-15].
 
Such protocols can use for drug design, and drug discovery because 

of their simplicity, efficiency, and high selectivity [16, 17]. MCRs can reduce the number of 

steps and present advantages, such as low energy consumption and little to no waste production, 

leading to desired environmentally friendly processes. Synthesis of bioactive and complex 

molecules should be facile, fast, and efficient with minimal workup in this methodology [16-18]. 

Compounds containing tetrahydrobenzo[b]pyran, has been of considerable interest to chemists 

because they may contribute to potential pharmacological activities [19], such as spasmolytic, 

diuretic, anti-coagulant, anti-cancer, antiancaphylactia activities [20-23]. However, some of the 

reported methods require prolonged reaction time, reagents in stoichiometric amounts and 

generate unsatisfactory yields of the products [24-29].
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In the present study, we present our results on the preparation and characterization of 

magnetic, pyridine-4-carboxylic acid (PYCA) functionalized Fe3O4 nanoparticles (Fe3O4–

PYCA) and its catalytic application for three-component synthesis of tetrahydrobenzo[b]pyran 

derivatives from aromatic aldehydes, malononitrile and dimedone under solvent-free conditions 

(Scheme 1). 

Experimental 

Chemicals and materials 

Melting points were measured on an Electrothermal 9100 apparatus. The X-ray powder 

diffraction (XRD) of the catalyst was carried out on a Philips PW 1830 X-ray diffractometer 

with CuKα source (λ=1.5418 Å) in a range of Bragg’s angle (10-80°) at room temperature. 

Scanning electron microscope (SEM) analyses were taken using VEGA//TESCAN KYKY-EM 

3200 microscope (acceleration voltage 26 kV). Transmission electron microscopy (TEM) 

experiments were conducted on a Philips EM 208 electron microscope. Thermo gravimetric 

analysis (TGA) was recorded on a Stanton Red craft STA-780 (London, UK). NMR spectra were 

recorded with a Bruker DRX-400 AVANCE instrument (400.1 MHz for 
1
H, 100.6 MHz for 

13
C). 

The spectra were measured in DMSO-d6 as solvent. IR spectra were recorded on an FT-IR 

Bruker vector 22 spectrophotometer. Magnetic measurements were performed using vibration 

sample magnetometer (VSM, MDK, and Model 7400) analysis. 
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General Procedure 

Preparation of the magnetic Fe3O4 nanoparticles (MNPs) 

FeCl3.6H2O (4.865 g, 0.018 mol) and FeCl2·4H2O (1.789 g, 0.0089 mol) were added to 

100 mL deionized water and sonicated until the salts dissolved completely. Then, 10 mL of 25% 

NH4OH (10 mL) was added quickly into the reaction mixture in one portion under N2 

atmosphere at room temperature followed by stirring about 30 min with mechanical stirrer. The 

black precipitate was washed with doubly distilled water (five times). 

Preparation of pyridine-4-carboxylic acid functionalizedFe3O4 nanoparticles(Fe3O4–

PYCA) 

The obtained MNPs powder (1 g) was dispersed in 150 mL water solution by sonication 

for 30 min, and then 0.010 mol (0.123 g) of PYCA was added to the above mixture which a 

black suspension was formed. This suspension was then refluxed at 100 
o
C for 6 h, with vigorous 

stirring. Fe3O4–PYCA nanoparticle was separated from the aqueous solution by magnetic 

decantation, washed with distilled water several times and then dried in an oven overnight 

(Scheme 2). Whole synthesis was done under N2 atmosphere. 

General procedure for the synthesis of tetrahydrobenzo[b]pyran derivatives under solvent-

free conditions  

A mixture of aromatic aldehydes (1 mmol), malononitrile (1 mmol, 0.066 g) and 

dimedone (1 mmol, 0.140 g) and Fe3O4–PYCA nanoparticles (15 mol %) as a catalyst at 70 
o
C 

was stirred under solvent-free conditions for the 29-34 min. After completion of the reaction, 

monitored by TLC, the reaction mixture was cooled to room temperature. Then, the reaction 
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mixture was dissolved in dichloromethane (10 mL) and subsequent Fe3O4–PYCA nanoparticle 

catalyst was separated by an external magnet at 5 min. The solution containing the product was 

evaporated and the residue solid was recrystallized using diethylether and the product obtained 

as a white powder. Finally, the isolated catalyst was washed several times with dried CH2Cl2 , 

dried under vacuum at 60 
o
C to give the pure Fe3O4–PYCA nanoparticle catalyst.   

