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A Convenient C—H Functionalization Platform for Pyoloiminoquinone Alkaloid Synthesis
Myles W. Smith, Isaac D. Falk, Hideya Ikemoto armabN Z. Burns*
Department of Chemistry, Stanford University, Steshf California 94305, United States

Abstract: Pyrroloiminoquinone alkaloids represent a strudkyiiatriguing class of natural products that
display an array of useful biological propertiegrél we present a versatile and scalable platforrthe
synthesis of this diverse family — and in particulae antitumor discorhabdins — built upon seqaénti
selective C—H functionalization of tryptamine. Th#lity of this strategy is showcased through short
formal syntheses of damirones A—C, makaluvamineand |, and discorhadbin E. Additionally, we
describe efforts to develop the first catalyticramyetric entry to the discorhabdin subclass.

Alkaloids have long captured the imagination oftegtic chemists and medical practitioners alike ue
the challenge their intricate structures presewt e wide array of useful biological propertieseof
encoded thereih.Among this large collection of natural productse tpyrroloiminoquinone alkaloids
represent a unique subset of structural compleXitese compounds are typically isolated from marine
sources and encompass many diverse classes, stloh discorhabdins, makaluvamines, and damirones
(Figure 1), displaying antitumor, antimalarial, igintl, antifeedant and antibacterial properfiéa/ithin

this larger group of alkaloids, arguably the mostmplex and interesting biologically are the
discorhabdins, a family of over 50 members isolafien various species of marine sporigéhe
discorhabdins display noteworthy anticancer adtisjtwith nanomolar cytotoxicity (kg often <50 nM)
being observedh vitro against a range of cancer cell lines; howewenivo studies have proven less
promising, either due to compound instability onspecific cytotoxicity***° For this reason, a flexible de
novo synthetic entry to the family would be dedieafor detailed SAR studiesideally allowing their
selectivity profile to be fine-tuned while

also providing access to

L . rela‘teg'igure 1. Representative pyrroloiminoquinone alkaloids.
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form makaluvamine-type structures (e3.Figure 1) that are in turn spirocyclized to thecdrhabins
(e.g., discorhabdin @1, Scheme 1A¥.Indeed, while there have been many creative aphesato these
molecules, the majority of successful synthetic efforts hduowed this biomimetic blueprint. For

Scheme 1. (A) Proposed biosynthetic origins, notable prior art,
(B) our approach to the discorhabdins.
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example, notable work from the Kita and
Heathcock groups involved synthesizing
makaluvamine-type structurd® from simple
aromatic building blocks which are then
oxidatively spirocyclized under hypervalent
iodine(lll) or aerobic copper-mediated
conditions en route to discorhabdins C
(12),2°1°E (1),"°and A @)** (Scheme 1A).

In planning our own bioinspired approach to
these important targets, we noted two key
areas in these prior studies where significant
improvement might be possible: first, while
highly effective in their sequential
transformation of oxidized tryptamine
fragments to makaluvamine-type intermediates
to spirocyclic compounds, these routes
invested the majority of their synthetic effort
in preparation of such tryptamine frameworks,
typically via lengthy de novo sequences from
simple aromatics (Scheme 1A} Second, no
enantioselective approach to the family has
been described to dafe,meaning that a
catalytic asymmetric entry to the class could
prove especially enabling. Given our lab’s
interest in both catalytic asymmetric
halofunctionalization transformatioris and
novel synthetic strategies enabled by C-H
functionalization;’ we formulated a plan
towards one of the prototypical chiral
members of the discorhabdin family,
discorhabdin EX). As outlined in Scheme 1B,
we hoped to set the chirality of its lone
stereocenter through the development of either
an asymmetric spirocyclization of a
brominated makaluvamine-type precursid®

(X = Br) or via a brominative
desymmetrization of achiral spirodienofé,
also available from a similar precursdBy X

= H). We postulated thdt3 could be formed
through a condensation reaction between an
appropriate tyramine partnetOA and an
orthoquinone tricycle3A, encompassing the

framework of the natural product damiron® (3). In contrast to the relatively lengthy prior syeses of
tricycles of type3A,*® we sought to streamline our preparation of thisfkagment by beginning with the
readily available, unsubstituted tryptamine scafffoand simply installing the necessary carbon—
heteroatom bonds through selective C—-H oxidatibmportantly, 3A could also serve as a versatile
intermediate for accessing other classes of pyimimquinone alkaloids (see Figure 1). Herein, we



report the execution of this plan, resulting in wement, scalable access to such an intermedilateg a
with our efforts to develop the first catalytic asyetric entry to the discorhabdins as a prelude to
optimizing their antitumor properties.

