
Subscriber access provided by UNIV OF NEBRASKA - LINCOLN

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155
Sixteenth Street N.W., Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Article

Gramine derivatives targeting Ca
2+

 channels and Ser/Thr phosphatases:
a new dual strategy for the treatment of neurodenerative diseases
Rocío Lajarín-Cuesta, Carmen Nanclares, Juan Alberto Arranz-Tagarro, Laura González-

Lafuente, Raquel L Arribas, Monique Araújo de Brito, Luis Gandia, and Cristóbal de los Ríos
J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.6b00478 • Publication Date (Web): 09 Jun 2016

Downloaded from http://pubs.acs.org on June 15, 2016

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a free service to the research community to expedite the
dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts
appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been
fully peer reviewed, but should not be considered the official version of record. They are accessible to all
readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered
to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published
in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just
Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor
changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers
and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors
or consequences arising from the use of information contained in these “Just Accepted” manuscripts.



  

Gramine derivatives targeting Ca2+ channels and 

Ser/Thr phosphatases: a new dual strategy for the 

treatment of neurodegenerative diseases  

Rocío Lajarín-Cuesta,
†
 Carmen Nanclares,

†
 Juan-Alberto Arranz-Tagarro,

†
 Laura González-

Lafuente,
‡,∥ Raquel L. Arribas,

†
 Monique Araujo de Brito,

§
 Luis Gandía,

†
 Cristóbal de los 

Ríos*
,†,‡ 

†Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de 

Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain 

§Programa de Pós Graduação em Ciências Aplicadas a Produtos Para a Saúde, Faculdade de 

Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brasil 

‡Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de 

la Princesa, C/ Diego de León, 62, 28006 Madrid, Spain 

  

Page 1 of 72

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

ABSTRACT  

We describe the synthesis of gramine derivatives and their pharmacological evaluation as 

multipotent drugs for the treatment of Alzheimer´s disease. An innovative multitarget approach 

is presented, targeting both voltage-gated Ca2+ channels, classically studied for 

neurodegenerative diseases, and Ser/Thr phosphatases, which have been marginally aimed, even 

despite their key role in protein τ dephosphorylation. Twenty five compounds were synthesized 

and mostly their neuroprotective profile exceeded that offered by the head compound gramine. In 

general, these compounds reduced the entry of Ca2+ through VGCC, as measured by Fluo-4/AM 

and patch clamp techniques, and protected in Ca2+ overload-induced models of neurotoxicity, 

like glutamate or veratridine exposures. Furthermore, we hypothesize that these compounds 

decrease τ hyperphosphorylation based on the maintenance of the Ser/Thr phosphatase activity 

and their neuroprotection against the damage caused by okadaic acid. Hence, we propose this 

multitarget approach as a new and promising strategy for the treatment of neurodegenerative 

diseases. 
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Introduction 

Over a hundred years after Alois Alzheimer reported his observations describing a new 

neurodegenerative disease,1 the battery of clinically approved drugs available to treat 

Alzheimer’s disease (AD) patients is scarce and inefficient. Nowadays, AD patients are 

addressed with three cholinesterases (ChE) inhibitors (galantamine, donepezil, and rivastigmine), 

and memantine, a N-methyl-D-aspartate (NMDA) glutamate receptor blocker.2 The former 

augments the levels of the neurotransmitter acetylcholine at the cholinergic synapsis, under the 

rationale of the so-called “cholinergic hypothesis”.3 Memantine avoids the altered Ca2+ uptake by 

neurons through the NMDA-sensitive ionic channel-coupled receptor, relying on the theory that 

all neurodegenerative diseases present an imbalanced Ca2+ homeostasis,3 so the reduction of the 

cytosolic Ca2+ concentration in neurons could slow down the progression of such diseases. 

Attempts to discover better drugs acting on any of these therapeutic targets have failed.4 

Targeting the best-documented pathophysiological hallmarks of AD, that are senile plaques, 

mainly formed by the amyloid β peptide (Aβ),5 and neurofibrillary tangles (NFT) generated by 

the aggregation of the hyperphosphorylated microtubule-stabilizing τ protein,6 neither have 

supplied more successful therapies. To face amyloidogenesis, several strategies have been 

studied, e.g. compounds inhibiting the synthesis of Aβ (α-secretase activators, both β- and γ-

secretase inhibitors, among others) or its aggregation.7 As far as the τ-induced NFT formation, 

less work, but not negligible, has been carried out, mainly devoted to the preparation of kinase 

enzymes inhibitors, with the goal of hindering the hyperphosphorylation of τ, as the more 

phosphorylated τ protein is, the more susceptibility to its self-aggregation into NFT.8-9 
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Nevertheless, few of these approaches have supplied drugs eligible to be studied in clinical trials 

for AD. Many reasons could explain the lack of promising drugs for AD, but it seems quite 

likely that, as other neurodegenerative diseases, AD features a multifactorial origin, where 

various physiopathological events participate in the neuronal damage that leads to AD.10 Such 

hypothesis gave rise to the multi-target approach in drug discovery, which postulates that a drug, 

or the association of drugs, acting on two or more different biological targets that operate in the 

pathological process, could present a more beneficial effect on AD patients than a highly potent 

single-targeting drug.11 Hence, during the last decade, a plethora of multi-target drug-based 

strategies have been described, by combining pharmacological interventions over ChE enzymes, 

Aβ peptides or the τ-induced NFT formation, among other therapeutic targets.12-15 In this regard, 

our research group has reported several families of multi-target drugs since 2000, with the 

control of neuronal Ca2+ homeostasis as the common target.16-19 Many evidences support the idea 

that pharmacological modulation of Ca2+ homeostasis within neurons could mitigate the 

neurotoxicity present in a neurodegeneration scenario,20 as that neurons having NFT present high 

activity of Ca2+-dependent protease enzymes,21 or that the presence of Aβ peptides elevates Ca2+ 

concentrations in resting neurons, sensitizing them for apoptosis phenomena.22-23 There is 

preclinical and clinical evidence that the blockade of voltage-gated Ca2+ channels (VGCC) may 

attenuate dementia, since an excessive and prolonged Ca2+ entry into the cytosol leads to 

neurodegeneration and neuronal loss.24-26 The VGCC blockade, both at presynaptic (P/Q- and N-

type VGCC) and at postsynaptic sites (L-type VGCC), has shown a neuroprotective effect in 

different animal models of neurodegeneration and excitotoxicity, such as the blockade of ω-

agatoxin IVA in a rat ischemia model (P/Q-VGCC blocker),27 the blockade by the synthetic 

version of ω-conotoxin MVIIA in a traumatic diffuse brain injury model in rats (N-type VGCC 
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blocker),28 that of verapamil in a focal ischemia model in rats (L-type VGCC blocker),29 or those 

of nivaldipine and nitrendipine (L-type VGCC blockers) in an Aβ-induced toxicity model in 

mice.30 Some VGCC antagonists have been tested in clinical trials for dementia and, according to 

the Cochrane report published in 2002, nimodipine can be of some efficacy for the treatment of 

AD.31 

On the other hand, during the latest years, we have paid attention to the neurodegeneration 

elicited by the hyperphosphorylated τ protein and the subsequent intracellular NFT.32 The degree 

of τ phosphorylation depends on the enzymatic activity of both kinases and phosphatases.9 

Tremendous scientific efforts have been invested in the development of kinase enzymes 

inhibitors, e.g. GSK3β inhibitors,33-34 with scarce success. However, rather few contributions 

have aimed to promote the dephosphorylation process carried out by phosphatase enzymes,35 

mainly performed by the phosphoprotein phosphatases (PPP) 2A and 1 (PP2A and PP1, 

respectively).36 PPP enzymes catalyze the hydrolysis of phosphate esters at Ser and Thr residues, 

being PP1 and PP2A responsible of the 90% of the cellular Ser/Thr phosphatase activity within 

healthy human brains.36 In AD brains, total phosphatase activity is reduced by half, with PP2A, 

PP1, and PP5 activities decreased by 50%, 20%, and 20%, respectively. 36-37 Regarding to PP2A, 

it is the most efficient τ phosphatase (accounts for over 70% of τ dephosphorylation).35 The 

relationship between the AD-triggered neurodegeneration and the downregulation of PP2A 

activity has been widely demonstrated: in postmortem brains from AD patients, PP2A mRNA 

and protein levels are decreased,38-39 and the endogenous PP2A inhibitors I1
PP2A (nuclear) and 

I2
PP2A (cytoplasmatic) are increased by 20%;40-41 it exists an augmented inactivation of the PP2A 

catalytic subunit (PP2Ac) through the phosphorylation at Y307 residue;42 the PP2A methylation 

rates at L309, responsible for the PP2A assembly to its regulatory subunits, is decreased;43 there 

Page 5 of 72

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

is also a reduced expression of B55α, the main PP2A regulatory subunit mediating 

dephosphorylation of τ, in frontal and temporal cortex.44-46 Moreover, PP2A dephosphorylates 

NMDA receptors at several NRx subunits, evoking a lesser Ca2+ influx through these receptors, 

what entails a neuroprotective effect against excitotoxicity, similarly to that of memantine.47-48 

Although the leading role of PP2A is indisputable, other PPP enzymes, like PP1 and PP5, are 

also implicated in the pathology of AD.49 

Our research group described the neuroprotective properties of a multi-target drug that was able 

to inhibit cholinesterase enzymes and to maintain the PP2A-controlled phosphatase activity.50 

Confirming the correlation between NMDA and PP2A, ethyl 5-amino-2-methyl-6,7,8,9-

tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate (ITH12246), protected rat hippocampal 

slices against the damage elicited by glutamate through a mechanism implicating PPP, as 

okadaic acid (OA), a selective inhibitor of PP1 and PP2A, reversed its neuroprotective signal. In 

addition, it reduced the loss of memory in mice subjected to scopolamine administration, as 

monitored by the object placement test.51 

For all of these reasons, we considered worthwhile to keep deepening in the study of PPP 

enzymes as a part of a multi-target strategy to find new drugs for AD, remaining the control of 

cytosolic Ca2+ as the other main therapeutic target. In this work, we describe the findings 

observed with a family of indole derivatives, analogues to the natural alkaloid gramine (1, Figure 

1), which has shown promising pharmacological activities.52 
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Figure 1. Chemical structure of the alkaloid gramine (3-(dimethylaminomethyl)-1H-indole) (1). 

 

Indeed, some of its brominated derivatives have been described as Ca2+ channels blockers.53 In 

our laboratory, we observed that 1 protected SH-SY5Y neuroblastoma cells against the toxic 

stimulus generated by OA in a wide range of concentrations. We wondered whether such huge 

neuroprotective effect was, at least in part, due to the activation of PPP enzymes. This prompted 

us to design a new family of 1 derivatives and evaluate their pharmacological activity as Ca2+ 

channel blockers and Ser/Thr phosphatase activators, as well as assessing their neuroprotective 

profile in several in vitro models of neurodegeneration. The results reported in this paper support 

the idea that scientific community devoted to the search of multi-target drugs must continue its 

efforts to offer original proposals for the discovery of new drugs for neurodegenerative diseases. 

