Accepted Manuscript

A convenient C–H functionalization platform for pyrroloiminoquinone alkaloid synthesis

Myles W. Smith, Isaac D. Falk, Hideya Ikemoto, Noah Z. Burns

PII: S0040-4020(19)30516-2

DOI: https://doi.org/10.1016/j.tet.2019.05.009

Reference: TET 30330

To appear in: *Tetrahedron*

Received Date: 21 February 2019

Revised Date: 1 May 2019

Accepted Date: 2 May 2019

Please cite this article as: Smith MW, Falk ID, Ikemoto H, Burns NZ, A convenient C–H functionalization platform for pyrroloiminoquinone alkaloid synthesis, *Tetrahedron* (2019), doi: https://doi.org/10.1016/j.tet.2019.05.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract:

A Convenient C-H Functionalization Platform for Pyrroloiminoquinone Alkaloid Synthesis

Myles W. Smith, Isaac D. Falk, Hideya Ikemoto and Noah Z. Burns*

Department of Chemistry, Stanford University, Stanford, California 94305, United States

Abstract: Pyrroloiminoquinone alkaloids represent a structurally intriguing class of natural products that display an array of useful biological properties. Here, we present a versatile and scalable platform for the synthesis of this diverse family – and in particular the antitumor discorhabdins – built upon sequential selective C–H functionalization of tryptamine. The utility of this strategy is showcased through short formal syntheses of damirones A–C, makaluvamines D and I, and discorhabdin E. Additionally, we describe efforts to develop the first catalytic asymmetric entry to the discorhabdin subclass.

Alkaloids have long captured the imagination of synthetic chemists and medical practitioners alike due to the challenge their intricate structures present and the wide array of useful biological properties often encoded therein.¹ Among this large collection of natural products, the pyrroloiminoquinone alkaloids represent a unique subset of structural complexity. These compounds are typically isolated from marine sources and encompass many diverse classes, such as the discorhabdins, makaluvamines, and damirones (Figure 1), displaying antitumor, antimalarial, antiviral, antifeedant and antibacterial properties.² Within this larger group of alkaloids, arguably the most complex and interesting biologically are the discorhabdins, a family of over 50 members isolated from various species of marine sponge.³ The discorhabdins display noteworthy anticancer activities, with nanomolar cytotoxicity (IC₅₀ often <50 nM) being observed *in vitro* against a range of cancer cell lines; however, *in vivo* studies have proven less promising, either due to compound instability or nonspecific cytotoxicity.^{3,4,5} For this reason, a flexible de novo synthetic entry to the family would be desirable for detailed SAR studies,⁵ ideally allowing their selectivity, profile to be fine-tuned while.

selectivity profile to be fine-tuned while also providing access to related pyrroloiminoquinone targets.

Structurally, the discorhabdins contain a unique polycyclic framework, comprising a tricyclic pyrroloiminoquinone ring system fused to a spirodienone fragment via a quaternary stereogenic spirocenter, as exemplified in discorhabdin E^6 (1, Figure complex members feature 1). More additional ring systems (e.g., 4, 5) and the class as a whole contains an impressive array of heteroatoms, with nitrogen, sulfur, all bromine and oxygen substituents commonly found within the same molecule. Of note is the particularly challenging arrangement of N-atoms in the pyrroloiminoquinone portion of the molecules, which results in a highly basic doubly vinylogous guanidinine (i.e. 7); in fact, such substructures have typically required more than 10 steps to construct.³

Biosynthetically, these natural products are postulated to arise from the combination of two amino acid-derived fragments: tryptamine (9) and tyramine (10), which Figure 1. Representative pyrroloiminoquinone alkaloids.

form makaluvamine-type structures (e.g., **2**, Figure 1) that are in turn spirocyclized to the discorbabins (e.g., discorbabdin C **11**, Scheme 1A).³ Indeed, while there have been many creative approaches to these molecules,⁷ the majority of successful synthetic efforts have followed this biomimetic blueprint. For

Scheme 1. (A) Proposed biosynthetic origins, notable prior art, (B) our approach to the discorhabdins.

