ARTICLE IN PRESS

Tetrahedron Letters xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Diastereoselective synthesis of α, α, α' -trisubstituted pyrrolidines and piperidines by directed sequential lithiation/alkylation

Timothy K. Beng*, Nathan Fox

Department of Chemistry, Susquehanna University, Selinsgrove, PA 17870, USA

ARTICLE INFO

Article history: Received 16 October 2014 Revised 5 November 2014 Accepted 6 November 2014 Available online xxxx

Dedicated to the memory of Professor Bob Gawley who passed on in March 2013. His mentorship forever will be appreciated

Keywords.

Directed lithiation Trisubstituted pyrrolidines Trisubstituted piperidines Diastereoselective alkylation Electrophilic substitution

ABSTRACT

The stereocontrolled synthesis of α, α, α' -trisubstituted pyrrolidines and piperidines has been accomplished through α' -lithiation/trapping of the corresponding α, α -disubstituted Boc-protected azaheterocycle with various electrophiles. The relative configuration of the major diastereomer has the α' -substituent *trans* to the α -aryl group in the pyrrolidines but *cis* to the α -aryl group in the piperidines. The diastereoselectivity of the lithiation/alkylation of pyrrolidines is unaffected by TMEDA but decreases in the presence of (–)-sparteine in diethyl ether.

© 2014 Elsevier Ltd. All rights reserved.

The pyrrolidine and piperidine motifs are ubiquitous structural motifs in bioactive molecules, including alkaloid natural products and pharmaceuticals.¹ Furthermore, functionalized pyrrolidines and piperidines feature prominently as structural motifs in chiral organocatalysts² and chiral auxiliaries.³ Additionally, the versatility of substituted pyrrolidines and piperidines in the synthesis has been amply demonstrated.^{4–18}

In 1989, Beak disclosed that unsubstituted Boc-protected azaheterocycles may be effectively functionalized at the α -position through a lithiation/alkylation sequence.¹⁹ Several researchers,^{20–26} including one of us,^{27,16} have since extended the Beak methodology to include sequential α -functionalizations en route to access α , α - and α , α' -disubstituted *N*-heterocycles, in both racemic and enantioenriched forms. It has been shown that the lithiation of phenyl pyrrolidine *S*-1 (Fig. 1) of >99:1 er using *s*-BuLi/(–)-sparteine then trapping with Me₂SO₄ proceeds highly diastereoselectively, affording C-5 methylated pyrrolidine **2** in 45% yield and 93:7 dr (*cis:trans*).²⁴ In 2006, Campos and other scientists at Merck reported that lithiation of *R*-1 of 96:4 er in the presence of (–)-sparteine followed by transmetalation and Pd-catalyzed coupling with phenyl bromide afforded enantiopure Boc-protected 2,5-diphenylpyrrolidine, *trans*-**3**, in 57% yield and

* Corresponding author. Tel.: +1 4042736793. *E-mail address:* beng@susqu.edu (T.K. Beng).

http://dx.doi.org/10.1016/j.tetlet.2014.11.031 0040-4039/© 2014 Elsevier Ltd. All rights reserved. 96:4 dr (*trans:cis*).²⁸ Later, O'Brien utilized a (+)-sparteine surrogate (i.e., **12**) to synthesize proline ester derivative **4** in >99:1 er and >95:5 dr (*cis:trans*), albeit in low yields as well.²⁰ Mechanistic studies conducted by Coldham and O'Brien have since revealed that the minor rotamer of **1** rotates extremely slowly at low temperatures (the half-life for rotation of the Boc-group was

Figure 1. Selected examples of substituted pyrrolidines, piperidines, and diamine ligands.

Figure 2. Proposed synthetic plan for α, α, α' -trisubstituted pyrrolidines and piperidines.

determined to be ~10 h at -80 °C).²¹ It is thus likely that the modest yields obtained by Beak,²⁴ Campos,²⁸ and O'Brien²⁰ in the α' -lithiation/alkylation of **1** were due to the restricted mobility of the minor rotamer under their reaction conditions as well as due to competitive benzylic lithiation.