Our route began with the quantitatiMeBoc-protection of tryptamined), followed by the application of a
modified one-pot C—H diborylation/monodeborylatigmocedure under Ir- and Pd-catalysis, developed by
Movassaghi and co-workers (Scheme’2Jhis process proceeds via diborylated intermedi&t@and
achieves the net installation of a C-7 Bpin substit, which could be easily transformed to the
corresponding phenol through treatment with allaliO, to deliver 17 in 56% overall yield from
tryptamine. This sequence proved highly scalabtkévaas reliably conducted on decagram quantities of
17 with little variation in yield. With a C-7 phenah place, selective oxidation to the corresponding
orthoquinone18A with IBX proceeded effectivelif with this being the first demonstration of this
process in an indole setting to the best of oumkedge. Although precedent exists for cyclizatidn o
tryptamine orthoquinones similar &8A under basic aerobic conditiof§%' our efforts to cyclize the
corresponding amine salts (available from aciiBoc deprotection), routinely resulted in extensive
decomposition, with no damirone @) (being isolated. We found, however, that protectié the indole
nitrogen of18A with a tosyl group (62% over two steps from phel®lgave a materiall@B) that could

be cleanly converted to tricycl® in 48% yield by treatment with TFA, evaporationtoé volatiles, and
exposure to EN in MeOH under ait? This protocol can reliably be conducted on graatesand to date
we have prepared over 2.5 g 18. Indeed, the synthesis &9 in 6 steps and 15% overall yield from
tryptamine represents the shortest preparatiomisfrhaterial to date (15 steps previousfand also
constitutes the formal synthesis of several pymailooquinone alkaloids including damirones A—-C and
makaluvamines D and'{.Furthermore, we found th® could be condensed with tyramine fragmeifts
and 10A under mild conditions to give makaluvamine-typenpounds2A and20 in 71 and 29% vyield,
respectively (Scheme 3). In these reactions, chmduatrol of reaction time and purification was
important for maximizing material throughput; evem, achieving high conversions in the brominated
series proved unexpectedly challenging. We obsethatl longer reaction times led to competitive
degradation of botl20 and its condensation product. One such identifiathway was transfer of the

Scheme 2. Synthesis of Ts-damirone C via sequential C—H functionalization of tryptamine.
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toluenesulfonyl group from the indole nitrogenhe primary aminé®

While the preparation a0 constituted a racemic formal synthesis of discodiaE (1),"° we aimed to
provide an asymmetric entry to the family. It skibbe noted, however, that the properties of comgeun
post condensation rendered the development of sugbrocess challenging, with the basic and
heteroatom-rich scaffolds limiting the choice afagtgies or, in the case of polar salt form2@fand



Scheme 3. Preparation of makaluvamine-type materials and attempted transform-
ations to enantioenriched spirocycle.
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21), solvents. While our initial
efforts focusing on an
asymmetric  spirocyclization
of 2A and 20 were largely
unfruitful, explorations of a
brominative desymmetrization
approach on spirodienorizl
proved more rewarding. This
material was reliably prepared
in 74% vyield by treatment of
2A under conditions of Kita et
al. employing PIFA and
Montmorillonite K-10 clay in
2,2,2-trifluoroethanot’
Although the aerobic Cu-
based conditiod8  of
Heathcock and Aubart
provided high yields o1 on
small scale (<50 mg @A), in
our hands their method proved
much less effective on scale-
up. Initial attempts at effecting
the desired bromination &1
showed that this could be
readily accomplished in a
racemic sense usingn-
BusNBr; (66% vyield of rac-

1A). In contrast, achieving an analogous enantioSeéedransformation proved challenging. For
example, while explorations in a model system shbweganocatalytic methods to be viable, the
complications inherent to the structure 24f (either as its TFA salt or free base) led to nodpctive

reactivity. Efforts to condense chiral auxiliariesich as $)-1-amino-2-methoxymethylpyrrolidine
(SAMP) onto the ketone were unfortunately unsudoésSimilarly, attempted bromination of chiral sal
forms of 21 (formed from21 and an equivalent amount of chiral phosphoric)agdéalivered the desired

product in poor yield and with no enantioselectivit

Given these failures, we then proceeded to exfBasdis—Hillman-type brominations with an appropeiat
combination of nucleophile and brominating reagérgpired by a recent report by Feng and co-workers
on the asymmetric haloazidation of acyclic endfese found in initial trials that the combination of
TMS azide and NBS as nucleophile and bromoniumcsyuespectively, in the presence of a catalytic
amount of Sc(OTf delivered rac-1A directly (34%, 43%21 recovered) without isolation of the
intermediate bromoazide. We then proceeded toverébus combinations of Lewis acidic metals and
chiral ligands (see Sl for details) in this processiong the many systems screened, we ultimatelgdo
that treatment o021 with TMS azide and NBS in the presence of a coatimn of Sc(OTf) and chiral
N,N’-dioxide ligand22?? (30 mol% of each) in C}€l, at —30 °C with 4A MS provided the desired
bromoenondaA in 23% yield and 33% ee. The use of other &urces (e.g. NBA, DBDMH, TBCHD,
BsNMeBr; for a complete list, see Supporting Infation), nucleophiles (TsNH p-NsNH,)* and
various solvents did not improve the enantioindurct{see Sl for full details). While the selectivity
achieved to date is admittedly moderate, it is irtau to note that this nevertheless representsirte
catalytic asymmetric inroad towards the discorhalfdimily, hinting at the challenge posed by their

unique scaffolds.



In summary, we have described a short and scadaittg to the pyrroloiminoquinone alkaloids via ayke
tricyclic intermediate, available through a senéselective C—H functionalization reactions on plagent
tryptamine framework. Through this synthetic platfiowe have achieved concise formal syntheses of
damirones A-C, makaluvamines D and |, and discdyimald. Finally, we have disclosed our preliminary
efforts toward a catalytic asymmetric solutionte discorhabdin alkaloids, providing the key spjyabe

of discorhadbin E with moderate enantioselectivitys our hope that the tools and strategies mteske
herein will prove useful in future synthetic endesstoward this broad class of bioactive alkaloids.
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