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Characterization of the reactivity of luciferin boronate - a probe for inflammatory
oxidants with improved stability
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Abstract

Boronate derivatives of luciferin, containing oxmactivated self-immolative moieties,
recently have been developed for bioluminescergatieh of hydrogen peroxide in animal
models. Here, we report the synthesis and charzatien of luciferin boronic acid pinacol
ester (LBE) as a probe for detection of hydrogemoxide, hypochlorous acid, and
peroxynitrite, with improved stability and resportsee. HPLC analyses showed that LBE
quickly hydrolyzes in phosphate buffer to lucifeboronic acid (LBA). Hydrogen peroxide
oxidizes LBA slowly, with the formation of lucifesa substrate, luciferin (Luc-OH), as the
only product. Hypochlorite also oxidizes LBA to iigin, but the subsequent reaction of
Luc-OH with hypochlorite gives a chlorinated lucife Luc-OH-CI, which has a higher
fluorescence quantum yield than luciferin at pH @t is also a substrate for luciferase
(Takakura H, et. all. ChemBioChem 2012;13:1424mifair to other boronate probes, LBA is
oxidized by peroxynitrite in two pathways. Luc-OHBl the product of the major pathway,
common for all the oxidants tested, whereas theflummescent nitrated derivative, Luc-NO
is formed in the minor pathway, specific for peroisite. Formation of luciferirradical
intermediate in the minor pathway has been confirrbg EPR spin trapping and mass
spectrometric analyses of the spin adducts. Welaedacthat LBE shows potential as an
improved probe for the detection of inflammatoryidants in biological settings.
Complementation of the bioluminescence measuremégtsHPLC or LC-MS-based
identification of chlorinated and nitrated lucifef$) will help identify the oxidants detected.
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Abbreviations: BLI, bioluminescent imaging; CAT, catalase; CBAQumarin-7-boronic
acid; dppf, 1,1’-ferrocenediyl-bis(diphenylphospéin DMSO, dimethyl sulfoxide; DPBS,
Dulbecco's phosphate-buffered saline; dtpa, diettgtriaminepentaacetic acid; DMEM,
Dulbecco's Modified Eagle Medium; EPR, electron apaagnetic resonance; ESI,
electrospray ionization; HO-Bz-OH, 4-hydroxybenzalcohol; HPLC, high performance
liquid chromatography; Hz, hertz; IFN-interferony; INOS, inducible nitric oxide synthase;
iSoAmONO, isoamyl! nitrite; L-NAME, L-N-nitroarginine methyl ester; LBA, luciferin 6'-
boronic acid; LBE, luciferin 6’-boronic acid pindcester; LC-MS, liquid chromatography-
mass spectrometry; LPS, lipopolysaccharide; Lug-B£L-1-derived phenyl radical; Luc-
Bz-H, luciferin-6'-benzyl ether; Luc-Bz-NOQ luciferin-6'p-nitrobenzyl ether; Luc-Bz-OH,
luciferin-6'p-hydroxybenzyl ether; Luc-N£) 6’-nitroluciferin; Luc-OH, D-luciferin or firefly
luciferin; Luc-OH-CI, 7’-chloro-D-luciferin; Luc-OFNO,, 7’-nitro-D-luciferin; MeCN,
acetonitrile; MNP, 2-methyl-2-nitrosopropane; MRNultiple reaction monitoring; MS,
mass spectrometry; NMR, nuclear magnetic resonaf¢QO, peroxynitrite; PCL-1,
peroxy-caged luciferin; PEG, polyethylene glycaI®R, phorbol 12-myristate 13-acetate; 2-
PrOH, 2-propanol; QMpara-quinone methide; RNS, reactive nitrogen speci€SReactive

oxygen species; SIM, single ion monitoring; TFAf|Woroacetic acid
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1. Introduction

Understanding the (patho)physiological role of t&c oxygen species/reactive
nitrogen species (ROS/RNS) requires the availgbitit probes for their detection and
(semi)guantitative analyses in tirevitro andin vivo settings. Bioluminescent imaging (BLI)
is commonly used for sensitive monitoring of vagdoiomolecular processes in cells and
living animals [1-7]. The popularity of bioluminesmtce assays in biomedical research has
resulted in significant progress in the synthedesew luminescent analogs of luciferin [8]
and luminogenic probes based on the firefly luaifgil.uc-OH) skeleton [9]. Among the
caged probes, oxidant-sensitive luciferin derivegilnave been reported for the detection of
ROS/RNS in thein vitro and in vivo systems [10-15]. One of the first luciferin-based
bioluminogenic probes designed to image hydrogenxide (HO,) in living systems was
peroxy-caged luciferin (PCL-1) (Scheme 1) [10]. Hyalroxyl group of Luc-OH is alkylated
by the boronobenzyl moiety in PCL-1, which prevemgsognition of the probe by luciferase.
H,0, reacts slowly with PCL-1 (k = 1.2 Ms*) [11], releasing Luc-OH ang@-quinone
methide (QM) (Scheme 1) [12]. Release of Luc-OHBCL-1 is followed by its oxidation
to oxyluciferin and the appearance of the bioluretemce signal in luciferase-transfected

cells.
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Scheme 1.Reaction of the PCL-1 probe with,®, HOCI, and ONOQ leading to the
luminogenic substrate for luciferase (Luc-OH) attex release of QM, and to oxidant-specific
products [10-12].