Benzylic organolithiums derived from enantioenriched *N*-Boc-2-aryl pyrrolidines^{24,29,30,28} and piperidines^{31–36,23} can now be functionalized at the 2-position with little or no loss of enantiopurity, via a S_E2ret³⁷ process.^{27,21,38} Figure 1 illustrates several of the enantioenriched pyrrolidines and piperidines that have been prepared by this route (see **5–9**). As part of a program aimed at synthesizing cyclic amine derivatives through the intermediacy of functionalized organolithiums, and with a few α, α -disubstituted pyrrolidines and piperidines equence. An approach to 2,2,5-trisubstituted pyrrolidines and 2,2,6-trisubstituted piperidines was envisioned, whereby a diastereoselective α' -lithiation/alkylation of α, α -disubstituted azaheterocycles is implicated (Fig. 2). Efforts toward the implementation of the proposed plan are disclosed herein.

Starting with disubstituted pyrrolidine derivative *rac*-**5** (see Fig. 1), efficient conditions for lithiation/substitution at C-5 were investigated. Knowing that *N*-Boc-pyrrolidine undergoes complete and efficient lithiation under *s*-BuLi/TMEDA conditions at $-80 \,^{\circ}$ C but phenyl pyrrolidine **1** does not, it was of interest to understand the kinetics of deprotonation of **5**. Fortuitously, after 1 h of lithiation of a solution of *rac*-**5** in Et₂O at $-80 \,^{\circ}$ C using *s*-BuLi/TMEDA, trapping with MeOD and analysis of the sample by GC-MS revealed complete lithiation and **5 d**₁ was obtained (Scheme 1). The efficiency of the lithiation of disubstituted pyrrolidine **5** under these reaction conditions is noteworthy since, as previously mentioned,

Scheme 1. Diastereoselective lithiation-substitution of *N*-Boc-2-aryl-2-methyl pyrrolidines.⁴⁰

monosubstituted pyrrolidine **1** lithiated rather recalcitrantly.²¹ Since the ¹H NMR spectrum of **5** shows \sim 70:30 ratio of rotamers, the fast and efficient lithiation of 5 suggests that the barrier to rotation at $-80 \,^{\circ}\text{C}$ is probably much lower than that of $1.^{21}$ Lithiation of rac-5 followed by trapping with Me₂SO₄ affords C-5 methylated pyrrolidine 13 in high yield but in moderate dr (low dr's were also observed with other electrophiles such as Me₃SiCl and allyl bromide). Gratifyingly, when sterically encumbered, naphthyl-bearing **6** is lithiated and trapped with Me₂SO₄, a single diastereomer of trisubstituted pyrrolidine 14 is obtained. Additionally, silulation, stannylation, and acylation of 5-lithio-6 proceed efficiently and highly diastereoselectively (see 15-17). Whereas direct allylation of lithiated 6 using allyl bromide proceeds inefficiently and less selectively to afford 18 in 76:24 dr, coppermediated allylation affords 18 in respectable yield and in high diastereoselectivity.

These studies have revealed that diamine-free lithiation³⁹ of **6** is possible when THF is employed as the solvent. Under this scenario, complete lithiation of **6** is observed after 2 h at -80 °C or after 1 h at -60 °C. Methylation and silvlation of 5-lithio-6 generated under these diamine-free conditions afford the C-5 substituted products with similar diastereoselectivities, suggesting that although the deprotonation of **6** is faster in the presence of TMEDA (in both Et₂O and THF), the steric course is unaltered. Intriguingly, when the lithiation of *rac*-**6** is carried out in the presence of s-BuLi/(–)sparteine in Et₂O, \sim 75% lithiation is observed after 10 h at -80 °C. Trapping of the partially deprotonated mixture with Me₂SO₄ affords trans-14 in 96:4 dr (68:32 er for the major diastereomer). Significantly, sparteine-mediated lithiation of 6 followed by transmetalation and copper-mediated allylation affords 18 in only 68:32 dr. The reason for the low diastereoselectivity under the s-BuLi/(–)-sparteine conditions is unclear at this point.