framework of the natural product damirone C^{15} (3). In contrast to the relatively lengthy prior syntheses of tricycles of type 3A,¹⁶ we sought to streamline our preparation of this key fragment by beginning with the readily available, unsubstituted tryptamine scaffold, and simply installing the necessary carbon-heteroatom bonds through selective C–H oxidations. Importantly, 3A could also serve as a versatile intermediate for accessing other classes of pyrroloiminoquinone alkaloids (see Figure 1). Herein, we

re have been many creative approaches to these have followed this biomimetic blueprint. For example, notable work from the Kita and Heathcock groups involved synthesizing makaluvamine-type structures **12** from simple aromatic building blocks which are then oxidatively spirocyclized under hypervalent iodine(III) or aerobic copper-mediated conditions en route to discorhabdins C (**11**),^{8,9,10} E (**1**),¹⁰ and A (**4**)¹¹ (Scheme 1A).

In planning our own bioinspired approach to these important targets, we noted two key areas in these prior studies where significant improvement might be possible: first, while effective in their sequential highly transformation of oxidized tryptamine fragments to makaluvamine-type intermediates spirocyclic compounds, these routes to invested the majority of their synthetic effort in preparation of such tryptamine frameworks, typically via lengthy de novo sequences from simple aromatics (Scheme 1A).⁸⁻¹¹ Second, no enantioselective approach to the family has been described to date,¹² meaning that a catalytic asymmetric entry to the class could prove especially enabling. Given our lab's interest in both catalytic asymmetric halofunctionalization transformations¹³ and novel synthetic strategies enabled by C-H functionalization,¹⁴ we formulated a plan towards one of the prototypical chiral discorhabdin members of the family. discorhabdin E (1). As outlined in Scheme 1B, we hoped to set the chirality of its lone stereocenter through the development of either spirocyclization asymmetric of an а brominated makaluvamine-type precursor 13 brominative (X = Br) or via а desymmetrization of achiral spirodienone 14, also available from a similar precursor (13, X = H). We postulated that 13 could be formed through a condensation reaction between an appropriate tyramine partner 10A and an orthoquinone tricycle 3A, encompassing the

report the execution of this plan, resulting in convenient, scalable access to such an intermediate, along with our efforts to develop the first catalytic asymmetric entry to the discorhabdins as a prelude to optimizing their antitumor properties.

Our route began with the quantitative N-Boc-protection of tryptamine (9), followed by the application of a modified one-pot C-H diborylation/monodeborylation procedure under Ir- and Pd-catalysis, developed by Movassaghi and co-workers (Scheme 2).¹⁷ This process proceeds via diborylated intermediate 15 and achieves the net installation of a C-7 Bpin substituent, which could be easily transformed to the corresponding phenol through treatment with alkaline H_2O_2 to deliver 17 in 56% overall yield from tryptamine. This sequence proved highly scalable and was reliably conducted on decagram quantities of 17 with little variation in yield. With a C-7 phenol in place, selective oxidation to the corresponding orthoquinone 18A with IBX proceeded effectively,¹⁸ with this being the first demonstration of this process in an indole setting to the best of our knowledge. Although precedent exists for cyclization of tryptamine orthoquinones similar to 18A under basic aerobic conditions, ^{16b-d,f} our efforts to cyclize the corresponding amine salts (available from acidic N-Boc deprotection), routinely resulted in extensive decomposition, with no damirone C(3) being isolated. We found, however, that protection of the indole nitrogen of 18A with a tosyl group (62% over two steps from phenol 17) gave a material (18B) that could be cleanly converted to tricycle 19 in 48% yield by treatment with TFA, evaporation of the volatiles, and exposure to Et₃N in MeOH under air.¹⁹ This protocol can reliably be conducted on gram scale, and to date we have prepared over 2.5 g of 19. Indeed, the synthesis of 19 in 6 steps and 15% overall yield from tryptamine represents the shortest preparation of this material to date (15 steps previously),^{16a} and also constitutes the formal synthesis of several pyrroloiminoquinone alkaloids including damirones A-C and makaluvamines D and I.¹⁶ Furthermore, we found that **19** could be condensed with tyramine fragments **10** and 10A under mild conditions to give makaluvamine-type compounds 2A and 20 in 71 and 29% yield, respectively (Scheme 3). In these reactions, careful control of reaction time and purification was important for maximizing material throughput; even so, achieving high conversions in the brominated series proved unexpectedly challenging. We observed that longer reaction times led to competitive degradation of both 20 and its condensation product. One such identified pathway was transfer of the