10re
O,N



74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
08
99

100

101

102

103

104

105

106

107

Recently, we have characterized in detail the macintermediates and stable
products formed in the reaction between PCL-1 prabe selected inflammatory oxidants
(H20,, hypochlorous acid [HOCI], peroxynitrite [ONO[P[12]. Similar to previously studied
boronates [16,19,21,22], the reaction of PCL-1 v@tHOO proceedwia two pathways. The
major pathway is the same as faiQd (Scheme 1) and involves the formation of the pheno
intermediate (Luc-Bz-OH), which after the elimimatiof QM yields Luc-OH as the stable
end-product. The minor pathway produces nitratedl r&luced products, Luc-Bz-N@nd
Luc-Bz-H, respectively. [12]. We have demonstratemt ONOO-specific product, Luc-Bz-
NO,, is formed by activated macrophages incubatetierptesence of the PCL-1 probe [12],
which indicates that the PCL-1 probe can be apple®dpecifically detect and identify
peroxynitrite in biological systems.

Hypochlorite is another oxidant that converts PClo-1uc-OH [11,12]. Previously, it
was shown that HOCI oxidizes boronate probes t@pecific phenolic products [16, 17, 26].
However, the subsequent reaction of the phenobdymt with HOCI yields chlorophenol(s),
which can serve as a footprint for HOCI [16,17]aR#on of PCL-1 with HOCI leads to the
formation of Luc-OH, which may undergo subsequemnibrination to yield Luc-OH-CI
(Scheme 1) [12]. Therefore, Luc-OH-CI detection,aisidition to bioluminescenca vivo,
may help identify HOCI as an oxidant responsibletiie bioluminescence signal.

During the characterization of the PCL-1 probe, wentified some potential
disadvantages of its use for the detection of oxX&lan chemical, enzymatic, and/or biological
systems, as followsi)(During the uncaging of PCL-1 and other lucifeli@sed redox probes
QM [10-12], quinoneimine [13], or benzoylhydrazifib] are released. When probing the
oxidant production on the scale of seconds or reguhe self-immolation of those moieties
may control the dynamics of the formation of thellominescent signaliij QM, being an
electrophile, may potentially affect the cellulaadox status and, thus, affect the redox
environment being probediij The PCL-1 probe decomposes significantly durirggnged
incubation in a phosphate buffer (pH 7.4). Up t&506f PCL-1 was lost (with Luc-OH
detected as one of the products formed) over tHe inddubation in the buffer [12]. This may
translate into a high background bioluminescengead; limiting the probe’s sensitivity.

Here, we report the synthesis and characterizatianovel boronate-based luciferin
derivative, LBE, with the boronate moiety attacligectly at the site of the hydroxyl group
(Scheme 2). Unexpectedly, this probe shows sigmifly higher stability, as compared with
the PCL-1 probe, under the experimental conditiossd to detect cell-based oxidants. In

agueous solutions containing a phosphate buffer7(gl we observed fast hydrolysis of LBE
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to luciferin boronic acid (LBA). Compared with tiRCL-1 probe, oxidation of LBA leads to
instantaneous formation of luciferin, without arelad/ due to the requirement to eliminate the
self-immolative QM moiety in PCL-1. This provides apportunity for real-time monitoring
of the dynamics of oxidant formation using the LBobe, when coupled to fluorescence or
bioluminescence detection, which produces lowekdpaxind signal, as compared with the
PCL-1 probe.

N  N_,COOH N N_,COOH
I~<T v 0T
OH

O
(6]
LBE LBA

Scheme 2. Boronate-based luciferin derivatives

2. Experimental

2.1. General

2-Cyano-6-hydroxybenzothiazole 1)( 2-cyanobenzothiazole 6),  2-amino-6-nitro-
benzothiazole 12), N-phenyl-bis(trifluoromethanesulfonimide), trietylam, D-cysteine,
bis(pinacolato)diboron, [1,1’-bis(diphenylphosphyif@srocene]dichloropalladium(ll),
(Pd(dppf)C}), 1,1'-ferrocenediyl-bis(diphenylphosphine) (dppBirconium(lV) oxynitrate
hydrate, copper(ll) chloride, polyethylene glyc®EG), and isoamyl nitrite (iSOAMONO)
were purchased from Sigma-Aldrich (Poznan, Polasalvents used for syntheses were
reagent grade. The structures of the LBE probeadinslynthesized standards — Luc-H, Luc-
OH, Luc-NQ, Luc-OH-CI, Luc-OH-NQ — were confirmed by nuclear magnetic resonance
(NMR) spectroscopy and mass spectrometry (MS) Speorting Information). *H NMR
and*®C NMR spectra were recorded with a Bruker Avanc&[2B0 and Bruker Avance 400
spectrometers at 250 or 400 MHHY) and 100 MHz '¢C), respectively. Compounds were
dissolved in CDGJ or DMSOds and tetramethylsilane was added as internal meeréor'H
NMR and **C NMR spectra, respectively. Chemical shif§ &re reported in ppm, and
coupling constant J values in hertz (Hz). The etsgpray ionization (ESI)-MS spectra were
recorded on a Finnigan MAT 95 spectrometer (Thefisoher Scientific, USA).