 

Results and Discussion 

Chemistry. The design of 1 derivatives focused on favoring a potential Ca2+ channel blocking 

activity as well as the interaction with the principal dephosphorylating enzymes of τ, that are the 

Ser/Thr phosphatases. As two marine-derived bromo-substituted 1 analogs have been described 

to block VGCC,53 we reasoned that our first family of synthesized 1 derivatives should possess a 
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bromine atom at C5. Regarding to the binding to PP2A, previous studies of our research group 

detected a binding site close to the catalytic core in the PP2Ac subunit,50 where specific ligands 

would not compromise the PP2A enzymatic activity, but alternatively would avoid the arrival of 

direct inhibitors to the catalytic machinery of PP2A. By preliminary computational studies, if 

new indole-based ligands present a tiny hydrophobic substituent at C5, as well as a long 

hydrophobic moiety linked to the indole nitrogen, their affinity to this binding site would 

improve. Thus, a second family of 1 derivatives having a methyl group at C5 was designed, 

where the members of both families are differentially substituted at the indole nitrogen. The N-

alkylation was carried out by nucleophilic substitution of alkyl halides in presence of NaH as a 

base (Scheme 1). Alkyl, benzyl or propargyl bromides and iodides suffered the nucleophilic 

attack of 5-substituted indoles in excellent yields, except for ethyl bromobutyrate, as only 5-

bromoindole was able to lead to the formation of the ethyl indolylbutanoate 6 in low yields. 

Attempts to optimize this substitution, by using other bases such as KOH and solvents (DMF, 

CH3CN, THF or acetone), phase-transfer catalysts, among other experimental conditions, were 

not satisfactory. The nucleophilic substitution over 1-chloro-4-iodobutane, leading to the N-(4’-

chlorobutyl)-indoles 9 and 10, allowed us to incorporate piperidine as a pending substituent, 

through a further nucleophilic attack of piperidine in acetonitrile, using K2CO3 as a base, 

obtaining the 5-bromo or 5-methyl-N-substituted derivatives 11 and 12, respectively (Scheme 1). 

Polycations, such as polylysine and protamine, as well as highly basic compounds, specifically 

histones, were the first compounds found to activate PP2A in vitro.54 This fact, together with 

other recently discovered positively charged modulators, e.g. memantine, led to establish basic 

cationic compounds as a family of PP2A activators.55-56 The head compound 1 possesses a basic 

amino group that is positively charged at physiological pH, so it could be classified as a cationic 
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activator. In order to keep this property, all 1 derivatives conserve this basic amino group at C3, 

either as dimethylamine or piperidine group. 

 

Scheme 1. Preparation of 1 derivativesa 

 
aReagents and Conditions: (a) (1) NaH, DMSO, rt, 1–2 h; (2) alkyl halide, rt, 1–12 h. (b) 

piperidine, MeCN, K2CO3, rt to 60 ºC, 12 h. (c) Me2NH or piperidine, HCHO (aq), AcOH, 0 ºC 

to rt, 2 to 5 h. 

 

The further Mannich type reaction furnished the desired C3-substituted 1 derivatives 20–38 in 

which the order of addition of reagents played an essential role, allowing us to reach excellent 

yields. 5-Bromoindole reacted with dimethylamine or piperidine at these conditions to form the 

N-unsubstituted 1 derivatives 16 and 17 in good yields (Scheme 1). However, the same protocol 

proposed for the reaction of 5-methylindole with piperidine, derived in a complex mixture of 

products. To sort this out, we selected an alternative method conducted through the generation of 

the N-oxide intermediate 14, from the commercially available 5-methylgramine 18, which is 
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further treated with neat piperidine to form compound 19 in quantitative yield. The same strategy 

was proposed to prepare the piperidine-bearing analogue of 1, that is compound 15, synthesized 

and pharmacologically evaluated for comparative purposes (Scheme 2). 

Scheme 2. Alternative route for the preparation of N-unsubstituted 1 derivativesa 

 

aReagents and conditions: (a) H2O2 (30% aq), EtOH, rt, 2 h. (b) piperidine, reflux, 3 h. 

 

At this point, it is worthwhile mentioning that, despite the huge literature in both Organic and 

Medicinal Chemistry regarding to the syntheses and uses of 3-aminoethylindoles, backed by the 

Chemistry of the tryptophan, serotonin and melatonin, among other so-called biogenic amines,57-

59 the study of the 3-aminomethylindoles analogs has been comparatively inappreciable. Indeed, 

1 derivatives have been extensively used in Organic Synthesis as starting material for the 

preparation of serotonine-like natural products and potential drugs.60-61 Among the reasons for 

this lack of interest, their delicate chemical stability in aqueous acid media seems to be the main 

reason.62 We confirmed by 1H-NMR that 3-methylen-3H-indoles are formed as by-products after 

routine procedures such as silica gel-based flash chromatography purification or in the NMR 

analysis when using CDCl3 as deuterated solvent. These pitfalls were avoided by executing the 

work-up at pH 14, neutralizing the organic solvents, mainly CH2Cl2, with basic alumina and, 

when necessary, purification with flash chromatography was carried out in basic alumina instead 
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of silica gel, and NMR spectra were made in acetone-d6. After confirming the structure and 

purity of final compounds 15–38, with the aim of facilitating their manipulation and biological 

evaluation, they were salinized to hydrochloride or oxalate salts, by treatment with HCl in ether 

or oxalic acid in ethyl acetate solutions, respectively. Solvents for the salinization solutions were 

previously dried over MgSO4 to remove possible traces of water. We then confirmed structure 

and purity of the salinized compounds, and their chemical stability at physiological pH by 

monitoring 13C and 1H-NMR spectra in D2O, not detecting any modification in the NMR signals 

after several days. 

Pharmacological Evaluation. Effect of 1 derivatives 15–38 on the Ca2+ entry through 

VGCC. To evaluate the blocking activity of the new 1 derivatives, we stimulated SH-SY5Y 

neuroblastoma cells with an extracellular solution containing KCl 70 mM, leading to membrane 

depolarization and VGCC opening.63 The SH-SY5Y neuroblastoma cell line is a reliable model 

to monitor cytosolic Ca2+ fluctuations in excitable cells, as it possesses VGCC and intracellular 

Ca2+-buffering organelles similarly to regular primary neuronal cultures.64-65 Consequently, the 

SH-SY5Y cells, charged with the Ca2+-sensitive fluorescent probe Fluo-4, suffered a rise in the 

cytosolic Ca2+ that was modulated by the presence of these potential VGCC blockers, tested at 1 

µM (Table 1). Eleven out 24 compounds reduced the high K+-evoked cytosolic Ca2+ increase in a 

statistically significant manner. Considering the data expressed in Table 1, some structure-

activity relationships can be inferred. Most of the compounds that block VGCC bear a 

piperidinylmethyl substituent at C3; compound 20 (X = Br, R = Bn) was the only 

dimethylaminomethyl-substituted compound, together with 1, that reduced the Ca2+ increase. As 

far as the N-alkylation, the benzyl moiety affords the best blockade of Ca2+ increase, but also 

butyl, chlorobutyl, and propargyl groups are optimal substituents, whose results are fairly better 
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when compounds present additionally a bromine atom at C5 and a piperidine at C3, instead of 

methyl and dimethylamine, respectively. It is already known in literature that bromo-substitution 

at the indole core provides compounds with Ca2+ antagonist activity.53 The blocking effect of 

compounds that present a bulky substituent at the indole nitrogen (27, 28, 35–38) substantially 

dropped to below 20%. The well-known VGCC blocker nifedipine,66 used as a standard at 3 µM, 

reduced Ca2+ increase by 73% in these experiments. With the goal of deepening into their Ca2+-

antagonist effect, we carried out electrophysiological techniques, performing patch-clamp 

experiments in the whole-cell configuration. We studied the effect on Ca2+ (ICa) currents of 1, the 

best VGCC blockers of the family (21, 25, 30, and 33), and three more compounds (20, 23, and 

26) that showed important neuroprotective and/or pro-phosphatases properties (see below). 

Current vs. voltage (I/V) curves, from –60 to +60 mV as depolarizing potentials, were initially 

performed in absence of compounds, to select the depolarizing pulse that featured the highest 

ICa,. Then, bovine chromaffin cells were subjected to 50 ms depolarizing pulses every 20 s at the 

potential at which maximal ICa was obtained, usually 0 mV; after reaching a stable response, 

cells were perfused with the different compounds until a maximal blockade degree was achieved. 

Figure S1 of supporting info reflects a typical register of ICa, dealing with a control situation. 

Under these experimental conditions, compounds 1, 21, 23, 25, and 26 blocked ICa in a 

statistically significant manner (Figure 2), confirming their VGCC blocking properties. 

 

Table 1. Blockade by compounds 15–38 of the Ca2+ entry elicited by K+ 70 mM-evoked 

depolarization in SH-SY5Y cells, measured by the Ca2+-sensitive probe Fluo-4/AMa 
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Comp. X R R’ % Blockade 

Nifedipineb - - - 73 ± 5*** 

1 H H CH3 25 ± 7** 

15 H H -(CH2)5- 30 ± 4** 

16 Br H CH3 3 ± 3ns 

17 Br H -(CH2)5- 7 ± 7ns 

18 CH3 H CH3 10 ± 5ns 

19 CH3 H -(CH2)5- 16 ± 6ns 

20 Br Bn CH3 38 ± 6*** 

21 Br Bn -(CH2)5- 45 ± 3*** 

22 CH3 Bn CH3 18 ± 6ns 

23 CH3 Bn -(CH2)5- 22 ± 9* 

24 Br n-Bu CH3 14 ± 6ns 

25 Br n-Bu -(CH2)5- 63 ± 4*** 

26 CH3 n-Bu -(CH2)5- 21 ± 6* 

27 Br -(CH2)3CO2Et CH3 13 ± 6ns 

28 Br -(CH2)3CO2Et -(CH2)5- 16 ± 3ns 

29 Br CH2C≡CH CH3 10 ± 5ns 

30 Br CH2C≡CH -(CH2)5- 42 ± 3*** 

31 CH3 CH2C≡CH CH3 14 ± 6ns 

32 CH3 CH2C≡CH -(CH2)5- 25 ± 7** 

33 Br -(CH2)4Cl -(CH2)5- 57 ± 6*** 

34 CH3 -(CH2)4Cl -(CH2)5- 35 ± 5*** 

35 Br -(CH2)4Pi CH3 14 ± 6ns 

36 Br -(CH2)4Pi -(CH2)5- 19 ± 7* 

37 CH3 -(CH2)4Pi CH3 16 ± 7ns 

38 CH3 -(CH2)4Pi -(CH2)5- 4 ± 3ns 
aData are mean of at least six experiments ± SEM comparing with the K+-induced Ca2+ increase 

in absence of compounds. Compounds assayed at 1 µM.***
p < 0.001, **

p < 0.01, *
p < 0.05, and 

ns = not significant.b Tested at 3 µM. Pi = piperidinyl. 