Scheme 2. Synthesis of Ts-damirone C via sequential C-H functionalization of tryptamine.

toluenesulfonyl group from the indole nitrogen to the primary amine.²⁰

While the preparation of **20** constituted a racemic formal synthesis of discorhabdin E (1),¹⁰ we aimed to provide an asymmetric entry to the family. It should be noted, however, that the properties of compounds post condensation rendered the development of such a process challenging, with the basic and heteroatom-rich scaffolds limiting the choice of strategies or, in the case of polar salt forms of **20** (and

Scheme 3. Preparation of makaluvamine-type materials and attempted transformations to enantioenriched spirocycle. **21**), solvents. While our initial efforts focusing on an asymmetric spirocyclization of 2A and 20 were largely unfruitful, explorations of a brominative desymmetrization approach on spirodienone 21 proved more rewarding. This material was reliably prepared in 74% yield by treatment of 2A under conditions of Kita et al. employing PIFA and Montmorillonite K-10 clay in 2,2,2-trifluoroethanol.¹¹

Cu-Although the aerobic conditions¹⁰ based of Aubart Heathcock and provided high yields of 21 on small scale (<50 mg of 2A), in our hands their method proved much less effective on scaleup. Initial attempts at effecting the desired bromination of 21 showed that this could be readily accomplished in a racemic sense using n-Bu₄NBr₃ (66% yield of rac-

1A). In contrast, achieving an analogous enantioselective transformation proved challenging. For example, while explorations in a model system showed organocatalytic methods to be viable, the complications inherent to the structure of 21 (either as its TFA salt or free base) led to no productive reactivity. Efforts to condense chiral auxiliaries such as (S)-1-amino-2-methoxymethylpyrrolidine (SAMP) onto the ketone were unfortunately unsuccessful. Similarly, attempted bromination of chiral salt forms of 21 (formed from 21 and an equivalent amount of chiral phosphoric acid) delivered the desired product in poor yield and with no enantioselectivity.

Given these failures, we then proceeded to explore Baylis–Hillman-type brominations with an appropriate combination of nucleophile and brominating reagent. Inspired by a recent report by Feng and co-workers on the asymmetric haloazidation of acyclic enones,²¹ we found in initial trials that the combination of TMS azide and NBS as nucleophile and bromonium source, respectively, in the presence of a catalytic amount of Sc(OTf)₃ delivered *rac*-**1A** directly (34%, 43% **21** recovered) without isolation of the intermediate bromoazide. We then proceeded to test various combinations of Lewis acidic metals and chiral ligands (see SI for details) in this process. Among the many systems screened, we ultimately found that treatment of **21** with TMS azide and NBS in the presence of a combination of Sc(OTf)₃ and chiral *N*,*N*'-dioxide ligand **22**²² (30 mol% of each) in CH₂Cl₂ at -30 °C with 4Å MS provided the desired bromoenone **1A** in 23% yield and 33% ee. The use of other Br⁺ sources (e.g. NBA, DBDMH, TBCHD, BsNMeBr; for a complete list, see Supporting Information), nucleophiles (TsNH₂, *p*-NsNH₂)²³ and various solvents did not improve the enantioinduction (see SI for full details). While the selectivity achieved to date is admittedly moderate, it is important to note that this nevertheless represents the first catalytic asymmetric inroad towards the discorhabdin family, hinting at the challenge posed by their unique scaffolds.

In summary, we have described a short and scalable entry to the pyrroloiminoquinone alkaloids via a key tricyclic intermediate, available through a series of selective C–H functionalization reactions on the parent tryptamine framework. Through this synthetic platform we have achieved concise formal syntheses of damirones A–C, makaluvamines D and I, and discorhadbin E. Finally, we have disclosed our preliminary efforts toward a catalytic asymmetric solution to the discorhabdin alkaloids, providing the key spirocycle of discorhadbin E with moderate enantioselectivity. It is our hope that the tools and strategies presented herein will prove useful in future synthetic endeavors toward this broad class of bioactive alkaloids.

Acknowledgments: This work was supported by Stanford University and the National Institutes of Health (R01 GM114061). We are grateful to Dr. S. Lynch (Stanford University) for assistance with NMR spectroscopy.