The stock solutions of oxidants (HOCI, anddd) were prepared freshly before each
experiment and theirs concentrations were detedhibg spectrophotometry, using the
procedure described previously [12]. Peroxynitnwtes synthesized in reaction of 0.6 M nitrite
with 0.7 M hydrogen peroxide at pH 13 [12]. Exckk®, was removed by passage through a
column of MnQ and the solution was frozen at -20 °C. The licpner the frozen solid was

collected, aliquoted into 1.5 mL tubes and stored—-80 °C. The concentration of

5
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peroxynitrite was determined spectrally at 302 8802 = 1.7x1& M*cm?), after dilution in
0.1 M NaOH to ~10 mM concentration, immediatelyoprto each experiment.. When
studying LBE oxidation by HOCI, the LBE stock sadut (1 mM) in acetonitrile (MeCN) was
added to phosphate buffer (100 mM, pH 7.4) to kexaifinal concentration of 100 uM of the
probe. Dimethyl sulfoxide (DMSO) solvent was avaiddue to known rapid quenching of
HOCI by DMSO [12, 33]. For other experiments, st@chutions of LBE were prepared in
DMSO at 10 mM concentration, and this solution \added directly to the buffer to obtain
the desired concentration. High performance liguncbmatography (HPLC) analyses indicate
that LBE (pinacolate ester) undergoes fast hydmwlis the boronic acid form (LBA) upon
dilution in the aqueous phosphate buffer. Thergfalthough we added LBE to the reaction

mixtures, LBA is the species that reacted withdkiglants tested.

2.2. Synthesis
All synthetic pathways are shown in condensed fonmScheme 2. Detailed synthetic

procedures antH and**C NMR spectra are included in Supporting Informatio
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156 Scheme 3. Synthetic pathways used to obtain LBBeend Luc-OH, Luc-H, Luc-OH-CI,
157 Luc-OH-NG,, Luc-NG; standards. Reagents and conditions: (i): PhNCHE)., EtN, CHCE,
158 A, 3 h; (ii): Bping, Pd(dppf)Ci, dppf, KOAc, 1,4-dioxane, 100 °C, microwave irigdn,
159 Ar; (iii): D-Cys, KCOs;, MeOH/H0O, 30 min; (iv): SQCl,, DCM, 16 h; (v): ZrO(NQ@)2xH20,
160 acetone, 100 °C, microwave irradiation, Ar, 15 niii): CuCh, PEG, isoAMONO, MeCN,
161 65 °C, Ar, 3 h; (vii): NaCN, DMSO, 110 °C, Ar, 5 h.

162

163 2.3. HPLC analyses

164 HPLC analyses of all synthesized derivatives offéwin, namely LBE, LBA, Luc-H, Luc-
165 OH, Luc-NG, Luc-OH-CIl, and Luc-OH-N®@ were performed using UFLC Shimadzu
166 equipped with UV-Vis absorption and fluorescenctecters. Analyses were done using a
167 Kinetex Gg column (Phenomenex, 100 mm x 4.6 mm, #h§, which was equilibrated with
168 10% of MeCN in water, containing 0.1% trifluoroacedcid (TFA). The analytes were eluted

169 by an increase of MeCN concentration from 10-70%rd2 min at the flow rate of 1.5
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mL/min. The LBA probe and all products formed is iteaction with HO,, HOCI, and
ONOO™ was detected by monitoring the absorbance at 330Additionally, Luc-OH was
monitored using the fluorescence detector withekatation set at 330 nm and emission set
at 520 nm.

2.4. Fluorescence spectra analyses

Collection of fluorescence spectra and spectroscaparacterization were performed using a
FLS-920 spectrofluorometer (Edinburgh Instrumebts). The response of the LBA probe to

oxidants was investigated by fluorescence titratexperiments in aqueous solutions,
containing a 100 mM phosphate buffer (pH 7.4), M gtpa, and 20% MeCN. The probe

(100 uM) was incubated with J8,, HOCI, or ONOO for 24 h, 15 min, and 5 min,

respectively.

2.5. EPR spin-trapping experiments

The spin-trapping experiments were conducted utdi2-methyl-2-nitrosopropane (MNP) as
a spin trap using a Bruker EMX electron paramagnetsonance (EPR) spectrometer, as
described previously [12, 21]. Typically, the ERpestra were recorded immediately after a
bolus addition of peroxynitrite (200M) to mixtures consisting of LBE (200M) and MNP
(40 mM) in a phosphate buffer (100 mM, pH 7.4) eaminhg dtpa (10@M) and MeCN (5%).
The instrument parameters were as follows: scagerabb0 G; time constant, 1.28 ms; scan
time, 84 s; modulation amplitude, 1 G; modulaticegfiency, 100 kHz; receiver gain, 1210
and microwave power, 20 mW. The spectra shownheraterages of 10 scans.

2.7. LC-MS analyses

Liquid chromatography-mass spectrometry (LC-MS)lys&s of LBA, its oxidation products,
and spin adducts, were performed as describedquslyi [12] using a Shimadzu LC-MS
8030 triple quadrupole mass detector coupled witBhanadzu Nexera 2 UHPLC system
equipped with a Cortecsi£column (Waters, 50 mm x 2 mm, 1u8n). The column was
equilibrated with 10% of MeCN in water containindl@® of formic acid. To separate the
reaction mixture, a gradient elution with incregsitoncentration of MeCN in the mobile
phase from 10-80% over 4 min was used. The floe/wats set at 0.5 mL/min, and the flow
was diverted to waste during the first minute afterad min, counting from the time of
injection. LBA and luciferin were detected in theeprotonated forms in the negative mode

using single ion monitoring (SIM), set at m/z vaud 307 and 279, respectively. MNP and
8
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Luc-MNP spin adduct were detected in their proteddbrms in positive mode using SIM,

set at m/z values of 88 and 352, respectively.