Selected spectra for some known product are given below: 

2-Amino-4-(4-chlorophenyl)-3-cyano-7,7-dimethyl-5-oxo-4H-5,6,7,8-tetrahydrobenzo[b]pyran 

(Table 2, entry 2) : white solid; mp =210-211 °C. IR (KBr): νmax= 3380 and 3182 (NH2), 2189 

(CN), 1676 (C=O), 1218 (C–O) cm
-1

.; 
1
H NMR (400.13 MHz, DMSO-d6): δ = 0.92 and 1.03 (2s, 

6H, 2CH3), 2.12 and 2.30 (AB quartet, 2H, J = 16.0 Hz, CH2), 2.52 (m, 2H, CH2), 4.19 (s, 1H, 

CH), 7.07 (s, 2H, NH2), 7.17 (d, 2H, J =8.4 Hz, 2CHarom), 7.35 (d, 2H, J = 8.4 Hz, 2CHarom); 
13

C 

NMR (100.6 MHz, DMSO-d6): δ = 27.7, 29.2, 32.7, 36.2, 51.8, 58.9, 113.4, 121.4, 129.8, 130.7, 

132.9, 144.7, 159.5, 163.8, 196.6. 

2-Amino-3-cyano-4-(4-cyanophenyl)-7,7-dimethyl-5-oxo-4H-5,6,7,8-tetrahydrobenzo[b]pyran 

(Table 2, entry 4) : white solid; mp =226-228 °C. IR (KBr): νmax= 3353 and 3213 (NH2), 2231 

(CN), 1655 (C=O), 1214 (C–O) cm
-1

.; 
1
H NMR (400.13 MHz, DMSO-d6): δ = 0.95 and 1.03 (2s, 

6H, 2CH3), 2.10 and 2.25 (AB quartet, 2H, J = 8.1 Hz), 2.51 (m, 2H, CH2), 4.29 (s, 1H), 7.14 (s, 

2H, NH2), 7.35 (d, 2H, J =8.1 Hz), 7.75 (d, 2H, J = 8.1 Hz, 2CHarom); 
13

C NMR (100.6 MHz, 

DMSO d6): δ = 27.7, 29.1, 32.5,36.6, 50.8, 58.2, 110.4, 112.5, 119.7, 120.3, 129.4, 133.1, 151.2, 

159.3,163.8, 196.6. 

2-Amino-3-cyano-4-(4-methylphenyl)-7,7-dimethyl-5-oxo-4H-5,6,7,8-tetra-hydrobenzo[b]pyran 

(Table 2, entry 6) : white solid; mp =213-214 °C. IR (KBr): νmax= 3426 and 3329 (NH2), 2191 
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(CN), 1677 (C=O), 1207 (C–O) cm
-1

.; 
1
H NMR (400.13 MHz, DMSO-d6): δ = 0.91 and 1.03 (2s, 

6H, 2CH3), 2.08 and 2.25 (AB quartet, 2H, J = 16.0 Hz), 2.26 (s, 3H, CH3),  2.50 (s, 2H), 4.11 (s, 

1H), 6.98 (s, 2H, NH2), 7.01 (d, 2H, J =8.0 Hz), 7.09 (d, 2H, J = 8.0 Hz, 2CHarom); 
13

C 

NMR(100.6 MHz, DMSO-d6): δ = 21.5, 27.7, 29.3, 32.7, 36.1, 50.9, 59.4, 113.8,120.9, 127.8, 

129.9, 136.6, 142.9, 159.7, 163.8, 196.9. 