 

Page 13 of 72

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

Figure 2. Depolarization-evoked Ca2+ currents (ICa) in bovine chromaffin cells. Whole-cell ICa 

were recorded using 2 mM Ca2+ as charge carrier and –80 mV as holding potential. Averaged 

results, of at least 7 cells of independent batches, representing normalized remaining ICa in 

presence of selected 1 derivatives at the concentration of 1 µM. ***
p < 0.001, **

p < 0.01, *
p < 

0.05, comparing with control in absence of compounds (C, white bar). 

 

Of note is the differential behavior of these compounds between the two experimental 

procedures realized, i.e. the fluorescent-based assay and the patch-clamp techniques. This could 

be interpreted in base of the different expression of VGCC subtypes between SH-SY5Y cells, 

where 50% of them belong to the L-subtype,64 and bovine chromaffin cells, which only present a 

20% of the L-subtype.67 Such hypothesis raised an important point, as compound 23 blocked ICa 

in bovine chromaffin cells by 40% (Figure 2), but it only reduced the fluorescence-monitored 

Ca2+ increase in SH-SY5Y by 22% (Table 1), so we wondered whether compound 23 could be 
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selectively blocking the non L-subtypes of VGCC, what it would be of interest taking into 

account the lack of efficient pharmacological tools available to selectively interact to such non-L 

VGCC,68 either N- or P/Q subtypes. For this reason, we further registered the VGCC blocking 

effect of compound 23 in presence of the selective L-type VGCC blocker nifedipine, as well as 

in presence of the N and P/Q type VGCC blocker ω-conotoxin MVIIC,69 as shown in Figure 3. 

Compound 23 exerted an additional blockade of the ICa in the presence of nifedipine (Figure 3A 

and 3C), but on the contrary, the ICa observed in the presence of ω-conotoxin MVIIC remained 

constant when compound 23 was administered (Figure 3B and 3C). Therefore, we can conclude 

that compound 23 is acting as a selective non-L VGCC blocker. 

Page 15 of 72

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

Page 16 of 72

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

Figure 3. Compound 23 partially blocks non-L type Ca2+ currents. Bovine chromaffin cells, 

voltage-clamped at –80 mV, were challenged with 50 ms depolarizing pulses to 0 mV at 20 s 

intervals. Ca2+ 2 mM was used as charge carrier. Panel A shows typical Ca2+ currents (ICa) time 

curse in a cell perfused with nifedipine 3 µM (L-type VGCC blocker) alone and in the presence 

of compound 23 at 1 µM. Panel B shows a typical ICa time curse in a cell perfused with ω-

conotoxin (ω-ctx) MVIIC 2 µM (N- and P/Q-type Ca2+ VGCC blocker) alone and in the 

presence of compound 23 at 1 µM. Panel C shows the averaged peak amplitude of ICa with 

respect to control (white bar) in the presence of either nifedipine or MVIIC alone (black 

columns) or concomitantly with compound 23 (stripped columns). Data are means ± SEM of 16 

cells for each treatment from 3 different cell cultures. ***
p < 0.001, respect to cells depolarized in 

absence of drugs (control group), ###
p < 0.001, ns = not significant. 

 

Effect of 1 derivatives 15–38 on the Ser/Thr phosphatase activity. As mentioned in the 

introduction, the Ser/Thr phosphatase activity of PP1 and PP2A is impaired in neurodegeneration 

scenarios,36 leading to the augmentation of the phosphorylation rate in τ protein, and thus 

favoring its self-aggregation to form the NFT. This reduction in the phosphatase activity is 

mainly ascribed to the concourse of endogenous inhibitors that bind at the catalytic site of PPP, 

hindering the hydrolysis of phosphate esters at Ser or Thr amino acids.40 The use of the PP1 and 

PP2 inhibitor OA is a reliable model of these pathological processes, as it has been described that 

it tightly binds catalytic subunits of both enzymes.70 Indeed, the administration of OA to rodents 

mimicked the morphological hallmarks of AD.71 Hence, to appraise the effect of compounds 15–

38 on the activity of PPP enzymes, we subjected SH-SY5Y cells to the exposure of OA at 15 

nM, an adequate concentration to inhibit both PP1 and PP2A,72-73 in the presence of the testing 

Page 17 of 72

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

compounds, estimating the resulting phosphatase activity by the colorimetric method of the p-

nitrophenylphosphate (pNPP). The pNPP is a colorless substance that turns yellow (absorbance 

405 nm) when is hydrolyzed to p-nitrophenol by the action of phosphatase enzymes.74 Under 

these experimental conditions, OA diminished the total phosphatase activity by a 32%, and 12 

out of 25 compounds reduced the deprival of total phosphatase activity in a statistically 

significant manner, being the best compounds able to maintain such enzymatic activity a 40% 

higher than with OA in absence of compounds (Table 2). Although OA interacts exclusively 

with the Ser/Thr phosphatases PP1 and PP2A, due to the Tyr phosphatase activity is much more 

extended in nervous system than the Ser/Thr phosphatase activity, we decided to study the effect 

of the compounds in presence of the Tyr phosphatase inhibitor sodium orthovanadate,75 

administered to the SH-SY5Y cells at 1 mM, so the phosphatase activity recorded by the pNPP 

probe would be only derived from Ser/Thr phosphatase enzymes. Pretty much similar data were 

found; half of the compounds counteracted the OA-induced reduction of the Ser/Thr phosphatase 

activity in a statistically significant manner (Table 2). Regarding to structure-activity 

relationships, either no substitution at the indole nitrogen (R = H), benzyl group or a butyl group, 

seem to be the most optimal alternatives as R substituents, as hit compound 1 offers a 

satisfactory pro-phosphatase activity, similarly to compounds 15, 16, 18, 20, 23, 24, 25, and 31.  

Collectively, compounds 15, 23, and 25, together with the hit compound 1, featured a multitarget 

activity, as they demonstrated both pro-phosphatase and Ca2+ channels blocking activities, in all 

the experimental protocols implemented. In parallel, we evaluated the capability of the 1 

derivatives 15–38 to protect against neuronal damage in in vitro models of neurodegeneration 

resembling AD. 
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Table 2. Effect of 1 derivatives 15–38 on the Ser/Thr phosphatase activity depressed by 

okadaic acid (OA)a 

 

Comp. X R R’ 

%Total 

phosphatase 

activity 

%Ser/Thr 

phosphatase 

activity 

Control - - - 100 100 

OA - - - 68 ± 2### 61 ± 3### 

Memantine - - - 77 ± 3* 78 ± 5*** 

1 H H CH3 80 ± 5* 76 ± 5* 

15 H H -(CH2)5- 76 ± 4* 79 ± 8* 

16 Br H CH3 80 ± 4** 76 ± 6* 

17 Br H -(CH2)5- 74 ± 4ns 67 ± 3ns 

18 CH3 H CH3 79 ± 4* 77 ± 4* 

19 CH3 H -(CH2)5- 71 ± 3ns 69 ± 5ns 

20 Br Bn CH3 81 ± 4** 78 ± 5* 

21 Br Bn -(CH2)5- 79 ± 4* 70 ± 7ns 

22 CH3 Bn CH3 73 ± 3ns 66 ± 5ns 

23 CH3 Bn -(CH2)5- 77 ± 4* 78 ± 6* 

24 Br n-Bu CH3 81 ± 6* 76 ± 4* 

25 Br n-Bu -(CH2)5- 78 ± 3* 79 ± 4** 

26 CH3 n-Bu -(CH2)5- 69 ± 2ns 66 ± 6ns 

27 Br (CH2)3CO2Et CH3 76 ± 7ns 66 ± 4ns 

28 Br (CH2)3CO2Et -(CH2)5- 73 ± 2ns 71 ± 3* 

29 Br CH2C≡CH CH3 70 ± 5ns 64 ± 4ns 

30 Br CH2C≡CH -(CH2)5- 77 ± 3** 72 ± 5ns 

31 CH3 CH2C≡CH CH3 80 ± 4* 74 ± 9* 

32 CH3 CH2C≡CH -(CH2)5- 71 ± 3ns 66 ± 7ns 

33 Br -(CH2)4Cl -(CH2)5- 68 ± 3ns 62 ± 7ns 

34 CH3 -(CH2)4Cl -(CH2)5- 71 ± 4ns 62 ± 6ns 

35 Br -(CH2)4Pi CH3 73 ± 5ns 68 ± 5ns 
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36 Br -(CH2)4Pi -(CH2)5- 73 ± 2* 70 ± 4ns 

37 CH3 -(CH2)4Pi CH3 74 ± 3ns 68 ± 5ns 

38 CH3 -(CH2)4Pi -(CH2)5- 72 ± 3ns 70 ± 5* 

aSH-SY5Y cells were treated with compounds at 0.1 µM in presence of the PPP inhibitor 

okadaic acid (OA) at 15 nM. Data are mean of at least four experiments ± SEM, expressed as 

percentage respect to control situation, where cells were not treated with compounds neither OA. 

###
p < 0.001, respect to control; ***

p < 0.001, **
p < 0.01, *

p < 0.05, and ns = not significant, 

respect to cells only treated with OA. Phosphatase activity was evaluated by the method of the 

pNPP. To estimate Ser/Thr phosphatase activity, the Tyr phosphatase inhibitor sodium 

orthovanadate at 1 mM was applied to the experiments. Pi = piperidinyl. 

 

Docking studies. We selected compound 23 to exemplify the interaction between the main τ 

protein phosphatase, i.e. PP2A, with these 1 derivatives, because of its significant phosphatase 

activity (Table 2), as well as its neuroprotective activity counteracting the damage provoked by 

OA and Glu (Table 3 and Figure 5, see below). The complex of PP2A and compound 23 

revealed van der Waals interactions between the piperidine ring of compound 23 and the side 

chain of residues Ile123 (d = 3.85 Å) and Val189 (d = 1.76 Å) (Figure 4B). The indole ring of 

compound 23 also interacts with both the imidazole ring of His191 (d = 3.06 Å) and the indole 

ring of the Trp200 (d = 4.65 Å), probably in a hydrophobic π- π stacking contact (Figure 4B). 

