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Fig. 1. Phenanthridine alkaloids. 

Phenanthridines, represented by trispheridine (1), constitute an 

important moiety found in natural products and biologically 

active molecules (Fig. 1). In particular, among 

benzo[c]phenanthridines, nitidine (3a) [1] exhibits potential 

antileukemic activity through the inhibition of topoisomerases, 

while sanguinarine (3b) [2] has been reported to exhibit 

antibacterial and antifungal activities. A series of aforementioned 

benzo[c]phenanthridines have been reported to show various 

pharmacological properties including antitumor activity [3]. 

Owing to their unique structures and characteristic biological 

activities, the development of a convenient and efficient synthetic 

route to phenanthridine and benzo[c]phenanthridine alkaloids has 

attracted considerable attention from synthetic and medicinal 

chemists [4]. Several groups have successively reported their 

efforts to synthesize phenanthridine derivatives using biphenyl 

imidoyl radical intermediates, which are formed by the addition 

of various radicals to 2-isocyanobiphenyls [5]. For example, 

Chatani et al. demonstrated a Mn(III)-mediated annulation of 2-

isocyanobiphenyls using boronic acid.[5a] Furthermore, Walton 

et al. demonstrated phenanthridine synthesis via the cyclization 

of imidyl radicals, which were generated from O-phenyl oxime 

under microwave (MW) irradiation [6]. 

We have performed the synthetic studies of fused pyridine 

ring systems via the electrocyclization of an aza 6-hexatriene 

system [7]. To date, we have reported the construction of several 

fused pyridine ring systems, such as furo[3,2-h]isoquinoline [8], 

azaanthraquinone [9], -carboline alkaloids [10], and 

azafluorenone [11], using the MW-assisted electrocyclization of 

a 1-aza 6-hexatriene system. Furthermore, we have reported the 

total synthesis of a phenanthridine alkaloid (trispheridine 1) [12] 

and benzo[c]phenanthridine alkaloids (nitidine 3a, sanguinarine 

3b, chelerythrine, and broussonpapyrine) [13] using the similarly 

method. 
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In this study, the first asymmetric enantioselective total syntheses of (+)-asiaticumine A (2) and 

its enantiomer were accomplished through a seven-step sequence using the bond formation 

between the C4a and N5 positions of the phenanthridine framework based on the microwave-

assisted electrocyclization of cyclohexenylbenzaldoxime methyl ether as an aza 6-hexatriene 

system followed by the Sharpless asymmetric dihydroxylation as the key step. In addition, the 

absolute configuration of natural (+)-2 was determined to be S by Mosher’s method. 
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(+)-Asiaticumine A (2), which is related to trispheridine (1) 

as illustrated in Fig. 1, was isolated from Crinum asiaticum L. 

var. sinicum Baker with asiaticumine B and 21 known 

compounds by Zhang et al. in 2009 [14]. Its structure was 

elucidated to be (+)-4-(1,2-dihydroxyethyl)-8,9-

methylenedioxyphenanthridine via spectroscopic and chemical 

analyses. However, the absolute configuration at the C-11 

position is undetermined as yet.  

Herein, we have described the details of the first asymmetric 

enantioselective total syntheses of (+)-asiaticumine A (2) using 

the application of pyrido-annulation via electrocyclization of an 

aza 6-hexatriene system followed by the Sharpless asymmetric 

dihydroxylation as the key step. 

As shown in the retrosynthetic analysis (Scheme 1), we aimed 

to synthesize (+)-asiaticumine A (2) from 4-vinylphenanthridine 

4 through Sharpless asymmetric dihydroxylation. 4-

Vinylphenanthridine 4 can be obtained from 

dihydrophenanthridinone 5 in a few steps. Moreover, 

dihydrophenanthridinone 5 can be derived via the MW-assisted 

electrocyclization of cyclohexenylbenzaldoxime methyl ether 6 

using the bond formation between the C4a and N5 positions of 

the phenanthridine framework. Cyclohexenylbenzaldoxime 

methyl ether 6 can be synthesized from 6-bromopiperonal (7) and 

3-cyclohexenylboronic acid pinacol ester 8 by the Suzuki–

Miyaura reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Retrosynthetic analysis of (+)-asiaticumine A (2). 