References:

- (a) Nicolaou, K. C.; Sorensen, E. J. *Classics in Total Synthesis: Targets, Strategies, Methods; VCH: Weinheim, 1996;* (b) Schmeller, T.; Wink, M. Utilization of Alkaloids in Modern Medicine. In *Alkaloids;* Roberts M. F.; Wink, M., Eds; Springer: Boston, MA, 1998; (c) Nicolaou, K. C.; Snyder, S. A.; *Classics in Total Synthesis II: More Targets, Strategies, Methods;* Wiley-VCH: Weinheim, 2003; (d) *Modern Alkaloids: Structure, Isolation, Synthesis, and Biology;* Fattorusso, E.; Taglialatela-Scafati, O., Eds; Wiley-VCH: Weinheim, 2008.
- For reviews, see: (a) Antunes, E. M.; Copp, B. R.; Davies-Coleman, M. T.; Samaai, T. Pyrroloiminoquinone and related metabolites from marine sponges. *Nat. Prod. Rep.* 2005, 22, 62–72; (b) Hu, J.-F.; Fan, H.; Xiong, J.; Wu, S.-B. Discorhabdins and Pyrroloiminoquinone-Related Alkaloids. *Chem. Rev.* 2011, *111*, 5465–5491.
- 3. For reviews, see: (a) Harayama, Y.; Kita, Y. Pyrroloiminoquinone Alkaloids: Discorhabdins and Makaluvamines *Current Organic Chemistry*, **2005**, *9*, 1567–1588; (b) Wada, Y.; Fujioka, H.; Kita, Y. Synthesis of the Marine Pyrroloiminoquinone Alkaloids, Discorhabdins. *Mar. Drugs* **2010**, *8*, 1394–1416.
- (a) Perry, N. B.; Blunt, J. W.; Munro, M. H.G. Cytotoxic Pigments from New Zealand Sponges of the Genus *Latrunculia*: Discorhabdins A, B, and C. *Tetrahedron* 1988, 44, 1727-1734. (b) Perry, N. B.; Blunt, J. W.; Munro, M. H.G.; Discorhabdin D, an Antitumor Alkaloid from the Sponges *Latrunculia brevis* and *Prianos* sp. *J. Org. Chem.* 1988, 53, 4127-4128. (c) Hamann, M. T., *et al.* Anti-infective Discorhabdins from a Deep-Water Alaskan Sponge of the Genus *Latrunculia. J. Nat. Prod.* 2010, 73, 383-387.
- 5. Kita, Y.; *et al.* The Synthetic and Biological Studies of Discorhabdins and Related Compounds. *Org. Biomol. Chem.* **2011**, *9*, 4959–4976.
- 6. For its isolation, see: Copp, B. R.; Fulton, K. F.; Perry, N. B.; Blunt, J. W.; Munro, M. H. G. Natural and Synthetic Derivatives of Discorhabdin C, a Cytotoxic Pigment from the New Zealand Sponge *Latrunculia* cf. bocagei. *J. Org. Chem.* **1994**, *59*, 8233–8238.
- For formal syntheses of discorhabdin C (11), see: (a) White, J. D.; Yager, K. M.; Yakura, T. Synthetic Studies of the Pyrroloquinoline Nucleus of the Makaluvamine Alkaloids. Synthesis of the Topoisomerase II Inhibitor Makaluvamine D. J. Am. Chem. Soc. 1994, 116, 1831–1838; (b) Sadanandan, E. V.; Pillai, S. K.; Lakshmikantham, M. V.; Billimoria, A. D.; Culpepper, J. S.; Cava, M. P. Efficient Syntheses of the Marine Alkaloids Makaluvamine D and Discorhabdin C: The 4,6,7-Trimethoxyindole Approach. J. Org. Chem. 1995, 60, 1800–1805; (c) Roberts, D.; Joule, J. A. Synthesis of Pyrrolo[4,3,2-de]quinolines from 6,7-Dimethoxy-4-methylquinoline. Formal Total Syntheses of Damirones A and B, Batzelline C, Isobatzelline C, Discorhabdin C, and Makaluvamines A–D. J. Org. Chem. 1997, 62, 568–577; (d) Zhao, R.; Lown, J. W. A Concise Synthesis of the Makaluvamine Alkaloids. Synth. Commun., 1997, 27, 2103–2110. For studies towards the discorhabdins, see: (e) Kublak, G. G.; Confalone, P. N. The Preparation of the Aza-spirobicyclic System of Discorhabdin C via an Intramolecular Phenolate Alkylation.