OA also interacted with Ile123, His191 and Trp200, as previously reported by Xing et al., 2006.70 

Also, the nitrogen of the piperidine ring of compound 23 probably makes a strong hydrogen 

bond with the hydroxyl group of Ser120 (d = 1.66 Å) (Figure 4C), which contributes to the 

affinity of the ligand in this binding site of PP2A (Figure 4A). 
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Figure 4. Docking of the compound 23–PP2A complex. (A) Pose of compound 23 (yellow) in 

the PP2Ac binding site (main residues in green). (B) Van der Waals contacts (Val189 and 

Ile123) and hydrophobic π interactions (His191 and Trp200) of compound 23 (yellow). (C) 

Hydrogen bond between compound 23 and Ser120 (Energy scores provided in Table S1 of 

supporting information). 

 

Neuroprotection experiments. Since we had found some bioactive compounds, the raised 

question was whether these 1 derivatives, by regulating the neuronal Ca2+ homeostasis and the 

Ser/Thr phosphatase activity, would be able to protect neurons against neurotoxic stimuli related 

to AD. We monitored cell viability with the method of the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) reduction,76 in in vitro neuronal models subjected to Ca2+ 

1.66Å 

Ser120 

23 

(C) 
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overload or τ hyperpolarization. Since VGCC and Ser/Thr phosphatases, targeted by our 1 

derivatives, present highlighted physiological roles, we firstly assessed the potential per se 

toxicity of compounds 15–38 in the neuronal models object of study, i.e. cortical motor neurons 

and SH-SY5Y neuroblastoma cells. As graphed in Figures S2 and S3 of supporting info, none of 

the compounds, incubated for 48 h, reduced the cell viability of SH-SY5Y cells at concentrations 

lower than 10 µM. In the case of cortical motor neurons, compounds 15 and 36 marginally 

reduced cell viability when incubated for 48 h at 1 µM (Figures S4 and S5, supporting info). 

In order to emulate a Ca2+ overload, cortical motor neurons were exposed to veratridine 20 µM, a 

voltage-gated Na+ channels (VGNC) ligand that delays their inactivation, leading to a 

depolarization-elicited Ca2+ entry.77 After 24 h pre-incubation of the compounds, at 1 µM, 

neurons were co-incubated for another 24 h with veratridine (20 µM), inducing a loss of viability 

of about 50% (Table 3). More than a half of the compounds, but not 1, reduced the veratridine-

induced damage in a significant manner. Compounds 23, 25, and 26 stood out by rescuing the 

neuronal viability by a 50% or more. In these experiments, the presence of piperidine at C3 

instead of dimethylamine seems to favor this neuroprotective activity. Again, benzyl and butyl 

groups branched to the indole nitrogen afforded the best neuroprotection (Table 3). The VGNC 

blocker tetrodotoxin (TTX) was used as standard in these experiments.78 

In parallel, we tested the neuroprotective activity of compounds 15–38 against a model of τ 

hyperphosphorylation, by stimulating SH-SY5Y neuroblastoma cells with the PPP selective 

inhibitor OA. SH-SY5Y cells suffered a fall of 35% in their viability when exposed for 20 h to 

OA 20 nM. Under this situation, most of compounds noticeably mitigated the reduction in the 

cell viability caused by OA, and 10 of them did it by 50% or more, being the best compound 25 
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(Table 3). Melatonin was used as standard in these experiments.79 Among all the structure-

activity relationships considered, we appreciated outstanding activities when the compounds 

present benzyl, butyl or no substitution at the indole nitrogen. 

 

Table 3. %Neuroprotection of 1 derivatives 15–38 on the cell viability of cortical motor 

neurons and SH-SY5Y neuroblastoma cells damaged with veratridine and okadaic acid, 

respectivelya 

 

Comp. X R R’ Veratridineb Okadaic acidc 

TTX - - - 77 ± 1*** - 

Melatonin - - -    - 43 ± 3*** 

1 H H CH3 0 ± 4ns 45 ± 2*** 

15 H H -(CH2)5- 18 ± 7ns 47 ± 5** 

16 Br H CH3 11 ± 5ns 47 ± 4** 

17 Br H -(CH2)5- 19 ± 3* 60 ± 5** 

18 CH3 H CH3 30 ± 5* 59 ± 4** 

19 CH3 H -(CH2)5- 7 ± 3ns 38 ± 3*** 

20 Br Bn CH3 34 ± 3*** 56 ± 3*** 

21 Br Bn -(CH2)5- 36 ± 6** 54 ± 6** 

22 CH3 Bn CH3 35 ± 9* 44 ± 4* 

23 CH3 Bn -(CH2)5- 51 ± 6** 56 ± 5** 

24 Br n-Bu CH3 34 ± 5** 66 ± 5** 

25 Br n-Bu -(CH2)5- 72 ± 7*** 71 ± 3*** 

26 CH3 n-Bu -(CH2)5- 60 ± 7*** 46 ± 5* 

27 Br (CH2)3CO2Et CH3 42 ± 6* 58 ± 2** 

28 Br (CH2)3CO2Et -(CH2)5- 36 ± 7* 43 ± 5* 

29 Br CH2C≡CH CH3 17 ± 5ns 12 ± 4ns 
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30 Br CH2C≡CH -(CH2)5- 24 ± 4* 47 ± 3** 

31 CH3 CH2C≡CH CH3 14 ± 10ns 12 ± 3ns 

32 CH3 CH2C≡CH -(CH2)5- 19 ± 5ns 42 ± 8ns 

33 Br -(CH2)4Cl -(CH2)5- 39 ± 6* 48 ± 8* 

34 CH3 -(CH2)4Cl -(CH2)5- 36 ± 5** 56 ± 6* 

35 Br -(CH2)4Pi CH3 21 ± 9ns 31 ± 3** 

36 Br -(CH2)4Pi -(CH2)5- 0 ± 5ns 61 ± 4*** 

37 CH3 -(CH2)4Pi CH3 4 ± 6ns 37 ± 1*** 

38 CH3 -(CH2)4Pi -(CH2)5- 1 ± 5ns 26 ± 3** 

aCell viability was measured by the method of the MTT reduction. Data are expressed as the 

percentage of cell viability recovered in cells treated with the toxic stimulus plus compounds, 

comparing with viability of cells only exposed to veratridine or OA; mean of at least 5 

experiments ± SEM in triplicate. ***
p < 0.001, **

p < 0.01, *
p < 0.05, and ns = not significant, 

respect to cells only treated with veratridine or OA. bCortical motor neurons exposed to 

veratridine 20 µM in presence of compounds at 1 µM, except for compound 36 which was tested 

at 0.1 µM due to its toxicity at 1 µM (see Figure S5 supporting info). cSH-SY5Y neuroblastoma 

cells exposed to OA 20 nM in presence of compounds at 0.1 µM. Pi = piperidinyl. 

 

Gathering all the pharmacological data obtained, we proposed that these new 1 derivatives are 

multitarget neuroprotective compounds able to interact with two pathophysiological events 

involved in AD, i.e. Ca2+ dishomeostasis and Ser/Thr phosphatases inhibition, and in turn 

entailing a neuroprotective profile, according to the in vitro models of neurodegeneration we 

have performed. Overall, it can be extrapolated that the presence of benzyl or butyl groups at the 

indole nitrogen along with a piperidine at C3, preferentially offer privileged structures of 1 

derivatives, according to the pharmacological activities object of study, and their consequent 

neuroprotective properties over AD-resembling neurodegeneration models. However, 
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neuroprotective compounds historically fail in their pharmacological actions when they are 

evaluated in more physiological models of experimental study. Therefore, we carry out a more 

physiological model of biological evaluation, defined by the use of rat hippocampal slices 

subjected to toxic stimuli related to AD, recording the ability of selected compounds to 

counteract the tissue damage.17, 50, 63, 80 In this preparation, neurons are surrounded by their natural 

environment, e.g. glia cells, extracellular matrix, etc. Rat hippocampi were subjected to a 

sustained exposition to the excitatory neurotransmitter glutamate, which is considered a close 

model to the excitotoxicity occurred in neurodegeneration.81 In addition, recent contributions 

have hypothesized that PP2A can down-regulate the Ca2+ influx through the NMDA receptors, as 

dephosphorylation of NR1A subunit by this phosphatase accelerates the desensitization rate of 

the NMDA receptor.48, 82-83 Hence, this model has proven to be an excellent experimental protocol 

to test the neuroprotective activities of either Ca2+-antagonists or Ser/Thr phosphatase activators. 

Tested compounds were selected according to optimal biological activities and neuroprotective 

properties in vitro, as well as chemical diversity (Figure 5). 
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Figure 5. Effect of selected 1 derivatives on the viability of rat hippocampal slices damaged with 

glutamate (Glu) 1 mM, measured through the MTT reduction. %Protection respect to the 

viability of hippocampal slices treated with Glu in absence of compounds. Data are expressed as 

mean ± SEM of at least 4 different tissue batches in quadruplicate. ***
p < 0.001, **

p < 0.01, *
p < 

0.05, respect to slices only treated with Glu. 

 

Compounds 21, 23, and 30 that had evinced regulating activities of both Ca2+ entry and Ser/Thr 

phosphatases, and protected neurons in both veratridine and OA-based models of 

neurodegeneration, avoided the glutamate-induced loss of viability of the hippocampal slices by 

30% or more, however the multitarget and in vitro neuroprotectant compound 25 failed to protect 

such preparations. Compounds 16, 18, and 24, behaved as Ser/Thr phosphatase activators (Table 

2), and had a proper in vitro neuroprotection profile. Nevertheless, in this model, only 
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compounds 16 and 24 reasserted that neuroprotective properties, as they reduced the damage by 

glutamate by 40% or more (Figure 5). Compound 34 also protected hippocampi from the 

glutamate excitotoxicity, according to its in vitro neuroprotection properties (Table 3), although 

it had only targeted the cell Ca2+ signal (Table 1). Compound 27 protected against both Ca2+ 

overload and τ hyperphosphorylation, but it did not show any activity on either depolarization-

evoked Ca2+ entry or Ser/Thr phosphatase. In addition, it substantially protected hippocampal 

slices against the glutamate exposure (Figure 5); one possibility is that compound 27 would be 

affecting other pathways involved in the neuronal death/survival scenarios. 

 

Conclusions 

This work illustrates an alternative approach for a multitarget strategy for the treatment of AD, 

by devising a double interaction with neuronal Ca2+ signaling and Ser/Thr phosphatase activity. 

