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Alkyne-Assisted Approach to the Formal Synthesis of Antibiotic Macrolide
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Abstract: A stereoselective formal synthesis of a 16-membered an-
tibiotic macrolide (—)-A26771B is described starting from (R)-pro-
pylene oxide and (+)-diethyl tartrate. Key steps involved in this
alkyne-assisted convergent approach are alkyne zipper reaction,
Cadiot—Chodkiewicz coupling, and Yamaguchi macrolactoniza-
tion.
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(-)-A26771B (1, Figure 1) is a 16-membered macrocyclic
lactone, which was isolated from Pencillium turbatum in
1977.! This macrolide was found to be moderately active
against Gram-positive bacteria, mycoplasma, and fungi.
Structurally it possesses a y-oxo-d-acyloxy-o,B-unsaturat-
ed carboxyl functionality and two asymmetric centers.
The interesting structural features as well as biological ac-
tivity of (—)- A26771B have made it as an attractive target
to the synthetic community, and various strategies have
been developed either in enantiomeric or in racemic ap-
proach.? Our interest in alkyne-based chemistry towards
synthesis of macrolides® prompted us to attempt the syn-
thesis of (—)-A26771B. Described herein is a different ap-
proach to the formal synthesis of (-)-A26771B, featuring
a zipper reaction, and Cadiot—Chodkiewicz coupling fol-
lowed by Yamaguchi macrocyclization as the key steps.
This alkyne-based convergent route is envisaged to link
the two fragments 4 and 5 at C7-C8 bond towards 3,
which can be transformed into 2 via Yamaguchi macro-
lactonization (Scheme 1).
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Figure 1 Structure of (-)-A26771B (1)

As shown in Scheme 2, alkynol 4 was obtained from (R)-
propylene oxide, which was subjected to epoxide-opening
reaction with 1-hexyne and n-BuLi-HMPA in THF to
provide alcohol 6 in 84% yield. The internal alkyne func-
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tionality in 6 was shifted to the terminal position by the
treatment of 6 under alkyne zipper reaction conditions
(KH, 1,3-diamino propane) to obtain compound 4 in 81%
yield.*

Scheme 1 Retrosynthetic analysis of 1

a OH b
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Scheme 2 Reagents and conditions: (a) 1-hexyne, n-BuLi, THF,
HMPA, —40 °Cto 0 °C to 20 °C, 8 h, 84%; (b) KH, 1,3-diaminopro-
pane, r.t., 6 h, 81%.

Next, the synthesis of the chiral C5 hydroxy subunit began
from (+)-diethyl tartrate (Scheme 3) which was trans-
formed into alcohol 7 in three steps using a literature pro-
cedure.’ Conversion of alcohol 7 into alkyne 9 took place
smoothly via Parikh—Doering oxidation conditions
(SO;-py, DMSO, Et;N)® to aldehyde and subsequent treat-
ment with Ohira-Bestmann reagent 8 under K,CO,/
MeOH.” The terminal alkyne functionality in 9 was then
transformed into alkynyl bromide 5 by the reaction with
NBS/AgNO; in acetone.®

With the required fragments 4 and 5 in hand, our antici-
pated plan was to use Cadiot—Chodkiewicz coupling reac-
tion to couple these two units.’ Thus, the reaction of
alkyne 4 with alkynyl bromide 5 in the presence of CuCl
(2 mol%), NH,OHxHCI, 30% n-BuNH, in H,O provided
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Scheme 3 Reagents and conditions: (a) (i) SO5-py, DMSO, Et;N, CH,Cl,, 0 °C, 1 h; (ii) 8, K,CO3;, MeOH, r.t., 12 h, 89%; (b) NBS, AgNO;,
acetone, 0 °C to r.t., 30 min, 93%; (c) 4, n-BuNH,, NH,OH-HCI, CuCl, 0 °C to r.t., 1 h, 78%; (d) H,, 10% Pd/C, EtOH, r.t., 36 h, 84%; (e)
TEMPO, BAIB, PPh;=CHCO,Et, CH,Cl,, r.t. to 0 °C to r.t., 3 h, 78%; (f) LiOH, THF-H,O (1:1), r.t., 12 h, 99%; (g) 2,4,6-trichlorobenzoyl

chloride, Et;N, 0 °C, 2 h, DMAP, toluene, 100 °C, 12 h, 87%.

the coupled product 10 in 78% yield. Diyne 10 underwent
clean saturation under standard hydrogenation conditions
(H,, 10% Pd/C in EtOH) to afford diol 3 in 84% yield.