Results and discussion 

Characterization of the prepared Fe3O4–PYCA nanoparticles 

X-ray diffraction (XRD) analysis 

Phase investigation of the supported catalyst was performed by XRD and result presented 

in Fig. 1. The result shown in Fig. 1 was fitted for observed six peaks with the following miller 

indices: (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0). The XRD pattern indicates that 

Fe3O4–PYCA nanoparticles,is broadened owing to semicrystalline, indicating that the PYCA 

have been successfully supported on Fe3O4 nanoparticle. The average MNPs corediameter was 

calculated to be about 11 nm from the XRD results by Scherrer’s equation, D = k λ/β cosө, 

where k is a constant (generally considered as 0.94), λ is the wavelength of Cu Ka (1.54 ˚A), β 

isthe corrected diffraction line full-width at half-maximum (FWHM), and ө is Bragg’s angle [30-

31] (figure 1). 

Fourier transform infrared (FT-IR) analysis 

The presence of the coating agents on the surface of the magnetite nanoparticles was also 

supported by the FT-IR spectroscopy analysis. The peaks around 2923 and 2853 cm
−1

, for 

asymmetric and symmetric vibrations of C–H stretching can be obviously found. The adsorption 
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peaks at 1629 and 1461 cm
−1

 corresponds to the asymmetric and symmetric stretching vibration 

of COO (carboxylate group) of pyridine-4-carboxylate moiety. The characteristic absorbing 

peaks of Fe3O4 are appeared at 633 and 583 cm
−1

, which can be ascribed to the vibrations of Fe–

O group. Therefore, the obtained data from FT-IR spectroscopy can be confirmed the existence 

of the nonmagnetic particle and heterocyclic moiety in the structure of Fe3O4–PYCA 

nanoparticle (Figure 2). 

Thermogravimetric analysis (TGA) 

Thermal gravimetric analysis (TGA) and differential thermal gravimetric (DTG) were 

performed at the range of 25 to 900 ˚C under atmosphere N2, to determine the loading of organic 

groups coated on the surface of the magnetite (Figure 3). TGA curve of the Fe3O4–PYCA 

nanoparticle shows the mass loss of the organic functional group as it decompose upon heating. 

The curve shows a weight loss about 3.53% from 900 
o
C, resulting from the decomposition of 

functional group grafting to the MNPs surface. The amount of adsorbed pyridine-4-carboxylic 

acid calculated by Eq. (1) is 0.4mmol g
-1

. 

Eq. (1): mmolpyridine-4-carboxylic acid= (weight loss / 100 × Mw pyridine-4-carboxylic acid) × 

1000 = 0.4mmol 

TEM analysis 

Morphology of synthesized of Fe3O4–PYCA nanoparticles were investigated by TEM 

that shown in Figure 4. Particles are observed to have spherical morphology from Fig.4. Average 

particle size is estimated about 13 nm from the TEM micrographs, which is in a very good 

agreement with the crystallite size estimated from XRD at 11.5 nm. As shown in Fig. 4, a 
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basically core–shell structure (dark colored core for Fe3O4 nanoparticles and light-colored shell 

for PYCA) was obtained. This is an indication of nearly single crystalline character of Fe3O4–

PYCA nanoparticles. 

Scanning electron microscope (SEM) 

Scanning electron microscopy (SEM) has been a primary tool for determining the size 

distribution, particle shape, surface morphology and fundamental physical properties. In Fig. 5, 

the SEM image of the Fe3O4–PYCA nanoparticle is shown (Figure 5). The SEM image of 

Fe3O4–PYCA showed a spherelike structure. 

Vibrating sample magnetometer (VSM) 

The room temperature magnetization curves proved that the Fe3O4–PYCA nanoparticle is 

super paramagnetic. Saturation magnetization of MNPs was 92.13 emu/g and saturation 

magnetization of Fe3O4–PYCA nanoparticles was 76.89 emu/g. Compared with the uncoated 

Fe3O4 nanoparticle, the saturation magnetization of the Fe3O4–PYCA nanoparticle obviously 

decreased because the diamagnetic contribution of the organic group resulted in a low mass 

fraction of the Fe3O4 magnetic substance. Even with this reduction in the saturation 

magnetization, the solid could still be efficiently separated from solution with a permanent 

magnet (Figure 6). 