Regulation of cytosolic Ca2+ concentrations by different VGCC blockers has been a 

pharmacology target widely studied for several neurodegenerative diseases, but few 

contributions has selected it as a part of a multitarget-based drug development, which have 

mostly inclined towards the complement of cholinesterases inhibition with Aβ down-regulation 

or τ hyperphosphorylation reduction strategies, affording unfruitful results. Regarding to the τ 

hyperphosphorylation, the research works have almost exclusively focused on the development 

of protein τ kinase inhibitors. We propose that the activation, or the reduction of inhibitory 

actions, over protein τ phosphatase enzymes, deserves more attention, overcoming the historical 

prejudice of their unspecificity, currently rebutted.32 Of note is that, when we recorded the 

phosphatase activity by the method of the pNPP (Table 2), a substantial decrease of 70% was 
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computed in cells exposed to the Tyr phosphatase inhibitor VO3
-, what confirms that Tyr 

phosphatase activity is much more extended than Ser/Thr phosphatase activity in nervous 

system. The fact that τ protein is mainly dephosphorylated by PP1 and PP2A entails the 

advantage that Ser/Thr phosphatase activators would not present such sizeable off-target 

pharmacology as Tyr phosphatase activators would. To finish up, we hypothesize that compound 

23 is an eligible lead compound to further investigate its pharmacological activities in preclinical 

models of AD, as it demonstrated significant activity over VCGG and Ser/Thr phosphatases, 

accompanied by a wide-spectrum neuroprotective profile. The fact that compound 23 exerts Ca2+ 

blockade preferentially through non-L type VGCC is in agreement to the rising interest of 

developing both N- and P/Q type VGCC blockers for dementia,68, 84 what supposes a 

breakthrough in the study of Ca2+ antagonists for central nervous system diseases because they 

could bypass the cardiovascular side effects resulting from peripheral L-type channel blockade,25-

26 Hence, the derivative 1-benzyl-5-methyl-3-(piperidin-1-ylmethyl)-1H-indole (compound 23, 

which we have named ITH12657) features an innovative multitarget-based mechanism of action, 

aiming neuronal Ca2+ control and Ser/Thr phosphatase activity. 

 

Experimental Section 

General Procedures. 5-Bromoindole, 5-methylindole, 1, compound 18, and general reagents 

were purchased from Sigma-Aldrich (Madrid, Spain). Solvents were purchased from VWR 

(Barcelona, Spain). Reactions were monitored by thin layer chromatography aluminum oxide on 

TLC-PET foils (Sigma-Aldrich). Detection was made with UV light at 254 nm. All the reactions 

were subjected to Schlenk conditions (vacuum purges and argon atmosphere). Pre-charged basic 
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aluminum oxide (Brockmann I) columns were used in a Biotage chromatographic station. 

Melting points were determined in a Stuart apparatus (SMP-10) and are not corrected. MS 

spectra were obtained in a QSTAR de ABSciex apparatus. 1H and 13C NMR spectra were carried 

out with a Bruker AVANCE 300 MHz and described as ppm using deuterated solvents as 

internal standard. All the compounds described and pharmacologically tested had a purity of 

95% or more determined by elemental analysis performed on a LECO CHNS-932 station (C, H, 

and N within 0.4% of the calculated values for the proposed formula). None of the tested 

compounds present structural similarities with Pan Assay Interference Compounds (PAINS), 

according to the classification reported by Baell and Holloway.85 

General Method for the Synthesis of N-alkyl-5-bromo(or methyl)indoles 2–10. The method 

described by Na et al.86 was followed, with slight modifications. Briefly, to a solution of 5-

bromo-1H-indole or 5-methyl-1H-indole (1 equiv) in anhydrous dimethyl sulfoxide (DMSO) 

(1.4–5 mL/mmol), NaH (1.2 equiv, 60%, dispersed in mineral oil) was added under inert gas at 

room temperature. After the reaction mixture was stirred for 1–2 h, the corresponding alkyl 

halide (1.2–1.7 equiv) was added and stirred for 1–2 h more (with exception of the synthesis of 

6, which required overnight), monitored by TLC. When the reaction was completed, it was 

stopped by addition of water (10 mL/mmol) and extracted with neutralized CH2Cl2 (3 × 30 

mL/mmol). The organic layer was dried over anhydrous Na2SO4, filtered and evaporated, to 

obtain a yellow oil that did not require purification, except for compound 6. 

1-Benzyl-5-bromo-1H-indole (2). Following the general method for the synthesis of N-alkyl-5-

bromo(or methyl)indoles 2–10, reaction of 5-bromo-1H-indole (500 mg, 2.55 mmol) in 

anhydrous DMSO (13 mL) with NaH (122 mg, 3.06 mmol) and benzyl bromide (363 µL, 3.06 

mmol) yielded 2 (740 mg, >99%) with spectral data according to literature.87 
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1-Benzyl-5-methyl-1H-indole (3). Following the general method for the synthesis of N-alkyl-5-

bromo(or methyl)indoles 2–10, reaction of 5-methyl-1H-indole (150 mg, 1.14 mmol) in 

anhydrous DMSO (5.71 mL) with NaH (55 mg, 1.37 mmol) and benzyl bromide (163 µL, 1.37 

mmol) yielded 3 (282 mg, >99%) with spectral data according to literature.88 

5-Bromo-1-butyl-1H-indole (4). Following the general method for the synthesis of N-alkyl-5-

bromo(or methyl)indoles 2–10, reaction of 5-bromo-1H-indole (200 mg, 1.02 mmol) in 

anhydrous DMSO (5 mL) with NaH (48 mg, 1.22 mmol) and 1-iodobutane (139 µL, 1.22 mmol) 

yielded 4 (242 mg, 94%). 1H NMR (300 MHz, CDCl3) δ 7.75 (d, 1H, J = 1.8 Hz, H4), 7.27 (dd, 

1H, J = 1.9, 8.7 Hz, H6), 7.19 (d, 1H, J = 8.7 Hz, H7), 7.09 (d, 1H, J = 3.1 Hz, H2), 6.42 (d, 1H, 

J = 3.1 Hz, H3), 4.09 (t, 2H, J = 7.1 Hz, NCH2), 1.81 (m, 2H, NCH2CH2), 1.36–1.24 (m, 2H, 

CH2CH3), 0.94 (t, 3H, J = 7.3 Hz, CH3). 

1-Butyl-5-methyl-1H-indole (5). Following the general method for the synthesis of N-alkyl-5-

bromo(or methyl)indoles 2–10, reaction of 5-methyl-1H-indole (200 mg, 1.52 mmol) in 

anhydrous DMSO (7.62 mL) with NaH (73 mg, 1.83 mmol) and 1-iodobutane (208 µL, 1.83 

mmol) yielded 5 (235 mg, 82%). 1H NMR (300 MHz, acetone-d6): δ 7.38 (m, 1H, H4), 7.29 (d, 

1H, J = 8.4 Hz, H7), 7.16 (d, 1H, J = 3.1 Hz, H2), 7.01 (dd, 1H, J = 1.6, 8.4 Hz, H6), 6.37 (dd, 

1H, J = 0.8, 3.1 Hz, H3) 4.11 (t, 2H, = 7.0 Hz, NCH2), 2.44 (s, 3H, CH3), 1.78 (m, 2H, 

NCH2CH2), 1.35–1.24 (m, 2H, CH2CH3), 0.93 (t, 3H, J = 7.4 Hz, CH2CH3). 

Ethyl 4-(5-bromo-1H-indol-1-yl)butanoate (6). Following the general method for the synthesis 

of N-alkyl-5-bromo(or methyl)indoles 2–10, reaction of 5-bromo-1H-indole (500 mg, 2.55 

mmol) in anhydrous DMSO (10 mL) with NaH (122 mg, 3.06 mmol) and ethyl 4-

bromobutanoate (461 µL, 3.06 mmol) obtaining a yellow solid that was purified by automatized 
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flash chromatography with ethyl acetate/hexane mixtures as eluent, yielding 6 (281 mg, 36%). 

1H NMR (300 MHz, acetone-d6) δ 7.76 (d, 1H, J = 1.8 Hz, H4), 7.42 (d, 1H, J = 8.7 Hz, H7), 

7.31–7.26 (m, 2H, H2, H6), 6.47 (dd, 1H, J = 0.6, 3.1 Hz, H3), 4.24 (t, 2H, J = 7.0 Hz, NCH2), 

4.09 (c, 2H, J = 7.1 Hz, OCH2), 2.28 (t, 2H, J = 6.8 Hz, CH2CO), 2.10 (m, 2H, NCH2CH2), 1.20 

(t, 3H, J = 7.1 Hz, CH3). 

5-Bromo-1-(prop-2-yn-1-yl)-1H-indole (7). Following the general method for the synthesis of 

N-alkyl-5-bromo(or methyl)indoles 2–10, reaction of 5-bromo-1H-indole (200 mg, 1.02 mmol) 

in anhydrous DMSO (2.5 mL) with NaH (48 mg, 1.22 mmol) and 3-bromoprop-1-yne (136 µL, 

1.22 mmol) yielded 7 (235 mg, >99%), with spectral data according to literature.89 

5-Methyl-1-(prop-2-yn-1-yl)-1H-indole (8). Following the general method for the synthesis of 

N-alkyl-5-bromo(or methyl)indoles 2–10, reaction of 5-methyl-1H-indole (150 mg, 1.14 mmol) 

in anhydrous DMSO (2.29 mL) with NaH (55 mg, 1.37 mmol) and 3-bromoprop-1-yne (153 µL, 

1.372 mmol) yielded 8 (190 mg, >99%). 1H NMR (300 MHz, acetone-d6) δ 7.51 (m, 1H, H4), 

7.41 (d, 1H, J = 8.3 Hz, H7), 7.28 (d, 1H, J = 3.2 Hz, H2), 7.16 (dd, 1H, J = 1.5, 8.4 Hz, H6), 

6.54 (dd, 1H, J = 0.8, 3.2 Hz, H3), 4.88 (d, 2H, J = 2.6 Hz, CH2), 2.91 (t, 1H, J = 2.6 Hz, CH), 

2.39 (s, 3H, CH3). 

5-Bromo-1-(4-chlorobutyl)-1H-indole (9). Following the general method for the synthesis of 

N-alkyl-5-bromo(or methyl)indoles 2–10, reaction of 5-bromo-1H-indole (1 g, 5.10 mmol) in 

anhydrous DMSO (7 mL) with NaH (245 mg, 6.12 mmol) and 1-chloro-4-iodobutane (1.1 mL, 

8.67 mmol) yielded 9 (1.4 g, >99%). 1H NMR (300 MHz, CDCl3) δ 7.77 (d, 1H, J = 1.8 Hz, H4), 

7.30 (dd, 1H, J = 1.9, 8.7 Hz, H6), 7.20 (d, 1H, J = 8.7 Hz, H7), 7.09 (d, 1H, J = 3.1 Hz, H2), 
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6.45 (dd, 1H, J = 0.6, 3.1 Hz, H3), 4.13 (t, 2H, J = 6.9 Hz, NCH2), 3.50 (t, 2H, J = 6.4 Hz, 

CH2Cl), 2.05–1.93 and 1.80–1.68 (2m, 4H, ClCH2CH2CH2). 