 Table 1

 Diastereoselective lithiation-substitution of N-Boc-2-phenyl-2-alkyl piperidines

	sec-BuLi, TMEDA	\sim	D	
	Et ₂ O, -80 °C, 3 h	E	Ph F	N Ph
Boc	then E ⁺	Boc	-	Boc
		cis	19–22	trans

Entry	R	E ⁺	Product	Yield (%)	dr (cis:trans)
1	R = Me	MeOD	7∙d₁	100 ^a	nd ^c
2	R = Me	Me_2SO_4	19	85 ^b	>99:1
3	R = Me	EtCO ₂ Cl	20	70 ^b	60:40
4	R = allyl	MeOD	8∙d ₁	100 ^a	nd ^c
5	R = allyl	Me_2SO_4	21	81 ^b	>99:1
6	R = allyl	Me ₃ SiCl	22	77 ^b	>99:1

^a GC yields.

^b Isolated yields.

^c nd stands for 'not determined'.

Scheme 2. Calculated relative energies of the conformers obtained from lithiation of α, α -disubstituted piperidine **7**.

NOESY (or ROESY) experiments were performed on **14**, **15**, and **16**. Each showed strong cross-peaks between the proton at C-5 and the aromatic protons of the aryl group at C-2, thereby revealing a *trans* arrangement of the aryl group and the C-5 substituent for these three examples. The others were assigned the same relative configuration by analogy.

After successful α' -lithiation/functionalization of α, α -disubstituted pyrrolidines, we sought to extend the methodology to the homologous piperidine heterocycle. After some optimization, we found that the lithiation of a solution of *rac*-**7** in Et₂O at $-80 \,^{\circ}$ C for 3 h, using *sec*-BuLi/TMEDA, is complete and efficient (see **7.d**₁, Table 1, entry 1). DFT calculations unsurprisingly indicate a preference for equatorial lithiation (Scheme 2, 6-lithio-**7a** vs 6-lithio-**7b** or 6-lithio-**7c** vs 6-lithio-**7d**). Interestingly, whereas the two equatorially lithiated epimers (i.e., **7a** and **7c**) are nearly isoenergetic, the diastereomers bearing an axially disposed lithium are about 15 kcal/mol apart in energy.

Trapping of 6-lithio-7 with Me₂SO₄ affords 19 as a single diastereomer (Table 1, entry 2). NOESY experiments established the relative configuration as having the α -phenyl group and the α' -methyl group *cis*. Indeed, DFT calculations indicate that the cis-diaxial conformer is 4.7 kcal/mol more stable than the corresponding cis-diequatorial conformer. These results suggest that **19** arises from 6-lithio-**7c** following a ring flip. Lithiation/trapping with EtOCOCI affords acylated piperidine 20 in only 60:40 dr (entry 3), probably due to facile epimerization at C-6. Trapping of allylbearing 6-lithio-8 with Me_2SO_4 also affords a single diastereomer of the trisubstituted piperidine (see 21, entry 5). NOESY experiments again established the relative configuration as having the α -aryl group and the α' -methyl group *cis*. Analysis of coupling constants revealed that the C-6 proton in 21 is equatorial, indicating that the α -phenyl and α' -methyl groups are *cis*-diaxial. Silylation of 6-lithio-8 with Me₃SiCl affords piperidine 22, also as a single diastereomer (entry 6). However, in this example, although the cis relationship between the aryl group at C-2 and the newly introduced substituent at C-6 is preserved, the ¹H NMR of 22 shows a double doublet due to ³J coupling between the proton at C-6 and both equatorial (J = 7 Hz) and axial (J = 13 Hz) protons at C-5, indicating that the C-6 proton is axial. Accordingly, NOESY experiments show cross-peaks between the C-6 proton and the α -allyl group. Calculations indicate a preference for equatorial dispensation of the TMS group, thus disfavoring the ring-flipped conformer.

Of note, a few activated arenes (e.g., methoxy-bearing and CF₃-containing arenes) were evaluated on both the pyrrolidine and piperidine heterocycles (see SI for details) but complications arising from competing aryl lithiation were encountered.

