Bioorganic & Medicinal Chemistry Letters xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Stimulation of cortical bone formation with thienopyrimidine based inhibitors of Notum Pectinacetylesterase

James E. Tarver Jr.^{a,*}, Praveen K. Pabba^a, Joseph Barbosa^a, Qiang Han^a, Michael W. Gardyan^a, Robert Brommage^b, Andrea Y. Thompson^b, James M. Schmidt^b, Alan G. E. Wilson^b, Wei He^a, Victoria K. Lombardo^a, Kenneth G. Carson^a

^a Lexicon Pharmaceuticals, 350 Carter Road, Princeton, NJ 08540, United States ^b Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, United States

ARTICLE INFO

Article history: Received 13 December 2015 Revised 6 February 2016 Accepted 9 February 2016 Available online xxxx

Keywords: Notum Pectinacetylesterase Osteoporosis Thienopyrimidine SAR Femur cortical bone thickness

ABSTRACT

A group of small molecule thienopyrimidine inhibitors of Notum Pectinacetylesterase are described. We explored both 2-((5,6-thieno[2,3-d]pyrimidin-4-yl)thio)acetic acids and 2-((6,7-thieno[3,2-d]pyrimidin-4-yl)thio)acetic acids. In both series, highly potent, orally active Notum Pectinacetylesterase inhibitors were identified.

© 2016 Elsevier Ltd. All rights reserved.

Bone is a dynamic tissue continuously remodeled during life with bone mass depending on the coordinated activities of boneforming osteoblasts and bone-resorbing osteoclasts. An imbalance in bone turnover between these anabolic and catabolic activities results in postmenopausal, aging-related and glucocorticoidinduced osteoporosis. Besides good nutrition, including adequate calcium and vitamin D intakes, current osteoporosis treatments include estrogens, bisphosphonates, selective estrogen receptor modulators (raloxifene and bazedoxifene) and the anti-RANKL antibody denosumab. These anti-resorptive agents all minimize additional bone loss by inhibiting osteoclastic bone resorption. Teriparatide, the amino-terminal fragment of parathyroid hormone given by daily subcutaneous injections, is the sole anabolic osteoporosis drug stimulating osteoblasts to produce new bone. Potential osteoporosis drugs under late stage clinical development include the anti-resorptive odanacatib inhibiting cathepsin K, the teriparatide analog abaloparatide, and anabolic anti-sclerostin antibodies. Because of the paucity of available anabolic drugs for osteoporosis treatment, there is an urgent need to develop orally-active small molecule therapies to treat this disease that are nontoxic, cost-effective, and easy to administer.¹⁻

The WNT signaling pathway, involving 19 secreted WNTs, 10 Frizzled membrane receptors, Lrp4/5/6 coreceptors, plus secreted Dickkopf (DKK) and Secreted Frizzled-Related Protein (SFRP) inhibitors, plays a key role transducing physical activity to new bone formation^{5,6} and is a key pathway for drug development.^{7,8} Lexicon's gene knockout mouse phenotyping campaign⁹ identified the gene Notum Pectinacetylesterase as an important contributor to cortical bone mass and follow-up studies, subsequently confirmed by two independent laboratories,^{10,11} demonstrated that NOTUM is a WNT-inactivating lipase that removes the palmitoleate essential for binding to Frizzled receptors. Inhibiting NOTUM stimulates bone formation on all endocortical (marrow-facing) bone surfaces.^{12–14}

Herein we report a group of small molecules, namely thienopyrimidines, as potent inhibitors of Notum Pectinacetylesterase. IC_{50} values were determined by incubation of conditioned media containing mouse or human NOTUM with trisodium 8-octanoyloxypyrene-l,3,6-trisulfonate (OPTS), a water-soluble enzyme substrate for fluorimetric assays of esterases and lipases. Compound EC₅₀ values were determined using a cell-based TCF/LEF CellSensor[®] assay as previously described.^{12–14}

We used the OPTS assay as a primary screen and highly potent compounds in the OPTS assay were selected for additional profiling in mouse and human cellular assays. It was generally noticed that high potency in the OPTS assay ($IC_{50} < 50$ nM) was required to show

^{*} Corresponding author. Tel.: +1 215 898 4193. E-mail address: james.tarver2@gmail.com (J.E. Tarver).

http://dx.doi.org/10.1016/j.bmcl.2016.02.021 0960-894X/© 2016 Elsevier Ltd. All rights reserved.