2.8. Real-time monitoring of peroxynitrite formation from activated RAW 264.7
macrophages

RAW 264.7 cells were cultured in Dulbecco's ModifiEagle Medium (DMEM) (Gibco)
supplemented with 10% fetal bovine serum (Omegarthiéic), 2 mM L-glutamine, 100
units/mL penicillin, and 100 pg/mL streptomycin iamdtic at 37 °C in 5% carbon dioxide
and 95% air atmosphere. The cells were seeded-ime@plates at a concentration of 2%10
cells (in 150 ul) per well and incubated at 37°d &% carbon dioxide overnight.

For stimulations of the cells to produce nitriddex cells were incubated for 8 h with
LPS (0.5 pg/mL) and INK- (50 units/mL). To stimulate NADPH oxidase-deperden
superoxide production, the cells were washed twitth DMEM medium and treated with
phorbol 12-myristate 13-acetate (PMA, 1 uM) (Sigidrich) in Dulbecco's phosphate-
buffered saline (DPBS) buffer supplemented withisodpyruvate (0.3 mM) and glucose (5.5
mM) (DPBS-GP) (Gibco). At the time of addition oMR, PCL-1 or LBE probe (20 uM)
was also added. Where indicatedNinitroarginine methyl ester hydrochloride (L-NAME,
mM) (Cayman Chemical) or catalase (CAT, 1 kU/mLg(®a Aldrich) was added at the time
of addition of PMA and the probe. For cell-baseg@erknents, stock solutions of LBE and
PCL-1 probes were prepared in DMSO at 10 mM comagahs, and their final
concentrations were 20 uM. Thus, the final conediain of DMSO was kept minimal, <
0.3% (v/v), upon dilution. For the control sampleslls were treated with the probes in the
absence of stimulators and inhibitors.

Oxidation of probes was monitored in a 96-welbflescence plate reader. The 96-well
plate with cells was placed immediately after tdditoon of DPBS-GP containing the probe
with or without PMA, L-NAME, and CAT in a plate rdar prewarmed to 37 °C. Total
fluorescence intensities were acquired using a FdO Omega plate reader (BMG
LABTECH) equipped with the appropriate excitationdaemission filters Ae,=355 nm,
Aer=520 Nm). The instrument was kept at 37 °C durhmeg measurements, and fluorescence

intensity was read from the bottom of each well.

3. Results

3.1 Synthesis and spectroscopic properties of lueiin’s derivatives
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To test if direct luciferin boronation may improviee performance the probe for oxidant
detection, we synthesized luciferin boronic acidagol ester LBE and the anticipated minor
products of its reactions with ONOGand HOCI (see Scheme 4). First, we conducted
spectroscopic characterization of these produtsresults are shown in Table 1. Among all
the compounds tested, only Luc-OH and Luc-OH-Clileiidd significant fluorescence. It is
worth noting that under physiological pH conditipehlorinated luciferin exhibits a higher
fluorescence quantum vyield than luciferin (Table Supplementary Fig. 1A). The
deprotonation of luciferin results in increasedfiescence yield [29], which we attribute to
the increased acidity of luciferin upon chlorinatian fact, the reported pialues for Luc-
OH and Luc-OH-Cl are 8.5 and 6.7, respectively [30]

Analyses of the fluorescence spectra recorded i@éeting the LBE probe with @y,
HOCI, and ONOO (Supplementary Fig. 1B-D) indicate that fluoregg@mducts are formed
for all three oxidants. However, the concentrati@pendence of the fluorescence intensity
suggests some difference between the oxidants.eWhithe presence of excessdd, the
fluorescence intensity does not change; in cas¢aifl, the intensity further increases; and in
the case of ONOQthe intensity decreases. Based on the deternsipectroscopic properties
of Luc-OH, Luc-OH-CI, and Luc-OH-N§) these results suggest that luciferin formed upon
oxidation of the LBA probe undergoes chlorinatigndxcess HOCI [12,16,17] or nitration by
excess ONOOQJ16]. To better understand the chemical mechanshexidation of the probe
by those three oxidants, we performed detailed tifilesttions and quantifications of the
products formed.
Table 1. Spectroscopic properties of thBA probe and the products of its reaction with the
oxidants tested in agueous phosphate buffer (100 pivi= 7.4):MeCN (4:1)

Amax € Obmax) Aexc Aem Dem Stokes
Compound L .
(nm) (M™~-cm”) (nm) (nm) (%) shift (nm)
LBA 300 10 600 - - - -
Luc-OH 328 (326" 11 900 (10 700) 334 (33F) 536 (4177 43 (1°) 202 (867
Luc-H 298 14 500 - - - -
Luc-NO, 310 19 200 - - - -
Luc-OH-CI 390 14 300 391 532 67 141
434 7 200 - - - -
Luc-OH-NO,
366 23 000

& In pure MeCN

10
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3.2. Identification of the primary product formed during the oxidation of LBA

The spectroscopic data presented in Table 1 iraliteit although the nitration products are
non-fluorescent, chlorination of luciferin yieldshaghly fluorescent product. Therefore, the
guantitative detection of inflammatory oxidantsesplly of HOCI and ONOQ based solely
on fluorescence intensity measurements, may beetquade. Moreover, it has been reported
the presence of the chlorine atom in Luc-OH-Cl| does$ prevent the interaction with
luciferase, but that it affects the bioluminescenmal intensity [30]. Thus, similar to the
PCL-1 probe [12], the application the LBE probe fprantification of HO,, HOCI, or
ONOO™ productionin vitro or in vivo requires knowledge of the probe's chemistry, and
should involve the identification of the oxidanteggic product(s). First, we identified the
products formed during oxidation of LBE by threeffetient biologically relevant,

inflammatory oxidants known to oxidize boronic cayapds.