Selective oxidation of primary hydroxyl group of 3 to
aldehyde (BAIB/TEMPO) and subsequent one-pot Wittig
olefination  with a  stable two-carbon ylide
(Ph,P=CHCO,Et) provided the a,B-unsaturated ester 11
in 78% yield."” The ester was then hydrolyzed under
LiOH conditions, and the resulting hydroxy acid 12 was
subjected to Yamaguchi macrolactonization'! to get the
desired macrolactone 2 in 87% yield (Scheme 3).'> This
macrolactone has previously been used to accomplish the
synthesis of (-)-A26771B.%¢

In conclusion, this convergent formal synthesis of (-)-
A26771B is achieved in seven steps in the longest linear
sequence from the (R)-propylene oxide with 29.9% over-
all yield. This approach relies on the use of two alkyne
fragments, which were easily obtained from (R)-propy-
lene oxide and (+)-diethyl] tartrate. The present route pro-
vides a useful showcase of alkyne-assisted strategy
through zipper reaction, Cadiot—Chodkiewicz coupling,
and Yamaguchi macrolactonization in the synthesis of
macrolides.
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Spectral Data of Representative New Compounds
Compound 9: [a]p?* —24.8 (¢ 1.0, CHCLy). IR (KBr): Vypu =
2989, 2933, 2864, 2121, 1726, 1635, 1454, 1376, 1241,
1214, 1086, 852, 740, 398 cm™'. "H NMR (300 MHz,
CDCly): 8 =7.30-7.27 (m, 5 H), 4.59 (s, 2 H), 4.49 (dd,
J=2.2,6.8Hz,1H),4.25-4.18 (m, 1 H), 3.60 (d, J = 4.5 Hz,
2H),2.44 (d,J=22Hz, 1 H), 1.48 (s, 3 H), 1.41 (s, 3 H).
BC NMR (75 MHz, CDCl,): § = 137.5, 128.3, 127.7, 127.6,
110.8, 80.8, 80.6, 74.6, 73.5, 68.9, 67.1, 26.8, 26.0. ESI-
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HRMS: m/z caled for C sH 3OsNa [M + Na]*: 269.1153;
found: 269.1146.

Compound 5: [a]p** —43.0 (¢ 1.0, CHCL,). IR (KBr): v, =
2988,2926,2214, 1722, 1626, 1376, 1217, 1081, 1022, 851,
742,700 cm™'. 'TH NMR (300 MHz, CDCl,): § = 7.34-7.27
(m, 5 H), 4.59 (s,2 H), 4.53 (d, J=7.5 Hz, 1 H), 4.35-4.18
(m, 1 H), 3.59 (d, J = 4.5 Hz, 2 H), 1.48 (s, 3 H), 1.41 (s, 3
H). '3C NMR (75 MHz, CDCl,): & = 137.6, 128.3, 127.6,
127.5, 110.8, 80.4, 76.9, 73.4, 68.9, 68.0, 47.1, 26.8, 26.0.
ESI-MS: m/z = 347 [M + Na*.

Compound 10: [a]p?* =59.9 (¢ 1.0, CHCL,). IR (KBr): v, =
3426, 2932, 2861, 2254, 1718, 1633, 1454, 1375, 1219,
1087, 1035, 851, 741, 699 cm™'. '"H NMR (300 MHz,
CDCly): 6 = 7.35-7.26 (m, 5 H), 4.57 (s, 2 H), 4.55 (d,
J=6.8 Hz, 1 H), 4.25-4.18 (m, 1 H), 3.80-3.71 (m, 1 H),
3.58(d,J=4.5Hz,2H),2.29 (t,J = 6.8 Hz,2 H), 1.60-1.36
(m, 8 H), 1.47 (s, 3 H), 1.40 (s, 3 H), 1.17 (d, J = 6.0 Hz, 3
H). °C NMR (75 MHz, CDCL,): § = 137.6, 128.2, 127.5,
127.4,110.7, 81.9, 80.5, 73.3, 72.0, 71.3, 68.9, 67.6, 67.6,
64.3, 38.8, 28.5,27.8, 26.7, 25.9, 24.9, 23.2, 18.9. ESI-MS:
m/z =407 [M + Nal*.