In summary, α, α, α' -trisubstituted pyrrolidines and piperidines are obtainable in good to excellent diastereoselectivity by directed lithiation/alkylation. The relative configuration of the major diastereomer has the α' -substituent *trans* to the α -aryl group in the pyrrolidines but *cis* to the α -aryl group in the piperidines. The current strategy sets the stage for the synthesis of enantioenriched trisubstituted pyrrolidines and piperidines since no racemization is anticipated during α' -lithiation/alkylation of the α, α -disubstituted enantioenriched precursors.

Acknowledgments

This work was funded by Susquehanna University through a Mini-grant from the University Committee for Faculty Scholarship and the Chemistry Department. Professors Wade Johnson and Bill Dougherty are thanked for initial help with logistics and supplies. Scott Morris is acknowledged for help with some NOESY experiments.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.11. 031.

References and notes

- 1. Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679.
- Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198.
 He, S.; Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 2000, 122, 190.
- Mitchell, E. A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B. U. W. Chem. Eur. J. 2012, 18, 10092.
- Yan, L.-H.; Dagorn, F.; Gravel, E.; Seon-Meniel, B.; Poupon, E. Tetrahedron 2012, 68, 6276.
- Wong, H.; Garnier-Amblard, E. C.; Liebeskind, L. S. J. Am. Chem. Soc. 2011, 133, 7517.
- 7. Wilkinson, T. J.; Stehle, N. W.; Beak, P. Org. Lett. 2000, 2, 155.
- Tsukano, C.; Zhao, L.; Takemoto, Y.; Hirama, M. Eur. J. Org. Chem. 2010, 4198.
 Takahata, H.; Saito, Y.; Ichinose, M. Org. Biomol. Chem. 2006, 4, 1587.
- Takahata, H.; Saito, Y.; Ichinose, M. Org. Biomol. Chem. 2006, 4, 1587.
 Passarella, D.; Riva, S.; Grieco, G.; Cavallo, F.; Checa, B.; Arioli, F.; Riva, E.; Comi,
- D.; Danieli, B. *Tetrahedron: Asymmetry* **2009**, *20*, 192. **11**. Kavala, M.; Mathia, F.; Kozisek, J.; Szolcsanyi, P. *J. Nat. Prod.* **2011**, *74*, 803.
- 12. Guerrero, C. A.: Sorensen, E. J. Org. Lett. 2011, 13, 5164–5167.
- 13. Gouault, N.; Le Roch, M.; Pinto, G. D. C.; David, M. Org. Biomol. Chem. 2012, 10, 5541.
- Fellah, M.; Santarem, M.; Lhommet, G.; Mouries-Mansuy, V. J. Org. Chem. 2010, 75, 7803.
- 15. Bosque, I.; Gonzalez-Gomez, J. C.; Foubelo, F.; Yus, M. J. Org. Chem. 2012, 77, 780.
- 16. Beng, T. K.; Gawley, R. E. Heterocycles 2012, 84, 697–718.
- 17. Lapointe, G.; Schenk, K.; Renaud, P. *Chem. Eur. J.* **2011**, *17*, 3207.
- 18. Draper, J. A.; Britton, R. Org. Lett. 2010, 12, 4034.
- 19. Beak, P.; Lee, W. K. Tetrahedron Lett. 1989, 30, 119.
- 20. Stead, D.; O'Brien, P.; Sanderson, A. Org. Lett. 2008, 10, 1409.
- Sheikh, N. S.; Leonori, D.; Barker, G.; Firth, J. D.; Campos, K. R.; Meijer, A. J. H. M.; O'Brien, P.; Coldham, I. J. Am. Chem. Soc. 2012, 134, 5300.