3.2.1. Oxidation of LBA by H,O,

As mentioned, BD, oxidizes LBA to luciferin. The HPLC chromatogramsesented in Fig.
1A show that Luc-OH is the sole product formedhis treaction. The slow reaction kinetics
required a 24-h incubation period to ensure congietf the reaction between the probe and
H.O,, when present at submillimolar concentrationsicBiometric analysis of the reaction
between LBA and kD, is shown in Fig. 1B. Over the 24-h incubation pdriLBA is stable

in agueous solution containing phosphate buffet (@, pH 7.4) and MeCN (20%), as
indicated by the fact that almost 99% of the ihiiemount of LBA is still detected. Similar
results were obtained in the phosphate buffer moiuf0.1 M, pH 7.4) containing DMSO
(1%). Stoichiometric analysis also shows that LBA®mpletely consumed by.®&,, and the
maximum yield of Luc-OH was achieved when the prolas reacted with a small excess of
the oxidant (less than 1.5 equivalents ofOp), consistent with the 1:1 stoichiometry
previously reported for mono-boronated probes 18, The vyield of luciferin was ca. 96%
and did not change in the presence of oxidant exc&isce probe purity was 98% and we
identified Luc-H as an impurity, one can concluldatithe reaction of LBA with $D; led to

the formation of luciferin as the sole product.
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Figure 1. (A) HPLC chromatograms of the standards (100 pbhkeand reaction mixtures of
LBA (100 pM) with HO, (200 uM) after 24 h of incubation. The traces weokected using
an absorption detector set at 330 nm. (B) HPLC-dasation of LBA (100uM) with H,O;
after 24 h incubation in aqueous solution contgmphosphate buffer (100 mM, pH 7.4), dtpa
(10 uM), and MeCN (20%). Data are means * standard tewmiaof three independent

experiments.

3.2.2. Oxidation of LBA by HOCI.

HPLC chromatograms of the reaction mixtures of LB#h HOCI are presented in Fig. 2A.
In addition to Luc-OH, a new product with a retenttime of 5.7 min was formed during the
reaction of the LBA probe with HOCI. The same pradwas formed when Luc-OH was
mixed with HOCI. Comparison of the retention tintédshe synthesized authentic standard of
7’-chloroluciferin (Luc-OH-CI) and the product foed in the reaction of LBA with HOCI
confirms that Luc-OH-CI is one of the products fdun the reaction mixture. Formation of
this product may explain why the maximum yield @fctOH reaches only ca. 60%. Luc-OH-
Cl was previously found as a minor product of thaction between of PCL-1 and HOCI [12].
The stoichiometric analysis of the oxidation reactof LBA by HOCI is presented in Fig. 2B.
The complete consumption of the probe and formatioluciferin requires use of more than
1.5 HOCI equivalents. Unlike the reaction of LBAtlwiH,O,, an excess of HOCI causes
disappearance of luciferin. This is consistent witin previous investigation using the PCL-1
probe, which demonstrated that released lucifendengoes further reaction with HOCI,
leading to the formation of Luc-OH-CI, a producesilic for HOCI.
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Figure 2. Reaction between LBA and HOCI in aqueous solutientaining phosphate buffer
(100 mM, pH 7.4), dtpa (1@uM), and MeCN (10%). (A) HPLC chromatograms of the
standards (100 uM each) and reaction mixtures & (B0 uM) with HOCI (80 uM) after
15 min of incubation. The traces were collectechgigin absorption detector set at 330 nm.
(B) HPLC-based titration of LBA (10aM) with HOCI. Data are means * standard deviation

of three independent experiments

3.2.2. Oxidation of LBA by peroxynitrite

HPLC chromatograms and stoichiometric analyseshef reaction mixtures of LBA with
ONOQO are shown in Fig. 3A and 3B, respectively. Thaittesndicate that the main product
of oxidation of the LBA probe by ONOOis luciferin. Moreover, the yield of Luc-OH
reached maximum (ca. 80% yield) when the LBA protes reacted with an equimolar
amount of ONOQ, confirming a 1:1 reaction stoichiometry. Basedtbea two established
pathways of oxidation of arylboronic acids by ONO@e anticipated that the major (non-
radical) pathway would yield luciferin and the mif{cadical-mediated) pathway would yield
Luc-NG, and Luc-H (see Scheme 2), the products derivenh ftike phenyl-type radical
formed [12, 21, 22]. Moreover, we expected thatatibn of Luc-OH by NO, formed in the
minor pathway and during decomposition of exces©ONwould produce Luc-OH-Ng) as
shown in Scheme 2. The chromatograms of the stdsdand of the reaction mixture
confirmed the formation of Luc-H, Luc-NOand Luc-OH-NQ when LBA was reacted with
ONOO (Fig. 3A).
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Figure 3. Reaction between LBA and ONOGn aqueous solution containing phosphate
buffer (100 mM, pH 7.4), dtpa (40M), and DMSO (1%). (A) HPLC chromatograms of the
standards (100 uM each) and reaction mixtures & (B)0 pM) with ONOO (80 puM) after

5 min of incubation. The traces were collected gighre absorption detector set at 330 nm.
(B) HPLC-based titration of LBA (10@M) with ONOO. Data are means + standard
deviation of three independent experiments.