Catalytic application of Fe3O4–PYCA nanoparticles 

First, to find optimization conditions, the reaction of benzaldehyde, malononitrile and 

dimedone in the presence of the Fe3O4–PYCA nanoparticles as catalyst was selected as model 
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reaction. The reaction was carried out with different amount of Fe3O4–PYCA nanoparticles as 

catalyst (10, 15, 20 mol %) in different temperatures (25, 50, 70 
o
C).  

The obtained results in Table 1 showed that an optimal condition was 15 mol % of Fe3O4–PYCA 

nanoparticles at 70 
o
C (Table 1, entry 8). Next, various aromatic aldehydes were used in the 

reactions that led to the corresponding products in high to excellent yields (Table 2).As shown in 

Table 2, the reactions with the aromatic aldehydes including electron-donating or electron-

withdrawing substituents afforded the desired products in high to excellent yields. 

Next, various aromatic aldehydes were used in the reactions that led to the corresponding 

products in high to excellent yields (Table 2). As shown in Table 2, the reactions with the 

aromatic aldehydes including electron-donating or electron-withdrawing substituents afforded 

the desired products in high to excellent yields (Table 2). 

According to the literature survey [36], the suggested mechanism for the formation of the 

products is shown in Scheme 3. 

The recycling of the Fe3O4–PYCA nanoparticles was studied using the model reaction 

(Experimental section). The recovered Catalyst was reused several runs without any loss of its 

activities (Fig. 7 and 8). 

In order to show the accessibility of the present work, it was compared with several 

reported results in the literature in Table 3 [22, 34, 37, 38]. The results show that the 

reactions in the presence of Fe3O4–PYCA nanoparticle were carried out in short times 

(29-34 min) relative to other catalysts with the similar yields (Table 3). 
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Conclusions 

We were synthesized Fe3O4–PYCA nanoparticle as an organic–inorganic hybrid 

heterogeneous catalyst and characterized by FT-IR, XRD, TGA, TEM, SEM and VSM 

techniques. Size evaluation via various techniques revealed size of Fe3O4–PYCA nano 

particles around 11–13 nm with nearly single crystalline character. The most interesting 

features of the present work include durability as well as efficient catalytic activity for 

synthesis of tetrahydrobenzo[b]pyran derivatives via the reaction of an aromatic 

aldehydes, malononitrile and dimedone under solvent free at 70 
◦
C. The attractive features 

of this protocol are simple procedure, inexpensive work up, ease of handling, high yields 

of products and use of reusable nanocatalyst.  
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Table 1. Optimization conditions for reactions of benzaldehyde (1 mmol), malononitrile (1 

mmol) and dimedone (1 mmol) in the presence of different amount of Fe3O4–PYCA 

nanoparticles as catalyst in diffrent temperatures under solvent-free conditions 

Entry 

Amount 

of 

catalyst 

( mol 

%) 

Temperature 

(
o
C) 

Time 

(min) 

Yield 

(%)
a
 

1 10 25 100 ___ 

2 15 25 100 Trace 

3 20 25 80 37 

4 10 50 75 50 

5 15 50 70 60 

6 20 50 70 75 

7 10 70 40 85 

8 15 70 30 96 

9 20 70 30 96 
a
Yields refer to isolated pure product 
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Table 2. Three-component reactions of aromatic aldehydes (1 mmol), malononitrile (1 mmol) 

and dimedone (1 mmol) in the presence of Fe3O4–PYCA nanoparticles as catalyst (15 mol %) as 

catalyst  under solvent free at 70
o
C 

 

Melting Point (
o
C) Yield 

(%) 

Time 

(min) 

Product Aldehyde Entr

y 

 
Reported 

[Rf] 

Found 

 

229–232 

[32] 

 

230-231 
 

96 
 

30 

O

O

Me
Me

CN

NH2  

 