 

 

 

 

 

 

 

 

Scheme 2. Synthesis of pinacol borate 8. Reagents and 

conditions: a) Tf2O, pyridine, CH2Cl2, −78 °C → rt, 12 h, 98%; 

b) bis(pinacolato)diboron, AcOK, PdCl2(dppf), dioxane, 80 C, 1 

h, 8 was used without purification. 

 

To prepare pinacol borate 8, the treatment of cyclohexane-1,3-

dione (9) with trifluoromethanesulfonic anhydride (Tf2O) and 

pyridine afforded triflate 10 [15], which was treated with 

bis(pinacolato)diboron in the presence of PdCl2(dppf) to yield 

pinacol borate 8 (Scheme 2) [16]. 

To synthesize dihydrophenanthridinone 5, oxime ether 6 was 

prepared as a precursor of 5. The Suzuki–Miyaura reaction of the 

readily available 2-bromopiperonal (7) with cyclohexenylboronic 

acid pinacol ester 8 was performed in the presence of 

PdCl2(dppf) and Na2CO3 in toluene at 110 C for 1.5 h to afford 

cyclohexenylbenzaldehyde 11 in 67% yield. The subsequent 

treatment of aldehyde 11 with NH2OMe afforded oxime ether 6 

in 99% yield (Scheme 3). 

Furthermore, we examined the synthesis of oxime ether 6 via 

a reverse route. The treatment of 2-bromopiperonal (7) with 

NH2OMe afforded oxime ether 12 in a 90% yield. Subsequently, 

the reaction of 12 with pinacol borate 8 yielded the cyclization 

product dihydrophenanthridinone 5 (14%) along with oxime 

ether 6 (69%). Thus, the first route is considered to be efficient 

owing to the easy product purification of the product in each step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Synthesis of oxime ether 6. Reagents and 

conditions: a) 8, 2 M Na2CO3, PdCl2(PPh3)2, toluene, 110 C, 1.5 

h, 67%; b) NH2OMe·HCl, AcONa, EtOH, 80 C, 0.5 h, 99%; c) 

NH2OMe·HCl, AcONa, EtOH, 80 C, 10 min, 90%; d) 8, 2 M 

Na2CO3, PdCl2(PPh3)2, toluene, 110 C, 1.5 h, 6 (69%), 5 (14%). 

 

Next, oxime ether 6 was subjected to thermal 

electrocyclization at 180 C in 1,2-dichlorobenzene under both 

MW-assisted and conventional conditions. As shown in Table 1, 

by comparing the cyclization reactions under both conditions, the 

MW-assisted conditions were observed to significantly reduce 

the reaction time and increase the yield (runs 1 and 2). 

Furthermore, when the reaction temperature was increased to 200 

C under MW-assisted conditions, dihydrophenanthridinone 5 

was obtained in 91% yield (run 3). In addition, when the reaction 

time was longer than that of run 3 under the same conditions, the 

yield decreased because product 5 decomposed. Thus, it was 

determined that the yield and reaction rate of this type of thermal 

electrocyclization were promoted by MW irradiation. 
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Table 1. Synthesis of dihydrophenanthridinone 5 via 

electrocyclization.a 

 

 

 

 

Run MW Time (h) Temp (C) Yield (%) of 5 

1 − 24 180 15 

2 + 5 180 76 

3 + 2 200 91 

4 + 5 200 56 

a A solution of oxime ether 6 in 1,2-dichlorobenzene was heated with 

MW irradiation or without MW irradiation under N2 atmosphere. 

 

A direct conversion of dihydrophenanthridinone 5 to 

phenanthridine 13 was attempted (Scheme 4). As a method to 

obtain the desired phenanthridine 13, heating of 5 in the presence 

of Pd–C [13c] was ineffective. Subsequently, the oxidation of 5 

with DDQ was performed to obtain a small amount of 13. 

 

 

 

 

Scheme 4. Dehydrogenation of dihydrophenanthridinone 5 

 

Therefore, 5 was treated with N-

phenylbis(trifluoromethanesulfonamide) (Tf2NPh) and LDA to 

afford triflate 14 in 60% yield (Scheme 5). To obtain 4-

vinylphenanthridine 15, the Stille reaction between triflate 14 and 

vinyltributyltin in the presence of PdCl2(PPh3)2 was conducted. 