The formation of minor products in the reaction tare, anticipated for the radical
pathway of the reaction, encouraged us to perfor@RR spin trapping experiment using an
MNP spin trap. Reacting LBA with ONOOn the presence of the MNP spin trap resulted in
appearance of the EPR spectrum of the spin addscghown in Fig. 4A (trace a). The
intensity and resolution of this EPR signal are swificient to determine the g value and
hyperfine coupling constants, but the signal cleadnsists of three major lines (due to the
hyperfine splitting from the nitrogen atom) with additional structure (due to the hyperfine
splitting caused by the phenyl ring hydrogen aton$j)e addition of a bolus amount of
ONOQO to incubations containing LBA, MNP, and 10% of O, a known scavenger of
phenyl radicals, resulted in significantly redudeténsity of the EPR signal (Fig. 4A, trace
b). The EPR spectrum recorded with MNP in the reaatnixture of LBA with ONOO was
not observed when any of those reaction compongassabsent (Fig. 4A, traces ¢ and e).
Unexpectedly, when ONOQvas added to a solution of LBE in the buffer and3D (in the
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absence of the MNP spin trap), a single line wdeatled (Fig. 4A trace d). A similar EPR
spectrum was observed for a long-lived DMSO raditizter generated in neat DMSO with a
small amount of base [31].

To further confirm the formation of Lu@nd to identify the molecular structure of
spin-trapped radical, we combined the spin trapgixgeriment with LC-MS analysis of the
spin adduct. The LC-MS analyses (Fig. 4B) enable@ation of the MNP spin trap in the
positive mode using SIM, set at an m/z value of @& LBA (m/z = 308) consistent with
hydrolysis of the boronate ester in the buffer used-OH (m/z = 280) was detected in all
cases when the LBA probe was mixed with ONOI@ the presence of LBA, ONOQand
MNP, the spin adduct of MNP and Luadical was detected (Fig. 4B, m/z = 352, peak
detected at 2.33 min). This peak can be assignéletspin adduct present in the form of
nitroxide and/or protonated nitrone. The spin-tiagdechnique combined with the LC-MS-
based analysis of the molecular weight of the adédduct confirm the formation of the
phenyl radical during the oxidation of LBA by ONQO

N N-,COOH
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HO S Sj

Luc-OH
‘\1‘02
COOH
COOH *NO, NHN]’
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N N_,COOH  ONOO® NO,
HO. Q ) j Luc- O'
B S S , Luc-OH-NO,
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LBA pathway
N N-COOH
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Scheme 4Transformation of the LBA probe, leading to lucifeand ONOGO-specific minor
products. The colored structures of the stable ymtsdcorrespond to the color coding of the

product profiles shown for different oxidants imgéres 1-3.
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Figure 4. Spin trapping of the phenyl radical formed durihg reaction of LBA with ONOO

. (A) EPR spectra recorded using MNP as a spin ({BpLC-MS analyses of the luciferin
boronic acid (LBA, M-H, m/z = ()307), luciferin (Luc-OH, M-H m/z = 279), MNP
(M+H", m/z = (+)88), and Luc-MNP (M+H m/z = (+)352) spin-adduct. ONO@vas added
to the mixture of LBA (20quM) and MNP (40 mM) in phosphate buffer (50 mM, pH)7
containing dtpa (10uM), MeCN (5%), and DMSO (2.5%). The reaction miguwas
transferred to an EPR capillary immediately aftéolus addition of ONOQ and the spectra
were recorded at room temperature. Experiments wepeated three times independently.
Representative result displayed.

We also analyzed the reaction mixture from the $mpping experiments to detect
ONOQO-specific minor products. Figure 5 shows the produmalyses of the oxidation of
LBA by ONOQO. The major product Luc-OH (Fig. 5, m/z = (-)27%®af detected at 1.61
min) is always detected when the LBA probe is mixeth ONOQO. However, the yields of
the nitrated products Luc-NQFig. 5, m/z = (-)308, peak detected at 2.19 niiai-OH-NG,
(Fig. 5, m/z = (-)325, peak detected at 2.02 mimJ af the Luc reduction product, Luc-H,
(Fig. 5, m/z = (-)263, peak detected at 2.04 miepahd on the composition of reaction
mixture. When MNP is in the reaction mixture (Fk}. traces a), the yields of nitrated
luciferins (Luc-NQ, Luc-OH-NQ) are significantly lower compared with the yielosthe
same products when oxidation was performed in bserce of MNP (Fig. 5, traces d). The
addition of 2-propanol (2-PrOH) into the reactioxiure suppressed the formation of Luc-
NO, and Luc-OH-NQ@ (Fig. 5, traces b) but increased the amount ofHuormed to the
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level observed when LBA was oxidized by ONO®@ solution without a spin trap (Fig. 5,
traces d). Together with the observed inhibitorfe&s of 2-PrOH on the formation of the
phenyl radical spin adduct (Fig. 4), these datangfly point to the role of 2-PrOH as the
guencher and reductant of the phenyl-type radioanéd from the LBA probe. These
observations are consistent with the occurrence minor radical pathway that is specific to
the reaction between ONO@nd LBA. Overall, the EPR spin trapping experinsgetiie spin
trapping combined with LC-MS analyses, and thec¢fté the phenyl radical scavengers on
the product distribution demonstrate the involvemanthe phenyl-type radical Ludn the

minor pathway of the reaction of the LBA probe w@NOO'.