C6H5 

 

 

1 

 

208-210 

[33] 

 

210-211 
 

96 
 

30 

O

O

Me
Me

CN

NH2

Cl

 

 

4-ClC6H4 

 

 

2 

 

180–183 

[34] 

 

179-181 
 

94 
 

 

33 

O

O

Me
Me

CN

NH2

NO2

 

 

4-NO2C6H4 

 

 

3 

 

 

224-227 

[35] 

 

 

226-228 

 

 

95 

 

 

29 

O

O

Me
Me

CN

NH2

CN

 

4-CNC6H4 

 

 

4 

 

 

213–215 

[32] 

 

 

215-216 

 

 

91 

 

 

34 

O

O

Me
Me

CN

NH2

OH

 

 

4-OHC6H4 

 

 

5 

 

 

210-212 

[33] 

 

 

213-214 

 

 

93 

 

 

32 
O

O

Me
Me

CN

NH2

Me

 

 

4-MeC6H4 

 

 

6 
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a
Yields refer to the isolated pure products  

 

 

198–200 

[34] 

 

200-202 
 

 

92 

 

 

34 
O

O

Me
Me

CN

NH2

OMe

 

 

4-

OMeC6H4 

 

 

7 

 

 

196–198 

[32] 

 

194-196 
 

 

95 

 

 

32 
O

O

Me
Me

CN

NH2

Cl

 

 

2-ClC6H4 

 

 

8 

 

 

180–183 

[35] 

 

181-182 
 

 

91 

 

 

32 
O

O

Me
Me

CN

NH2

NO2

 

 

2-

NO2C6H4 

 

 

9 
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Table 3. Comparison the results of Fe3O4–PYCA nanoparticle with other catalysts in the 

synthesis of tetrahydrobenzo[b]pyran derivatives 

 

a
Yields refer to isolated pure products 

  

Entry Catalyst  Conditions Time Yield (%)
a
 

[Ref] 

1 starch solution (4ml) 50 
o
C 30 min 92 [33] 

2 SO4
 2-

/MCM-41 (25 

mg) 

ethanol (4 mL) , 

reflux 

50 min 86 [34] 

3 Silica bonded S-

sulfonic acid (0.1 g) 

EtOH:H2O (50:50 

v/v), reflux 

45 min 90 [37] 

4 Pentaluoropropionic 

acid (PFPA) (35 mol 

%) 

EtOH:H2O (1: 1), 

R.T 

80 min 90 [38] 

5 Fe3O4–PYCA 

nanoparticle (15 mol 

%) 

70 
o
C, solvent-free  30 min 96 

(Present work) 
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Figure 1. XRD powder pattern of Fe3O4–PYCA nanoparticles 
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Figure 2.  FT-IR spectra for Fe3O4 nanoparticles, pyridine-4-carboxylic acid and Fe3O4–PYCA 

nanoparticles 
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Figure 3. TGA thermograms of Fe3O4–PYCA nanoparticles 

  



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 23 

 

 

Figure 4. TEM micrographs of Fe3O4–PYCA nanoparticles 
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 Figure 5. The SEM images of Fe3O4–PYCA nanoparticles 
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Figure 6. Room temperature magnetization curves of Fe3O4 nanoparticle and Fe3O4–PYCA 

nanoparticle 
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Figure 7. Image showing Fe3O4–PYCA nanoparticle was can be separated by applied magnetics 

field. A reaction mixture in the absence (left) and presence of a magnetic field (right) 
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 Figure 8. The recycling of the Fe3O4–PYCA nanoparticles as catalyst 
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Scheme. 1. Synthesis of tetrahydrobenzo[b]pyran derivatives using pyridine-4-carboxylic acid 

functionalized Fe3O4 nanoparticles (Fe3O4–PYCA) as a nanomagnetic catalyst 
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N
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Scheme. 2. Preparation of Fe3O4–PYCA nanoparticles 
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Scheme 3. The suggested mechanism for the formation of the tetrahydrobenzo[b]pyran 

derivatives 
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