1-(4-Chlorobutyl)-5-methyl-1H-indole (10). Following the general method for the synthesis of 

N-alkyl-5-bromo(or methyl)indoles 2–10, reaction of 5-methyl-1H-indole (200 mg, 1.52 mmol) 

in anhydrous DMSO (6 mL) with NaH (73 mg, 1.83 mmol) and 1-chloro-4-iodobutane (317 µL, 

2.59 mmol) yielded 10 (340 mg, >99%). 1H NMR (300 MHz, acetone-d6) δ 7.38 (m, 1H, H4), 

7.31 (d, 1H, J = 8.4 Hz, H7), 7.18 (d, 1H, J = 3.1 Hz, H2), 7.01 (dd, 1H, J = 1.3 Hz, J = 8.4 Hz, 

H6), 6.38 (dd, 1H, J = 0.7, 3.1 Hz, H3), 4.15 (t, 2H, J = 6.9 Hz, NCH2), 3.53 (t, 2H, J = 6.6 Hz, 

CH2Cl), 2.43 (s, 3H, CH3), 1.98–1.87 and 1.76–1.65 (2m, 4H, ClCH2CH2CH2). 

General Method for the synthesis of 4-(piperidin-1-yl)butyl)indoles 11 and 12. The method 

of Martelli et al.90 was followed with slight modifications. To a solution of 1-(4-

chlorobutyl)indole 9 or 10 (1 equiv) and piperidine (1.2 equiv) in CH3CN (6.9 mL/mmol), 

anhydrous K2CO3 (1–2 equiv) was added at room temperature. The reaction mixture was stirred 

at 60 ºC overnight, under inert gas. When the reaction did not further evolve, monitored by TLC, 

it was cooled down and neutralized CH2Cl2 (10 mL/mmol) was added. The mixture was then 

basified with NaOH 10%aq (30 mL/mmol), extracted with neutralized CH2Cl2 (2 × 30 

mL/mmol), dried over anhydrous Na2SO4, filtered, and evaporated under vacuum. The crude was 

purified by automatized flash chromatography in basic alumina with ethyl acetate/hexane 

mixtures as eluent, obtaining a colorless oil. 

5-Bromo-1-(4-(piperidin-1-yl)butyl)-1H-indole (11). Following the general method for the 

synthesis of 4-(piperidin-1-yl)butyl)indoles 11 and 12, reaction of 9 (107 mg, 0.37 mmol) with 

piperidine (44 µL, 0.45 mmol) and anhydrous K2CO3 (52 mg, 0.37 mmol) yielded 11 (70 mg, 
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60%). 1H NMR (300 MHz, acetone-d6) δ 7.72 (d, 1H, J = 1.8 Hz, H4), 7.44 (d, 1H, J = 8.7 Hz, 

H7), 7.33 (d, 1H, J = 3.1 Hz, H2), 7.24 (dd, 1H, J = 1.9, 8.7 Hz, H6), 6.43 (dd, 1H, J = 0.7, 3.2 

Hz, H3), 4.22 [t, 2H, J = 7.1 Hz, NCH2(CH2)3N], 2.33–2.19 [m, 6H, N(CH2)3CH2N, H2’], 1.85 

[m, 2H, NCH2CH2(CH2)2N], 1.54–1.29 [m, 8H, N(CH2)2CH2CH2N, H3’, H4’]. 

5-Methyl-1-(4-(piperidin-1-yl)butyl)-1H-indole (12). Following the general method for the 

synthesis of 4-(piperidin-1-yl)butyl)indoles 11 and 12, reaction of 10 (328 mg, 1.48 mmol) with 

piperidine (176 µL, 1.78 mmol) and anhydrous K2CO3 (409 mg, 2.96 mmol), yielded 12 (180 

mg, 45%). 1H NMR (300 MHz, acetone-d6) δ 7.36 (m, 1H, H4), 7.32 (d, 1H, J = 8.4 Hz, H7), 

7.17 (d, 1H, J = 3.1 Hz, H2), 6.98 (dd, 1H, J = 1.2, 8.1 Hz, H6), 6.35 (dd, 1H, J = 0.7, 3.1 Hz, 

H3), 4.13 [t, 2H, J = 7.1 Hz, NCH2(CH2)3N], 2.42 (s, 3H, CH3), 2.32–2.19 [m, 6H, 

N(CH2)3CH2N, H2’], 1.83 [m, 2H, NCH2CH2(CH2)2N], 1.57–1.28 [m, 8H, N(CH2)2CH2CH2N, 

H3’, H4’].  

General Method for the synthesis of 15 and 19 through N-oxide intermediates. Based on the 

method of Henry and Leete,91 with modifications. To a suspension of 1 or N,N-dimethyl-1-(5-

methyl-1H-indol-3-yl)methanamine (1 equiv) in absolute ethanol (0.4 mL/mmol), H2O2 (30 %; 

0.3 mL/mmol) was added, under inert gas at room temperature, observing a slight exothermicity 

and the complete dissolution of the suspension. Then, the magnet stir was removed and the flask 

cooled down with an ice bath and thus kept overnight. The white crystals formed were washed 

with absolute ethanol and the supernatant was discarded. After confirming the formation of the 

corresponding N-oxide by 1H NMR, they were dissolved in piperidine (4 mL/mmol) and refluxed 

for 3 hours. Piperidine was evaporated under vacuum and the crude recrystallized in absolute 

ethanol to obtain pure compounds.  
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3-(Piperidin-1-ylmethyl)-1H-indole (15). Following the general method for the synthesis of 15 

and 19 through N-oxide intermediates, reaction of 1 (200 mg, 1.15 mmol) with H2O2 (30 %; 0.3 

mL) in absolute ethanol (0.46 mL), yielded the 1-(1H-indol-3-yl)-N,N-dimethylmethanamine 

oxide 1391 that was immediately used with no further purification. 1H NMR (300 MHz, CD3OD) 

δ 7.70 (ddd, 1H, J = 0.8, 1.4, 7.7 Hz, H4), 7.56 (s, 1H, H2), 7.42 (ddd, 1H, J = 0.8, 1.2, 8.0 Hz, 

H7), 7.21–7.10 (m, 2H, H5, H6), 4.61 (s, 2H, CH2), 3.11 [s, 6H, (CH3)2]. Reaction of 13 (230 

mg, 1.21 mmol) in piperidine (4.6 mL) yielded 15 (191 mg, 74%) as a brown crystal. Mp 142–

144 ºC. 1H NMR (300 MHz, CD3OD) δ 7.64 (d, 1H, J = 7.8 Hz, H4), 7.39 (m, 1H, H7), 7.24 (s, 

1H, H2), 7.16–7.02 (m, 2H, H5, H6), 3.76 (s, 2H, CH2), 2.56 (m, 4H, H2’), 1.63 (m, 4H, H3’), 

1.52–1.41 (m, 2H, H4’). 13C NMR (75.4 MHz, CD3OD) δ 137.8, 129.6, 126.3, 122.3, 120.0, 

119.6, 112.2, 110.7, 55.0, 54.3, 26.4, 25.1. Anal. Calcd for C14H18N2: C, 78.46; H, 8.47; N, 

13.07. Found: C, 78.15; H, 8.41; N, 13.05 

5-Methyl-3-(piperidin-1-ylmethyl)-1H-indole (19). Following the general method for the 

synthesis of 15 and 19 through N-oxide intermediates, reaction of N,N-dimethyl-1-(5-methyl-1H-

indol-3-yl)methanamine (18) (40 mg, 0.21 mmol) with H2O2 (30 %; 60 µL) in absolute ethanol 

(85 µL), yielded N,N-dimethyl-1-(5-methyl-1H-indol-3-yl)methanamine oxide 14 that was 

immediately used with no further purification Reaction of 14 (32 mg, 0.16 mmol) in piperidine 

(640 µL) yielded 19 (36 mg, >99%). 1H NMR (300 MHz, CD3OD) δ 7.40 (m, 1H, H4), 7.24 (d, 

1H, J = 8.3 Hz, H7), 7.17 (s, 1H, H2), 6.95 (dd, 1H, J = 1.3, 8.3 Hz, H6), 3.72 (s, 2H, CH2), 2.54 

(m, 4H, H2’), 2.43 (s, 3H, CH3), 1.60 (m, 4H, H3’), 1.51–1.38 (m, 2H, H4’). Its oxalate salt was 

prepared by dropwise addition of a solution of oxalic acid 1M (1 equiv) in ethyl acetate, under 

inert gas, to the compound previously dissolved in ethyl acetate dried over MgSO4. After 2 h 

stirring, the salt was isolated by centrifugation, the mother liquid decanted, and the traces of 
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solvent removed under vacuum. Mp 186–188 ºC. 13C NMR (75.4 MHz, DMSO-d6) δ 163.9, 

134.3, 128.6, 128.1, 127.7, 123.2, 117.9, 111.6, 102.1, 51.1, 50.6, 22.4, 21.3, 21.2. Anal. Calcd 

for C15H20N2·H2O·C2H2O4: C, 60.70; H, 7.19; N, 8.33. Found: C, 60.73; H, 6.89; N, 8.29 

 

General Method for the synthesis of 1 derivatives 16–18 and 20–38. The method of Miranda 

et al.92 was followed with modifications. Under argon atmosphere, dimethylamine (40%aq) or 

piperidine (1–1.5 equiv) and formaldehyde (37%aq, 1–2 equiv) were stirred in glacial acetic acid 

(0.3–5.5 mL/mmol) for 10 min to form the iminium ion, which was the added to a solution of 5-

bromo-1H-indole or compounds 2–12 (1 equiv) in glacial acetic acid (0.1–2 mL/mmol) at 0 ºC. 

After 5 min, reaction was allowed to reach room temperature and was stirred for 2–5 h, until the 

reaction was terminated or no evolution was observed by TLC. Then, NaOHaq (30%) was added 

to get a pH 14. The mixture was extracted with neutralized CH2Cl2 (3 × 30 mL/mmol) and the 

organic layer dried over anhydrous Na2SO4, filtered and evaporated. 

Oily compounds were salinized to hydrochloride or oxalate salts. Hydrochloride salts were 

prepared by dropwise addition of a solution of hydrochloric acid 1M in diethyl ether (1 equiv), 

under inert gas, to the compounds previously dissolved in ether (10 mL). Oxalate salts were 

prepared by dropwise addition of a solution of oxalic acid 1M in ethyl acetate (1 equiv), under 

inert gas, to the compound previously dissolved in ethyl acetate (10 mL). Both types of salts 

were kept under stirring for 2h, isolated by centrifugation and the traces of solvent removed 

under vacuum. Solvents for the salinization solutions were previously dried over MgSO4. 