(a) LBA + ONOO™ + MNP
LBA, 1.50 min Luc-OH, 1.61 min Luc-NO,, 2.19 min Luc-H, 2.04 min Luc-OH- N02, 2.02 min
(neg 307) (neg 279) (neg 308) Ljoix) (neg 325)

MWW\MWWW

2™ N
adg;@oL L AUUL_ Mm L

(e) MNP
+ ONOO™ - . : . 5
+DMSO . : 1 . ' .

(b) LBA + ONOO_
+ MNP + 2-PrOH

1 2 3 4 2 3 41 2 3 41 2 3 41 2 3 4
Retention time (min)

Figure 5. LC-MS analyses of the products of LBA oxidation®YXOQO'. The reactions were
carried out under conditions similar to those descrin Fig. 4. LC-MS traces of the reaction
mixtures of (a) LBA (20QuM), MNP (40 mM), ONOO (200uM); (b) LBA (200 uM), MNP
(40 mM), ONOO (200 uM), 2-PrOH (10%); (c) LBA (20QuM), MNP (40 mM); (d) LBA
(200 uM), ONOO (200 uM); and (e) MNP (20quM), ONOCO (200 uM), DMSO (2.5%).
LBA, luciferin, Luc-NG;, Luc-H, and Luc-OH-N@ were detected in negative mode using
SIM set at m/z values of 307, 279, 308, 263, an#, 32spectively. Experiments were
repeated three times independently. Representaisudt displayed.

3.3. Limit of detection and quantification
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Based on our HPLC analyses, we estimated the loe@stentrations of oxidant that are
needed to detect the Luc-OH, Luc-OH-CIl, and Luc-88; (Supplementary Table 1).
Results show that the detection limit of the LBAlpe for ONOO, HOCI, and HO, was in
the submicromolar to low micromolar range. Limits detection of the ONOGspecific
product Luc-NQ and hypochlorite-specific product Luc-OH-CI werethe low micromolar
range. As with other fluorescent products, the acsensitivity will strongly depend on the
detection modality and instrumentation. Furthermosgnificantly higher sensitivity is
expected in the case of bioluminescence-based taeteof Luc-OH and Luc-OH-CI, as

observed for other luminescent probes.

3.4. Dynamics of the product formation

Formation of Luc-OH upon oxidation of the PCL-1 Ipgorequires the release of the QM
moiety from the primary oxidation product (Scheme Therefore, to determine if this
reaction may affect the dynamics of Luc-OH produttiwe compared the kinetic profiles of
Luc-OH formation during the oxidation of LBA and PQ to the profile of the product
formation from a simple boronate probe, coumarimerenic acid (CBA). Figure 6 shows the
buildup of absorption at 380 nm during the reactietween those boronic probes angd
(25 mM). It is evident that direct derivatizatiohlociferin using the boronate group results in
a faster formation of the product (Luc-OH or 7-hyxyrcoumarin) than when using the
boronobenzylation approach, as in the case of @le-Pprobe. The sigmoidal shape of the
kinetic profile of the Luc-OH buildup observed imetcase of the PCL-1 probe is consistent
with a multistep process, following the kinetics thfe formation of a product of two

consecutive reactions.
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Figure 6. Kinetic profiles of product formation during thgidation of probes LBA, PCL-1,
and CBA (10 puM each) by, (25 mM). Experiments were repeated three times
independently. Representative result displayed.

3.5. Oxidation of LBA and PCL-1 by activated macropages

To confirm that the LBE probe can report ONO@ biologically relevant cellular systems,
we determined its performance in cultured RAW 26eells activated to produce ONOO
RAW 264.7 macrophages were stimulated with a mextaf lipopolysaccharide (LPS),
interferony (IFN-y), and phorbol myristate acetate (PMA), as desdrjireviously [18,24]. In
this cellular system, PMA activates NADPH oxidaseptoduce superoxide (0) whereas
LPS/IFN« pretreatment induces expression of nitric oxidatisyse (iNOS), resulting in
increased production 6NO. Co-generation of both O and'NO leads to the formation of
ONOO and induces an increase in fluorescence intedsiyto oxidation of LBE or PCL-1
boronate probe (Fig. 7A,B). The addition of LPS dRN-y or PMA alone to incubations
containing macrophages and PCL-1 or LBE caused antyinor increase in fluorescence
intensity (Fig. 7) as compared with the fully aaeted (LPS, IFNy, and PMA) cells.
Interestingly, although both probes respond siryildo the treatments used, in case of
untreated cells, a slow increase in the signabseoved for the PCL-1 probe but not for the
LBE probe (Fig. 7, control). This indicates that ABs more stable than PCL-1 under the

experimental condition used.
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Figure 7. Real-time monitoring of the oxidation of the LBE)(and PCL-1 (B) probes by

activated RAW 264.7 macrophages. (C, D) Rate ofemse in the fluorescence signal
intensity from RAW 264.7 macrophages activated iffgieent stimulators in the absence or in
the presence of L-NAME and CAT. Incubations corgdi®PCL-1 (20 uM) or LBE (20 uM)

and RAW 264.7 macrophages in DBPS-GP buffer irediffit cellular conditions. Conditions
were as follows: control cells, PMA added at theetiof the measurement, LPS and IINF-
pre-treated cells, and LPS and INre-treated cells with PMA added before measurésnen
(Details are described in the Experimental secti@xidation of the probes was followed by

the measurement of the fluorescence intensigy365 nmXtem 520 Nm).