Tetrahedron Lett. **1990**, *31*, 3845–3848; (f) Confalone, P. N. The Use of Heterocyclic Chemistry in the Synthesis of Natural and Unnatural Products. *J. Heterocycl. Chem.* **1990**, 27, 31–46; (g) Knölker, H.-J.; Hartmann, K. Transition Metal-Diene Complexes in Organic Synthesis; Part 8. Iron-Mediated Approach to the Discorhabdin and Prianosin Alkaloids. Synlett **1991**, 6, 428–430; (h) Makosza, M.; Stalewski, J.; Maslennikova, O. S. Synthesis of 7,8-Dimethoxy-2-oxo-1,3,4,5-tetrahydropyrrolo[4,3,2-de]quinoline: A Key Intermediate en Route to Makaluvamines, Discorhabdin C and Other Marine Alkaloids of this Group via Vicarious Nucleophilic Substitions of Hydrogen. Synthesis **1997**, 10, 1131–1133.

- 8. Kita, Y.; Tohma, H.; Inagaki, M.; Hatanaka, K.; Yakura, T. Total Synthesis of Discorhabdin C: A General Aza Spiro Dienone Formation from O-Silylated Phenol Derivatives using a Hypervalent Iodine Reagent. J. Am. Chem. Soc. **1992**, *114*, 2175–2180.
- 9. For the Yamamura synthesis of **11** using anodic oxidation, see: Tao, X. L.; Cheng, J.-F.; Nishiyama, S.; Yamamura, S. Synthetic Studies on Tetrahydropyrroloquinoline-containing Natural Products: Syntheses of Discorhabdin C, Batzelline C and Isobatzelline C. *Tetrahedron* **1994**, *50*, 2017–2028.
- 10. Aubart, K. M.; Heathcock, C. H. A Biomimetic Approach to Discorhabdin Alkaloids: Total Syntheses of Discorhabdins C and E and Dethiadiscorhabdin D. J. Org. Chem. **1999**, 64, 16–22.
- (a) Tohma, H.; Harayama, Y.; Hashizume, M.; Iwata, M.; Egi, M.; Kita, Y. Synthetic Studies on the Sulfur-Cross-Linked Core of Antitumor Marine Alkaloid, Discorhabdins: Total Synthesis of Discorhabdin A. *Angew. Chem. Int. Ed.* **2002**, *41*, 348–350; (b) Tohma, H.; Harayama, Y.; Hashizume, M.; Iwata, M.; Kiyono, Y; Egi, M.; Kita, Y. The First Total Synthesis of Discorhabdin A. *J. Am. Chem. Soc.* **2003**, *125*, 11235–11240.
- 12. The only asymmetric synthesis of a family member to date is Kita's synthesis of discorhabdin A (ref. 10), which relied on a diastereoselective spirocyclization (optimal dr = 4.8:1) controlled by the chirality of a tyrosine-derived precursor.
- (a) Hu, D. X.; Shibuya, G. M.; Burns, N. Z. Catalytic Enantioselective Dibromination of Allylic Alcohols. J. Am. Chem. Soc. 2013, 135, 12960–12963; (b) Hu, D. X.; Seidl, F. J.; Bucher, C.; Burns, N. Z. Catalytic Chemo-, Regio-, and Enantioselective Bromochlorination of Allylic Alcohols. J. Am. Chem. Soc. 2015, 137, 3795–3798; (c) Landry, M. L.; Burns, N. Z. Catalytic Enantioselective Dihalogenation in Total Synthesis. Acc. Chem. Res. 2018, 51, 1260–1271; (d) Seidl, F. J.; Min, C.; Lopez, J. A.; Burns, N. Z. Catalytic Regio- and Enantioselective Haloazidation of Allylic Alcohols. J. Am. Chem. Soc. 2018, 2018, 140, 15646–15650.
- Mercer, J. A. M.; Cohen, C. M.; Shuken, S. R.; Wagner, A. M.; Smith, M. W.; Moss, F. R.; Smith, M. D.; Vahala, R.; Gonzalez-Martinez, A.; Boxer, S. G.; Burns, N. Z. Chemical Synthesis and Self-assembly of a Ladderane Phospholipid. *J. Am. Chem. Soc.* 2016, *138*, 15845–15848.
- 15. For its isolation, see: Schmidt, E. W.; Harper, M. K.; Faulkner, D. J. Makaluvamines H–M and Damirone C from the Pohnpeian Sponge Zyzzya fuliginosa. *J. Nat. Prod.*, **1995**, *58*, 1861–1867.
- (a) Inoue, K.; Ishikawa, Y.; Nishiyama, S. Synthesis of Tetrahydropyrroloiminoquinone Alkaloids Based on Electrochemically Generated Hypervalent Iodine Oxidative Cyclization. Org. Lett. 2010, 12, 436–439. For the synthesis of similar scaffolds with additional substituents, see: (b) Baumann, C.; Brockelmann, M; Fugmann, B.; Steffan, B; Steglich, W.; Sheldrick, W. S. Haematopodin, an Unusual Pyrroloquinoline Derivative Isolated from the Fungus Mycena haematopus, Agaricales. Angew Chem. Int. Ed. 1993, 32, 1087–1089; (c) Sadanandan, E. V.; Cava, M. P. Total Syntheses of Damirone A and Damirone B. Tetrahedron Lett. 1993, 34, 2405–2408; (d) Wang, H.; Al-Said, N. H.; Lown, J. W. Convenient Syntheses of Pyrroloiminoquinone and its Lexitropsin-linked Derivative. Tetrahedron Lett. 1994, 35, 4085–4086; (e) Roberts, D.; Venemalm, L.; Alvarez, M.; Joule, J. A. Synthesis of Damirones A and B from a Quinoline. Tetrahedron Lett. 1994, 35, 7857–7860; (f) Backenkohler, J.; Reck, B.; Plaumann, M.; Spiteller; P. Total Synthesis of Mycenarubin A, Sanguinolentaquinone and Mycenaflavin B and their Cytotoxic Activities. Eur. J. Org. Chem. 2018, 2806–2816.
- 17. Loach, R. P.; Fenton, O. S.; Amaike, K.; Siegel, D. S.; Ozkal, E.; Movassaghi, M. C7-Derivatization of C3-Alkylindoles Including Tryptophans and Tryptamines. *J. Org. Chem.* **2014**, *79*, 11254–11263.