1-(5-Bromo-1H-indol-3-yl)-N,N-dimethylmethanamine (16) Following the general method for 

the synthesis of 1 derivatives 16–18 and 20–38, reaction of 5-bromo-1H-indole (200 mg, 1.02 
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mmol) with dimethylamine (129 µL, 1.02 mmol) and formaldehyde (76 µL, 1.02 mmol) in 

glacial acetic acid (1 mL) yielded 16 as a brown solid that did not required further purification 

(234 mg, 80%). Mp 134–137 ºC. 1H NMR (300 MHz, CDCl3) δ 8.35 (bs, 1H, NH), 7.84 (d, 1H, J 

= 1.6 Hz, H4), 7.32–7.23 (dd, 1H, J = 1.8, 8.4 Hz, H6), 7.20 (d, 1H, J = 8.6 Hz, H7), 7.10 (s, 1H, 

H2), 3.58 (s, 2H, CH2), 2.28 [s, 6H, N(CH3)2]. 
13C NMR (75.4 MHz, acetone-d6) δ 136.6, 130.7, 

126.5, 124.8, 123.0, 114.0, 113.8, 112.5, 55.7, 45.5 [N(CH3)2]. Anal. Calcd for C11H13BrN2: C, 

52.19; H, 5.18; N, 11.07. Found: C, 51.89; H, 5.12; N, 10.64. 

5-Bromo-3-(piperidin-1-ylmethyl)-1H-indole (17). Following the general method for the 

synthesis of 1 derivatives 16–18 and 20–38, reaction of 5-bromo-1H-indole (200 mg, 1.02 mmol) 

with piperidine (99 µL, 1.02 mmol) and formaldehyde (76 µL, 1.02 mmol) in glacial acetic acid 

(0.5 mL) yielded 17 as a yellow solid that did not required further purification (238 mg, 80%). 

Mp 131–134 ºC. 1H NMR (300 MHz, acetone-d6) δ 10.28 (bs, 1H, NH), 7.89 (d, 1H, J = 2.0 Hz, 

H4), 7.34 (dd, 1H, J = 0.3, 8.6 Hz, H7), 7.25 (d, 1H, J = 2.3 Hz, H2), 7.20 (dd, 1H, J = 2.0, 8.6 

Hz, H6), 3.59 (d, 2H, J = 0.7 Hz, C3CH2), 2.38 (m, 4H, H2’), 1.56–1.47 (m, 4H, H3’), 1.45–1.36 

(m, 2H, H4’). 13C NMR (75.4 MHz, acetone-d6): 136.5, 130.7, 126.3, 124.7, 122.9, 113.9, 113.3, 

112.4, 55.2, 55.1, 26.9, 25.4. Anal. Calcd for C14H17BrN2: C, 57.35; H, 5.84; N, 9.55. Found: C, 

56.94; H, 5.91; N, 9.32. 

1-(1-Benzyl-5-bromo-1H-indol-3-yl)-N,N-dimethylmethanamine (20). Following the general 

method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 2 (97 mg, 0.34 mmol) 

with dimethylamine (43 µL, 0.34 mmol) and formaldehyde (25 µL, 0.34 mmol) in glacial acetic 

acid (2 mL) yielded 20 as a yellow oil that did not required further purification (114 mg, >99%). 

1H NMR (300 MHz, CDCl3) δ 7.83 (bd, 1H, J = 1.8 Hz, H4), 7.31–7.19 (m, 4H, Ar), 7.11–7.03 
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(m, 4H, Ar), 5.24 (s, 2H, NCH2Ph), 3.55 (s, 2H, C3CH2), 2.26 [s, 6H, N(CH3)2]. Its 

hydrochloride salt was prepared as described above. Mp 209–212 ºC. 13C NMR (75.4 MHz, 

DMSO-d6) δ 137.3, 134.6, 133.5, 129.6, 128.6, 127.6, 127.0, 124.5, 121.6, 112.9, 112.7, 103.0, 

50.5, 49.4, 41.1. Anal. Calcd for C18H19BrN2·HCl: C, 56.94; H, 5.31; N, 7.38. Found: C, 56.53; 

H, 5.10; N, 7.05. 

1-Benzyl-5-bromo-3-(piperidin-1-ylmethyl)-1H-indole (21). Following the general method for 

the synthesis of 1 derivatives 16–18 and 20–38, reaction of 2 (138 mg, 0.48 mmol) with 

piperidine (48 µL, 0.48 mmol) and formaldehyde (35 µL, 0.48 mmol) in glacial acetic acid (0.5 

mL) yielded 21 as a yellow oil that did not required further purification (173 mg, 94%). 1H NMR 

(300 MHz, CDCl3) δ 7.86 (d, 1H, J = 1.7 Hz, H4), 7.33–7.18 (m, 4H, Ar), 7.10–7.03 (m, 4H, 

Ar), 5.23 (s, 2H, NCH2Ph), 3.61 (s, 2H, C3CH2), 2.42 (m, 4H, H2’), 1.57 (m, 4H, H3’), 1.41 (m, 

2H, H4’). Its hydrochloride salt was prepared as described above. Mp 199–202 ºC. 13C NMR 

(75.4 MHz, D2O + few drops of acetone-d6 for ppm calibration) δ 137.3, 135.2, 133.9, 130.2, 

129.3, 128.4, 127.4, 125.5, 121.4, 113.9, 113.0, 102.0, 52.5, 51.3, 50.4, 23.2, 21.5. Anal. Calcd 

for C21H23BrN2·2HCl: C, 55.28; H, 5.52; N, 6.14. Found: C, 54.92; H, 5.33; N, 6.17. 

1-(1-Benzyl-5-methyl-1H-indol-3-yl)-N,N-dimethylmethanamine (22). Following the general 

method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 3 (126 mg, 0.57 mmol) 

with dimethylamine (72 µL, 0.57 mmol) and formaldehyde (43 µL, 0.57 mmol) in glacial acetic 

acid (0.6 mL) yielded 22 as a yellow oil that did not required further purification (154 mg, 

97%).1H NMR (300 MHz, acetone-d6) δ 7.51 (m, 1H, H4), 7.31–7.13 (m, 7H, Ar), 6.94 (dd, 1H, 

J = 1.3, 8.3 Hz, H6), 5.34 (s, 2H, NCH2Ph), 3.56 (s, 2H, C3CH2), 2.39 (s, 3H, CH3), 2.21 [s, 6H, 

N(CH2)3]. Its oxalate salt was prepared as described above. Mp 166–169 ºC. 13C NMR (75.4 
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MHz, D2O + few drops of acetone-d6 for the ppm calibration) δ 215.8, 137.8, 134.8, 132.6, 

130.9, 129.2, 128.4, 128.2, 127.3, 124.6, 118.3, 111.1, 102.1, 52.4, 50.2, 41.8, 20.8.  Anal. Calcd 

for C19H22N2·C2H2O4: C, 68.46; H, 6.57; N, 7.60. Found: C, 68.18; H, 6.43; N, 7.26. 

1-Benzyl-5-methyl-3-(piperidin-1-ylmethyl)-1H-indole (23). Following the general method for 

the synthesis of 1 derivatives 16–18 and 20–38, reaction of 3 (254 mg, 1.15 mmol) with 

piperidine (113 µL, 1.15 mmol) and formaldehyde (86 µL, 1.15 mmol) in glacial acetic acid (2 

mL) yielded 23 as a yellow oil that did not required further purification (355 mg, 97%).1H NMR 

(300 MHz, acetone-d6) δ 7.53 (m, 1H, H4), 7.30–7.14 (m, 7H, Ar), 6.93 (dd, 1H, J = 1.2, 8.3 Hz, 

H6), 5.32 (s, 2H, NCH2Ph), 3.60 (d, 2H, J = 0.7 Hz, C3CH2), 2.44–2.37 (m, 4H, H2’), 2.40 (s, 

3H, CH3), 1.53 (m, 4H, H3’), 1.42 (m, 2H, H4’). Its oxalate salt was prepared as described 

above. Mp 172–174 ºC. 13C NMR (75.4 MHz, DMSO-d6) δ 164.6, 137.8, 134.3, 132.0, 128.7, 

128.5, 128.4, 127.4, 127.0, 123.5, 118.4, 110.3, 102.1, 51.0, 50.2, 49.3, 22.4, 21.4, 21.1. Anal. 

Calcd for C22H26N2·C2H2O4: C, 70.57; H, 6.91; N, 6.86. Found: C, 70.36; H, 6.86; N, 6.59. 

1-(5-Bromo-1-butyl-1H-indol-3-yl)-N,N-dimethylmethanamine (24). Following the general 

method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 4 (240 mg, 0.95 mmol) 

with dimethylamine (120 µL, 0.95 mmol) and formaldehyde (72 µL, 0.95 mmol) in glacial acetic 

acid (1 mL) yielded 24, which was further purified by automatized flash chromatography with 

ethyl acetate/hexane mixtures as eluent, obtaining a yellow oil (316 mg, >99%). 1H NMR (300 

MHz, CDCl3) δ 7.80 (d, 1H, J = 1.7 Hz, H4), 7.25 (dd, 1H, J = 1.9, 8.7 Hz, H6), 7.16 (d, 1H, J = 

8.7 Hz, H7), 7.02 (s, 1H, H2), 4.05 (t, 2H, J = 7.0 Hz, NCH2(CH2)2CH3), 3.54 (s, 2H, C3CH2), 

2.25 (s, 6H, N(CH3)2), 1.78 (m, 2H, NCH2CH2CH2 CH3), 1.37–1.23 (m, 2H, N(CH2)2CH2CH3), 

0.92 (t, 3H, J = 7.3 Hz, CH3). Its hydrochloride salt was prepared as described above. Mp 84–88 
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ºC. 13C NMR (75.4 MHz, DMSO-d6) δ 134.6, 133.1, 129.4, 124.3, 121.4, 112.6, 112.4, 102.3, 

50.5, 45.5, 41.0, 31.7, 19.3, 13.5. Anal. Calcd for C15H21BrN2·2HCl: C, 47.14; H, 6.07; N, 7.33. 

Found: C, 46.89; H, 6.38; N, 6.95. 