However, the desired product, namely 15, could not obtained. 

 

 

 

 

 

 

 

 

Scheme 5. Synthesis of 4-vinylphenanthridine 15. Reagents and 

conditions: a) LDA, Tf2NPh, THF, −78 C → rt, 4 h, 60%; b) 

vinyltributyltin, Et4NCl, PdCl2(PPh3)2, DMF, 80 C, 1 h. 

 

However, the oxidation of triflate 14 with DDQ in dioxane 

produced the expected phenanthridine 16 in 88% yield (Scheme 

6). The Stille reaction of 16 with vinyltributyltin in the presence 

of PdCl2(PPh3)2 produced 4-vinylphenanthridine 4 in 89% yield. 

Finally, the Sharpless asymmetric dihydroxylation [17] of 4-

vinylphenanthridine 4 was investigated as follows. The reaction 

of 4 with AD-mix-α afforded (+)-asiaticumine A (2) in 98% 

yield ([α]D +37.2, c = 0.81, MeOH). However, the reaction of 4 

with AD-mix-β afforded (−)-2 in 70% yield ([α]D −29.9, c = 0.9, 

MeOH). The specific rotation of the former (+)-2 approximately 

corresponded to that reported for natural (+)-2 ([α]D +6, c = 

0.29, MeOH [14]), but the reason for the large difference of 

specific rotation is not clear. The spectroscopic data for (+)-2 and 

(−)-2 were identical to those of natural 2 in all aspects. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 6. Synthesis of asiaticumine A (2). Reagents and 

conditions: a) DDQ, dioxane, rt, 3 h, 88%; b) vinyltributyltin, 

Et4NCl, PdCl2(PPh3)2, DMF, 80 C, 1 h, 89%; c) AD-mix-α or 

AD-mix-β, MeSO2NH2, t-BuOH, H2O, rt, 24 h, (+)-2 (98%), (−)-

2 (70%). 

The enantiomeric excesses of (+)-2 and (−)-2 were analyzed 

based on the 1H NMR spectra of appropriate (S)-MTPA ester 

[18], which was prepared via the selective protection of its C-12 

primary hydroxyl group by the TBDMS group, followed by the 

esterification of its C-11 secondary hydroxyl group by (R)-α-

methoxy-α-(trifluoromethyl)phenylacetyl chloride (MTPACl). 

Thus, the enantiomeric excesses of (+)-2 and (−)-2 were 91 and 

84%ee, respectively. 

 

 

 

 

 

 

Fig. 2.  (S-R) values for (S)- and (R)-MTPA esters of (+)-2. 

To determin the absolute configuration of (+)-2, similarly the 

(+)-2-(R)-MTPA ester was prepared from (+)-2 by treatment with 

(S)-MTPACl. The  (S-R) values of protons obtained by 1H 

NMR analyses of (+)-2-(S)-MTPA and (+)-2-(R)-MTPA 

measured in CDCl3 are depicted in Fig. 2. The negative sign of 

the  value of phenanthridine moiety (H-1, H-3, H-6, H-10) and 

the positive sign of the protons of TBDMS group indicates. 

Therefore, the absolute configurations of (+)-2 and (−)-2 were 

determined to be S and R, respectively, by the Mosher’s method 

[19]. 

In conclusion, the first enantioselective total syntheses of (+)-

asiaticumine A (2) and its enantiomer were achieved through a 

seven-step sequence via the construction of a phenanthridine 
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framework using the MW-assisted electrocyclization of the aza 

6-hexatriene system followed by the Sharpless asymmetric 

dihydroxylation as the key step. Furthermore, the absolute 

configuration of natural (+)-asiaticumine A (2) was determined to 

be S. In addition, the biological activities of (+)-2, its enantiomer, 

and their derivatives are under evaluation. 
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The enantioselective total synthesis of (+)-

asiaticumine A has been accomplished. 

The construction of phenanthridine framework by 

MW-assisted electrocyclization. 

The synthesis of 1,2-dihydroxyethyl moiety by 

Sharpless asymmetric dihydroxylation. 

Its absolute configuration was determined to 

be S by Mosher’s method. 

 

 
 