To confirm the identity of the oxidants involvedtime probes’ oxidation, we tested the effect
of L-NAME (iNOS inhibitor, preventing ONOOformation) and catalase {8, scavenger)
on the rate of the probes’ oxidation. As shown igsF7C and 7D, L-NAME showed the
strongest inhibitory effects when cells were coesqabto PMA and LPS-/IFN- Under those
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conditions, catalase had only a minor effect. €hesults indicate that both luciferin-based
boronic probes tested can be used for real-timectdeh of ONOO formed from

macrophages activated to co-generd® and Q™. Interestingly, catalase completely
inhibited LBE probe oxidation in cells treated wi#MA. This indicates that under these

conditions HO, is the major oxidant.

4. Discussion

The application of probes to detect biologicalllevant oxidants in inflammatory processes
occurringin vitro andin vivo requires a detailed knowledge of probes’ chemieattivity,
their stability in medium, and identification ofetfoxidant-specific product(s) together with
their spectroscopic characterization. The PCL-1beroepresents the first boronate-based
sensor to detect oxidants vivo using the bioluminescence imaging modality [10¢céntly,
we reported the application of the PCL-1 probe tmitor oxidants in tumor tissués vivo in
the mouse xenograft model of breast cancer, in autibn with low-temperature EPR
analyzes of inactivated aconitase signals [39]. @ugent investigation of the oxidation
chemistry of the PCL-1 probe [12] showed that botmnzylated luciferin (PCL-1 probe)
decomposes significantly in phosphate buffer dupgra@jonged incubation. This may lead to a
relatively high background signal preventing thelqg from detecting small, physiologically
relevant levels of the oxidants. Here, we show thigct boronation of luciferin results in a
more stable probe, LBE, which may represent a beteice when lower levels of the
oxidants are to be detected.

Over the last decade, several reports and reviews emphasized that it is impossible
to categorically identify specific oxidants formedcells without the application of HPLC- or
LC-MS-based methods to detect oxidant-specific pet@) [12, 20, 32-37]. For example, 2-
hydroxyethidium (a fingerprint of the reaction beem hydroethidine and superoxide) and
ethidium (nonspecific product of two-electron oxida of hydroethidine by various oxidants)
have overlapping fluorescence emission spectra daut be separated, identified, and
guantified with the aid of HPLC or LC-MS, using appriate standards [38]. The most
promising probes for the detection of several ndiced ROS/RNS, produced under
inflammatory conditions, are based on the oxidatibemistry of arylboronic acids or esters.
Masking of hydroxyl or amino group(s) of a fluorapb by boronate or boronobenzyl
moieties turns off the fluorescence [28]. Origigalihis class of probes was developed for
specific detection of kD, [28], which slowly uncaged the hydroxyl group ahds turned on

the fluorescence [16,17]. Subsequent works prowatl inder physiological pH, boronate
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probes are oxidized by HOCI and ONO@& significantly higher rates than is the case for
H,O, [16]. The additional advantage of the fluorogebigronate probes used to detect
ONOQO is their ability to replace the boronate moietythg -NQ (nitro) group and thus to
form the ONOGO-specific nitro derivatives [12,17,21]. In the pease of excess ONOQOthe
phenolic product may undergo nitration to form esponding nitrophenol. Among the two
nitration products, nitrobenzene-type (Luc-N@nd nitrophenol-type (Luc-OH-NQ only
the nitrophenolic product can be formed via myetogpelase-catalyzed nitration. Since the
nitrobenzene-type product is not generated durimgubation of boronate probe with
myeloperoxidase/bD,/nitrite systems, its detection confirms the preseof ONOO [16,24].
Bioluminescence imaging using luciferin-based psoisecurrently a standard techniqueifor
vivo imaging. Based on oun vitro data with the use of activated macrophages, weigire
that the LBE probe can be applied as a stable pwabe low background for sensitive

detection of ROS/RNS im vivo animal models.

5. Conclusions

In this work, we synthesized the LBE probe, whicldergoes hydrolysis to LBA in agueous
solutions. We have identified the products of LBAidation by selected inflammatory
oxidants. The major, common product formed durlng reaction of LBA with HO,, HOCI,
and ONOOQO is luciferin, a substrate for bioluminescence imgg However, oxidation of
LBA by ONOO proceedsvia two pathways, with Luc-N@© being an ONOGQOspecific
product formed in the minor pathway involving thkepyl-type radical Lucintermediate.
Reaction of LBA with HOCI yields luciferin that ®urther chlorinated to Luc-OH-CI, a
product specific for HOCI. We propose combining LBAsed fluorescence or
bioluminescence measurements with chromatographétyses of those specific reaction
products to identify the oxidants responsible fosle oxidation. Because the LBE probe is
more stable than PCL-1, it may be a better chacalétecting inflammatory oxidants when
present at low levels and/or when exhibiting sleaation kinetics, such as6h.
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