- 18. Magdziak, D.; Rodriguez, A. A.; Van De Water, R. W. Pettus, T. R. R. Regioselective Oxidation of Phenols to *o*-Quinones with *o*-Iodoxybenzoic Acid (IBX). *Org. Lett.* **2002**, *4*, 285–288.
- 19. Some loss of material was observed when compound **17** was subjected to silica gel chromatography, with crude yields of **17** (pure by ¹H NMR) after work-up at □70–75%. However, we observed that chromatographed **17** performed better in the subsequent condensation reactions.
- 20. It is possible in this case that the more acidic brominated phenol results in a greater amount of a zwitterionic form of bromotyramine **10A**, rendering it less nucleophilic. Efforts to employ basic additives or the *O*-TBS variant of **10A** led to little improvement, however.
- Zhou, P.; Lin, L.; Chen, L.; Zhong, X.; Liu, X.; Feng, X. Iron-Catalyzed Asymmetric Haloazidation of α,β-Unsaturated Ketones: Construction of Organic Azides with Two Vicinal Stereocenters. J. Am. Chem. Soc. 2017, 139, 13414–13419.
- 22. Liu, X.; Lin, L.; Feng, X. Chiral *N*,*N*'-Dioxides: New Ligands and Organocatalysts for Catalytic Asymmetric Reactions. *Acc. Chem. Res.* **2011**, *44*, 574–587.
- 23. Cai, Y.; Liu, X.; Hui, Y.; Jiang, J.; Wang, W.; Chen, W.; Lin, L.; Feng, X. Catalytic Asymmetric Bromoamination of Chalcones: Highly Efficient Synthesis of Chiral α-Bromo-β-Amino Ketone Derivatives. *Angew. Chem. Int. Ed.* **2010**, *49*, 6160–6164.