J. E. Tarver Jr. et al. / Bioorg. Med. Chem. Lett. xxx (2016) xxx-xxx

Figure 1. Preliminary SAR triage.

potency in cells. Once the OPTS assay potencies reached singledigit nanomolar range, we used mouse and human cellular assay EC_{50} values to further differentiate compounds, referred to as mEC₅₀ and hEC₅₀ respectively. Based on internal high throughput screening, we identified 2-((5,6-dimethylthieno[2,3-*d*]pyrimidin-4-yl)thio)acetic acid **1** as a small molecule lead (Fig. 1). Compound **1** had OPTS IC₅₀ of 2 nM, mouse EC₅₀ of 1020 nM and human EC₅₀ of 570 nM, which offered a good starting point for our SAR work. From the lead compound **1**, variations at different positions were explored (Fig. 1). The general observation was that replacement of the carboxylic acid with esters, heterocycles, sulfonamides and carboxamides was tolerated. No substitutions on the carbon at the 9-position were tolerated. Replacement of the thienopyrimidine ring with other heterocycles generally gave much lower potency.

The syntheses of our derivatives were carried out following the general synthetic methods shown in Scheme 1. The appropriate commercially available or prepared¹² thienopyrimidine-4-ols **2** were treated with phosphorus oxychloride to generate the 4-chlorothienopyrimidines **3**. Subsequent treatment with methyl 2-mercaptoacetate gave esters **4**. Saponification of the esters with aqueous base yielded carboxylic acids **5**, which could be further functionalized to amides, heterocycles, sulfonamides, carboxam-

ides or ketoacids **6**. Similarly, commercially available or prepared¹² thienopyrimidine-4-ols **7** or other heterocyclic pyrimidines were converted to thioacetic acids **9** or other corresponding acids.

Our SAR work began by exploring point substitutions at each position. A logical step was to see if improvements could be made to the 5,6-di-methyl substitution. Most of these compounds showed significant losses in potency. As stated above, 2-((5,6dimethylthieno[2,3-d]pyrimidin-4-yl)thio)acetic acid **1** had an OPTS IC₅₀ of 2 nM . The demethylated analog, compound 10, showed a reduction in potency, OPTS IC₅₀ to 2.8 μ M. Mono-methyl compounds substituted at the 5- or 6-position, 11 and 12, had IC₅₀'s of 92 nM and 152 nM respectively, demonstrating a preference for bis-substitution on the thiophene ring. Expanding dialkyl substitution by incorporating a ring in compound 16 led to a noticeable loss of activity but suggested that larger substitutions in this region of the molecule could be tolerated. Replacing the thiophene with a thiazole led to dramatic loss of activity, compound **13** exhibited a micromolar IC₅₀. Phenyl, pyrrole and pyrazole, compounds 15, 17, and 18, also proved poor surrogates for the thiophene, registering significant losses in potency. Transposing the thiophene ring in compound 14, however, had similar activity to its constitutional isomers, compounds 11 and 12.

A survey of the carboxyl terminus based on converting acid **1** to esters, amides or other heterocycles is summarized in Table 2. These modifications generally led to modest losses in potency. In the case of the amide derivatives, we found that they exhibited poor metabolic stability and pharmacokinetic issues. In contrast, we observed that the parent carboxylic acids generally had good ADME profiles, and so we chose to focus our efforts on thioacetic acids.

Further SAR of 2-((5,6-thieno[2,3-*d*]pyrimidin-4-yl)thio)acetic acids is summarized in Table 3. The 5-ethyl-6-methyl compound **29** had a hEC₅₀ of 22 μ M. But shifting the positions, 5-methyl-6-ethyl compound **30** made a major impact on potency, with a hEC₅₀ of 835 nM. Retaining the 5-methyl and changing the 6-position to bromo (**31**) further improved hEC₅₀ potency to 144 nM,

Scheme 1. Reagents and conditions: (a) POCl₃; (b) HSCH₂CO₂Me, Et₃N; (c) NaOH, THF/H₂O; (d) HATU, R¹NHR².