- Xiao, D.; Lavey, B. J.; Palani, A.; Wang, C.; Aslanian, R. G.; Kozlowski, J. A.; Shih, N.-Y.; McPhail, A. T.; Randolph, G. P.; Lachowicz, J. E.; Duffy, R. A. *Tetrahedron Lett.* 2005, 46, 7653.
- 23. Coldham, I.; Leonori, D. Org. Lett. 2008, 10, 3923.
- 24. Wu, S.; Lee, S.; Beak, P. J. Am. Chem. Soc. 1996, 118, 715.
- 25. Beak, P.; Lee, W. K. J. Org. Chem. 1990, 55, 2578.
- 26. Beak, P.; Lee, W. K. J. Org. Chem. 1993, 58, 1109.
- 27. Beng, T. K.; Woo, J. S.; Gawley, R. E. J. Am. Chem. Soc. 2012, 134, 14764.
- Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.; Chen, C.-Y. J. Am. Chem. Soc. 2006, 128, 3538.
 Reddy L. R. Prashad M. Chem. Commun. 2010, 222.
- Reddy, L. R.; Prashad, M. *Chem. Commun.* **2010**, 222.
 Barker, G.; McGrath, J. L.; Klapars, A.; Stead, D.; Zhou, G.; Campos, K. R.; O'Brien, P. J. Org. *Chem.* **2011**, *76*, 5936.
- 31. Beng, T. K.; Gawley, R. E. Org. Lett. 2011, 13, 394.
- 32. Barbe, G.; Fiset, D.; Charette, A. B. J. Org. Chem. 2011, 76, 5354.
- 33. Jarvis, S. B. D.; Charette, A. B. Org. Lett. 2011, 13, 3830.
- 34. Amat, M.; Canto, M.; Llor, N.; Bosch, J. Chem. Commun. 2002, 526.
- Stead, D.; Carbone, G.; O'Brien, P.; Campos, K. R.; Coldham, I.; Sanderson, A. J. Am. Chem. Soc. 2010, 132, 7260.
- 36. Millet, A.; Larini, P.; Clot, E.; Baudoin, O. Chem. Sci. 2013, 4, 2241.
- 37. Gawley, R. E. Tetrahedron Lett. 1999, 40, 4297.
- Cochrane, E. J.; Leonori, D.; Hassall, L. A.; Coldham, I. Chem. Commun. 2014, 9910.
- 39. Barker, G.; O'Brien, P.; Campos, K. R. Org. Lett. 2010, 12, 4176.
- 40. Typical Procedure (Synthesis of 15): To an oven-dried, septum-capped round bottom flask equipped with a stir bar, was added freshly distilled TMEDA (1.0 mL, 0.6 mmol, 1.2 equiv) and Et₂O (7.0 mL) under argon. The mixture was cooled to -80 °C and a solution of s-BuLi in cyclohexane (0.6 mL, 1.0 M, 1.2 equiv) was added via syringe. A precooled solution of pyrrolidine 6 (1.0 equiv) in Et₂O (3.0 mL) was added to the flask containing the TMEDA/s-BuLi mixture. After 1 h at this temperature, the mixture was trapped with Me₃SiCl (180 mg, 1.5 mmol, 3 equiv). After 4 h, MeOH was added and the mixture was stirred for 5 min. After warming to room temperature, 10% H₃PO₄ was added. Layers were separated and the aqueous layer was extracted with

4

ARTICLE IN PRESS

T. K. Beng, N. Fox/Tetrahedron Letters xxx (2014) xxx-xxx

Et₂O. The combined organic layers were dried over MgSO₄ and evaporated to obtain the crude product as an oil. Purification by flash chromatography on silica eluting with hexane–EtOAc (95:5) afforded 167 mg of **21** as an oil in 84% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.03–7.46 (m, 7H), 3.73 (dd, 1H), 2.72 (m,

2H), 2.15 (m, 2H), 1.90 (s, 3H), 0.80 (s, 9H), 0.22 (s, 9H); ^{13}C NMR (100 MHz, CDCl₃) δ 153.9, 143.0, 134.7, 130.3, 129.4, 127.7, 125.8, 124.8, 124.7, 124.2, 78.1, 66.5, 49.8, 42.5, 28.6, 27.6, 1.2. HRMS calcd for C $_{23}\text{H}_{33}\text{NO}_2\text{Si}$ 383.2281, found 383.2273.