Compound 3: [a]p?* —20.7 (¢ 1.0, CHCL,). IR (KBr): v, =
3413, 2926, 2856, 1631, 1455, 1374, 1220, 1049, 851, 763
cm!. 'TH NMR (300 MHz, CDCI,): § = 3.85-3.80 (m, 1 H),
3.74 (dd, J = 3.0, 12.0 Hz, 2 H), 3.68-3.63 (m, 1 H), 3.54
(dd, J=4.0,12.0 Hz, 1 H),1.56-1.25 (m, 18 H), 1.38 (s, 3
H), 1.37 (s, 3 H), 1.17 (d, J = 6.0 Hz, 3 H). *C NMR (75
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MHz, CDCl,): § = 108.4, 81.5, 76.9, 68.0, 62.0, 39.2, 33.0,
29.55,29.51,29.4,29.3,27.2,26.9, 25.8, 25.6, 23.3. ESI-
HRMS: m/z calcd for C;;H;,0,Na [M + Na]*: 325.2354;
found: 325.2363.

Compound 11: [a],?° —-10.3 (¢ 1.6, CHCL,). IR (KBr): v, =
3452, 2938, 2855, 1722, 1655, 1373, 1300, 1260, 1169,
1042, 771, 555 cm™.. 'H NMR (300 MHz, CDCl,): § = 6.83
(dd, J=5.0, 15.0 Hz, 1 H), 6.08 (d, J = 15.0 Hz, 1 H), 4.21
(q,J=7.0Hz,2H),4.11 (t,J =7.0 Hz, 1 H), 3.80-3.73 (m,
1 H),3.69 (q, /=7.0Hz, 1 H), 1.61-1.54 (m, 2 H), 1.51-
1.22 (m, 16 H), 1.42 (s, 3H), 1.40 (s, 3H), 1.31 (t, J=7.0
Hz, 3 H), 1.18 (d, J = 6.0 Hz, 3 H). *C NMR (75 MHz,
CDClLy): 6 =166.0, 144.1, 122.5, 109.2, 80.5, 80.1, 68.0,
60.5,39.2,32.0,29.5,29.4,29.3,27.2,26.5,25.8,25.6,23 .4,
14.1. ESI-HRMS: m/z calcd for C,;H;30sNa [M + Na]*:
393.2616; found: 393.2627.

Compound 2: [a]p* +5.6 (¢ 0.78, CHCl,). IR (KBr): v,,,, =
2928, 2856, 1715, 1458, 1374, 1257, 1177, 1055, 987, 862
cm™'. "H NMR (300 MHz, CDCl,): & = 6.88 (dd, J = 7.0,
16.0Hz, 1 H), 6.12 (d, J = 16.0 Hz, 1 H), 5.07-4.99 (m, 1 H),
4.13 (t,J=7.0Hz, 1 H), 3.78-3.72 (m, 1 H), 1.86-1.77 (m,
1 H), 1.69-1.58 (m, 2 H), 1.53-1.41 (m, 2 H), 1.43 (s, 3 H),
1.42 (s,3 H), 1.35-1.18 (m, 13 H), 1.26 (d, J = 6.0 Hz, 3 H).
BC NMR (75 MHz, CDCl,): § = 165.5, 144.3, 123.6, 109.2,
80.7,80.0,71.1,35.2,31.0,27.8,27.2,27.1,26.9, 26.5, 26 .4,
24.7,23.3, 20.5. ESI-HRMS: m/z calcd for C,4H;,0,Na

[M + Na]*: 347.2198; found: 347.2206.
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