Please cite this article in press as: Tarver Jr., J. E.; et al. Bioorg. Med. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.bmcl.2016.02.021

Table 1 SAR on thieno[2,3-d]pyrimidin-4-yl)thio)acetic acid ring for Notum Pectinacetylesterase

D OH

while 5-bromo-6-methyl isomer **32** had a hEC_{50} of 208 nM. Compound **32** suggested that electronics were important for increasing activity compared with the hydrophobic nature of bromine, as both

Table 2

SAR of the carboxyl group for thieno[2,3-d]pyrimidin-4-yl)thio)acetic acid

Table 3

Compounds	R ⁵	R ⁶	mEC ₅₀ (nM)	hEC ₅₀ (nM)
1	Н	Н	1020	570
29	Et	Me	65,394	21,928
30	Me	Et	2637	835
31	Me	Br	485	144
32	Br	Me	375	208
33	Me	Cl	2561	885
34	Cl	Me	409	107
35	Cl	Et	1442	393
36	Cl	<i>i</i> -Pr	828	477
37	Cl	c-Pr	1006	250
38	Cl	Pr	342	88

these analogs were more potent than the dialkyl congeners. 5-Methyl-6-chloro compound **33** decreased the potency to 885 nM, while 5-chloro-6-methyl compound **34** improved hEC₅₀ potency to 107 nM. We decided next to fix the 5-chloro while varying the 6-alkyl group. This effort led to a 6-ethyl and 6-isopropyl compounds **35** and **36** that increased potency to 393 nM and 477 nM respectively. However, cyclopropane **37** slightly improved potency to 250 nM and *n*-propyl compound **38** continued the trend with hEC₅₀ of 88 nM.

Although many early modifications of the heterocyclic core structure were not fruitful (as in Table 1), one of the most tolerated core changes was the transposition of the thiophene ring, such as compound **14**. Our next approach was to explore the change in

Compounds	R	OPTS IC50 (nM)	hEC ₅₀ (nM)	Compounds	R	OPTS IC50 (nM)	hEC ₅₀ (nM)
1	-OH	2	570				
19	-NHCN	2	400	25	NH NH	10	280
20	-NHOH	2	556				
21	-OMe	2	445	26	HN-O	5	249
22	-NHMe	27	789	27		2	168
23	-NH ₂	2	857				
24	-NHSO ₂ Me	11	1462	28	HN O	6	211

3

Table 4

Table 5

4

2-((6,7-thieno[3,2-d]pyrimidin-4-yl)thio)acetic SAR of acids for Notum Pectinacetylesterase

Compounds	R ⁶	R ⁷	mEC ₅₀ (nM)	hEC_{50} (nM)
39	Me	Cl	5508	1965
40	Cl	Me	1444	435
41	Br	Me	1360	417
42	Me	Me	4468	881
43	Me	c-Pr	408	115
44	Cl	c-Pr	55	21
45	CF ₃	c-Pr	43	12

Tuble o				
Mouse	pharmacokinetic da	ta for com	pounds 34	and

C _{max} (μM) at	AUC (µM * h)	Clearance	V _d (L/	%F
10 mg/kg po	at 10 mg/kg po	(mL/min/kg)	kg)	
157	515	1.22	0.16	95
129	1533	0.49	0.13	65
	C _{max} (μM) at 10 mg/kg po 157 129	C _{max} (μM) at 10 mg/kg po AUC (μM * h) at 10 mg/kg po 157 515 129 1533	C _{max} (μM) at 10 mg/kg po AUC (μM * h) at 10 mg/kg po Clearance (mL/min/kg) 157 515 1.22 129 1533 0.49	C _{max} (μM) at 10 mg/kg po AUC (μM * h) at 10 mg/kg po Clearance (mL/min/kg) V _d (L/ kg) 157 515 1.22 0.16 129 1533 0.49 0.13

Figure 2. Change in cortical bone thickness after treatment for 25 days.

thiophene orientation to give 2-((6,7-thieno[3,2-d]pyrimidin-4-yl) thio)acetic acids. In this manner, we hoped to preserve the geometry of the core and the molecular arrangement of substituents but somewhat alter the electronics of the system. The SAR is summarized in Table 4. With $R_6 = Me$, $R_7 = Cl$, compound **39** had a hEC₅₀ of close to $2 \mu M$. By exchanging the R₆ and R₇ substituents, the potency of **40** improved to 435 nM. Fixing R₇ as the methyl and changing R₆ to bromo gave hEC₅₀ of 417 nM, similar to chloro compound 40, and changing R₆ to methyl 42 reduced the potency to 881 nM. When we selected R_6 = Me and introduced cyclopropyl at R_7 in compound 43, we obtained a major boost in potency to 115 nM. Keeping R₇ as cyclopropyl, and modifying R₆ substitution produced compound **44** ($R_6 = Cl$), hEC₅₀ of 21 nM, and compound **45** ($R_6 = CF_3$), hEC₅₀ of 12 nM.

As shown in Table 5, when dosed orally to mice at 10 mg/kg, compounds **34** and **44** were both able to achieve high C_{max} and AUC while having low clearance and volume of distribution. Compound **34** was advanced into in vivo mouse models of bone growth and was found to increase cortical bone thickness.¹²

The in vivo effect of 2-((6-chloro-7-cyclopropylthieno[3.2-d] pyrimidin-4-yl)thio)acetic acid 44 was determined by treating F1 male hybrid (129xC57) mice for 25 days with the compound, starting at 8.7 weeks of age. The compound was administered by daily oral gavage (vehicle = 0.1% Tween 80 in water). Four groups of mice (N = 13) were used: control, 3 mg/kg compound, 10 mg/kg compound, and 30 mg/kg compound. Midshaft femur cortical thickness was measured by microCT (Scanco µCT40). As shown in Figure 2, an increase in cortical bone thickness was observed at all doses compared to control: 7% (*p* = 0.003) at 3 mg/kg; 10% (*p* < 0.001) at 10 mg/kg; and 13% (p < 0.001) at 30 mg/kg.

In summary, we have developed novel inhibitors of Notum Pectinacetylesterase showing in vivo efficacy in significantly increasing midshaft femur cortical bone thickness in mice and rats.

References and notes

- 1.
- Allen, J. G.; Fotsch, C.; Babij, P. *J. Med. Chem.* **2010**, 53, 4332. Guo, H.; Shao, H.; Yang, Z.; Xue, S.; Li, X.; Liu, Z.; He, X.; Jiang, J.; Zhang, Y.; Si, S.; 2 Li. Z. I. Med. Chem. 2010, 53, 1819.
- 3. Makras, P.; Delaroudis, S.; Anastasilakis, A. D. Metabolism 2015, 64, 1199.
- Cairoli, E.; Zhukouskaya, V. V.; Eller-Vainicher, C.; Chiodini, I. J. Endocrinol. 4. Invest. 2015, 38, 303.
- Baron, R.; Kneissel, M. Nat. Med. 2013, 19, 179. 5
- 6 Maupin, K. A.; Droscha, C. J.; Williams, B. O. Bone Res. 2013, 1, 27.
- 7 Kahn, M. Nat. Rev. Drug Disc. 2014, 13, 513.
- 8 Brommage, R. J. Cell. Biochem. 2015, 116, 2139.
- Brommage, R.; Liu, J.; Hansen, G. M.; Kirkpatrick, L. L.; Potter, D. G.; Sands, A. T.; 9 Zambrowicz, B.; Powell, D. R.; Vogel, P. Bone Res. 2014, 2, 14034.
- 10. Kakugawa, S.; Langton, P. F.; Zebisch, M.; Howell, S. A.; Chang, T. H.; Liu, Y.; Feizi, T.; Bineva, G.; O'Reilly, N.; Snijders, A. P.; Jones, E. Y.; Vincent, J. P. Nature 2015, 519, 187.
- 11. Zhang, X.; Cheong, S. M.; Amado, N. G.; Reis, A. H.; MacDonald, B. T.; Zebisch, M.; Jones, E. Y.; Abreu, J. G.; He, X. Dev. Cell 2015, 32, 719.
- 12. Barbosa, J.; Carson, K. G.; Gardyan, M. W.; He, W.; Lombardo, V.; Pabba, P.; Tarver, J. Jr., U.S. Patent 65, 200, 2012.
- Brommage, R.; Feng, X.; Hong, S.; Landes, G.; Liu, J.; Potter, D. G.; Powell, D. R. 13. U.S. Patent 302,346, 2013.
- 14. Han, Q.; Pabba, P. K.; Barbosa, J.; Mabon, R.; Healy, J. P.; Gardyan, M. W.; Terranova, K. M.; Brommage, R.; Thompson, A. Y.; Schmidt, J. M.; Wilson, A. G. E.; Xu, X.; Tarver, J. E., Jr.; Carson, K. G. Bioorg. Med. Chem. Lett. 2016, 26, 1184.

Please cite this article in press as: Tarver Jr., J. E.; et al. Bioorg. Med. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.bmcl.2016.02.021