5-Bromo-1-butyl-3-(piperidin-1-ylmethyl)-1H-indole (25). Following the general method for 

the synthesis of 1 derivatives 16–18 and 20–38, reaction of 4 (185 mg, 0.73 mmol) with 

piperidine (73 µL, 0.73 mmol) and formaldehyde (66 µL, 0.88 mmol) in glacial acetic acid (0.5 

mL) yielded 25 as an oil that did not required further purification (279 mg, >99%).1H NMR (300 

MHz, CDCl3) δ 7.83 (d, 1H, J = 1.8 Hz, H4), 7.26 (dd, 1H, J = 1.8, 8.7 Hz, H6), 7.16 (d, 1H, J = 

8.7 Hz, H7), 7.03 (s, 1H, H2), 4.04 (t, 2H, J = 7.1 Hz, NCH2(CH2)2CH3), 3.62 (s, 2H, C3CH2), 

2.47–2.36 (m, 4H, H2’), 1.79 (m, 2H, NCH2CH2CH2CH3), 1.58 (m, 4H, H3’), 1.47–1.37 (m, 2H, 

H4’), 1.37–1.24 (m, 2H, N(CH2)2CH2CH3), 0.93 (t, 3H, J = 7.3 Hz, N(CH2)3CH3). Its 

hydrochloride salt was prepared as described above. Mp 177–180 ºC. 13C NMR (75.4 MHz, D2O 

+ few drops of acetone-d6 for the ppm calibration) δ 134.8, 133.2, 129.3, 124.8, 120.8, 113.0, 

112.4, 100.8, 52.1, 51.1, 46.0, 31.4, 22.8, 21.1, 19.3, 12.8. Anal. Calcd for C18H25BrN2·HCl: C, 

56.04; H, 6.79; N, 7.26. Found: C, 55.65; H, 6.63; N, 7.04. 

1-Butyl-5-methyl-3-(piperidin-1-ylmethyl)-1H-indole (26). Following the general method for 

the synthesis of 1 derivatives 16–18 and 20–38, reaction of 5 (143 mg, 0.76 mmol) with 

piperidine (75 µL, 0.76 mmol) and formaldehyde (57 µL, 0.76 mmol) in glacial acetic acid (0.8 

mL) yielded 26 as an oil that did not required further purification (204 mg, 94%).1H NMR (300 

MHz, acetone-d6) δ 7.50 (m, 1H, H4), 7.25 (d, 1H, J = 8.3 Hz, H7), 7.08 (s, 1H, H2), 6.96 (dd, 

1H, J = 1.4, 8.4 Hz, H6), 4.10 (t, 2H, J = 7.0 Hz, NCH2(CH2)2CH3), 3.58 (d, 2H, J = 0.5 Hz, 

C3CH2), 2.44–2.36 (m, 7H, H2’, CH3C5), 1.77 (m, 2H, NCH2CH2CH2CH3), 1.53 (m, 4H, H3’), 
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1.45–1.35 (m, 2H, H4’), 1.35-1.24 [m, 2H, N(CH2)2CH2CH3], 0.91 (t, 3H, J = 7.3 Hz, 

N(CH2)3CH3). Its hydrochloride salt was prepared as described above. Mp 140–143 ºC. 13C 

NMR (75.4 MHz, D2O + few drops of acetone-d6 for the ppm calibration) δ 134.7, 132.4, 130.5, 

128.4, 124.1, 118.2, 110.8, 100.8, 52.3, 51.7, 46.2, 31.8, 23.1, 21.4, 20.8, 19.7, 13.2. Anal. Calcd 

for C19H28N2·HCl: C, 71.11; H, 9.11; N, 8.73. Found: C, 71.20; H, 8.96; N, 8.42. 

Ethyl 4-(5-bromo-3-((dimethylamino)methyl)-1H-indol-1-yl)butanoate (27). Following the 

general method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 6 (98 mg, 0.32 

mmol) with dimethylamine (60 µL, 0.47 mmol) and formaldehyde (34 µL, 0.47 mmol) in glacial 

acetic acid (1.8 mL) yielded 27 as an oil that did not required further purification (110 mg, 95%). 

1H NMR (300 MHz, acetone-d6) δ 7.86 (d, 1H, J = 1.9 Hz, H4), 7.38 (d, 1H, J = 8.7 Hz, H7), 

7.25 (dd, 1H, J = 2.0 Hz, 8.7 Hz, H6), 7.21 (s, 1H, H2), 4.23 [t, 2H, J = 7.0 Hz, NCH2(CH2)2], 

4.07 (c, 2H, J = 7.1 Hz, COOCH2CH3), 3.53 (s, 2H, C3CH2), 2.28 (t, 2H, J = 7.8 Hz, 

CH2COOCH2CH3), 2.18 [s, 6H, N(CH3)2], 2.10 (m, 2H, NCH2CH2CH2), 1.19 (t, 3H, J = 7.1 Hz, 

COOCH2CH3). Its oxalate salt was prepared as described above. Mp 133–135 ºC. 13C NMR 

(75.4 MHz, CD3OD) δ 176.3, 165.5, 135.9, 134.0, 130.0, 126.0, 121.7, 114.2, 113.2, 102.6, 62.6, 

52.7, 46.5, 42.4, 32.2, 25.6, 14.0. Anal. Calcd for C17H23BrN2O2·H2O·C2H2O4: C, 48.01; H, 

5.73; N, 5.89. Found: C, 48.05; H, 5.33; N, 5.45. 

Ethyl 4-(5-bromo-3-(piperidin-1-ylmethyl)-1H-indol-1-yl)butanoate (28). Following the 

general method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 6 (100 mg, 0.32 

mmol) with piperidine (48 µL, 0.48 mmol) and formaldehyde (36 µL, 0.48 mmol) in glacial 

acetic acid (1.1 mL) yielded 28 as an oil that did not required further purification (133 mg, 

>99%).1H NMR (300 MHz, acetone-d6) δ 7.90 (d, 1H, J = 1.9 Hz, H4), 7.38 (d, 1H, J = 8.7 Hz, 
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H7), 7.25 (dd, 1H, J = 2.0, 8.7 Hz, H6), 7.21 (s, 1H, H2), 4.22 [t, 2H, J = 7.1 Hz, 

NCH2(CH2)2CO], 4.07 (c, 2H, J = 7.1 Hz, COOCH2CH3), 3.58 (s, 2H,C3CH2), 2.38 (m, 4H, 

H2’), 2.28 [t, 2H, J = 7.1 Hz, N(CH2)2CH2CO], 2.09 (m, 2H, NCH2CH2, CH2CO), 1.57–1.46 (m, 

4H, H3’), 1.46–1.35 (m, 2H, H4’), 1.19 (t, 3H, J = 7.1 Hz, COOCH2CH3). Its oxalate salt was 

prepared as described above. Mp 158–160 ºC. 13C NMR (75.4 MHz, CD3OD) δ 220, 176.0, 

136.0, 133.9, 130.5, 126.1, 121.8, 114.4, 113.2, 102.5, 62.4, 53.1, 52.0, 46.5, 32.2, 25.8, 23.8, 

22.2, 14.0. Anal. Calcd for C20H27BrN2O2·C2H2O4: C, 53.13; H, 5.88; N, 5.63. Found: C, 53.16; 

H, 5.85; N, 5.50. 

1-(5-Bromo-1-(prop-2-yn-1-yl)-1H-indol-3-yl)-N,N-dimethylmethanamine (29). Following 

the general method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 7 (126 mg, 

0.54 mmol) with dimethylamine (68 µL, 0.538 mmol) and formaldehyde (40 µL, 0.54 mmol) in 

glacial acetic acid (1 mL) yielded 29 as an oil that did not required further purification (154 mg, 

98%). 1H NMR (300 MHz, acetone-d6) δ 7.88 (d, 1H, J = 1.9 Hz, H4), 7.44 (d, 1H, J = 8.7 Hz, 

H7), 7.29 (m, 2H, H6, H2), 5.04 (d, 2H, J = 2.5 Hz, NCH2CCH), 3.53 (s, 2H, C3CH2), 2.94 (t, 

1H, J = 2.5 Hz, NCH2CCH), 2.19 (s, 6H, N(CH3)2). Its oxalate salt was prepared as described 

above. Mp 161–163 ºC. 13C NMR (75.4 MHz, DMSO-d6) δ 163.7, 134.4, 132.6, 129.7, 124.8, 

121.7, 113.2, 112.7, 103.5, 78.6, 76.4, 50.5, 41.3, 35.6. Anal. Calcd for 

C14H15BrN2·H2O·2C2H2O4: C, 44.19; H, 4.33; N, 5.73. Found: C, 44.15; H, 4.02; N, 5.78. 

5-Bromo-3-(piperidin-1-ylmethyl)-1-(prop-2-yn-1-yl)-1H-indole (30). Following the general 

method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 7 (230 mg, 0.98 mmol) 

with piperidine (97 µL, 0.98 mmol) and formaldehyde (74 µL, 0.98 mmol) in glacial acetic acid 

(1 mL) yielded 30 as a wax, which did not required further purification (320 mg, 98%). Mp 67–
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70 ºC. 1H NMR (300 MHz, acetone-d6) δ 7.91 (d, 1H, J = 2.0 Hz, H4), 7.44 (dd, 1H, J = 0.4, 8.7 

Hz, H7), 7.31–7.27 (m, 2H, H4,H2), 5.04 (d, 2H, J = 2.5 Hz, NCH2CCH), 3.57 (s, 2H, C3CH2), 

2.95 (t, 1H, J = 2.5 Hz, NCH2CCH), 2.38 (m, 4H, H2’), 1.56–1.49 (m, 4H, H3’), 1.44–1.41 (m, 

2H, H4’). 13C NMR (75.4 MHz, acetone-d6) δ 136.1, 131.4, 129.2, 125.0, 123.3, 113.4, 113.0, 

112.4, 79.1, 74.8, 55.1, 54.9, 36.1, 26.9, 25.3. Anal. Calcd for C17H19BrN2: C, 61.64; H, 5.78; N, 

8.46. Found: C, 61.21; H, 5.97; N, 8.60. 

N,N-Dimethyl-1-(5-methyl-1-(prop-2-yn-1-yl)-1H-indol-3-yl)methanamine (31). Following 

the general method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 8 (236 mg, 

1.39 mmol) with dimethylamine (177 µL, 1.39 mmol) and formaldehyde (105 µL, 1.39 mmol) in 

glacial acetic acid (1.8 mL) yielded 31 as an oil that did not required further purification (282 

mg, 90%). 1H NMR (300 MHz, acetone-d6) δ 7.50 (m, 1Η, H4), 7.33 (d, 1H, J = 8.3 Hz, H7), 

7.17 (s, 1H, H2), 7.02 (dd, 1H, J = 1.6, 8.4 Hz, H6), 4.95 (d, 2H, J = 2.6 Hz, NCH2CCH), 3.53 

(s, 2H, C3CH2), 2.90 (t, 1H, J = 2.5 Hz, NCH2CCH), 2.41 (bs, 3H, CH3C5), 2.19 (s, 6H, 

N(CH3)2). Its oxalate salt was prepared as described above. Mp 136–138 ºC. 13C NMR (75.4 

MHz, D2O + few drops of acetone-d6 for the ppm calibration) δ 165.0, 134.0, 131.4, 130.9, 

128.0, 124.3, 118.0, 110.4, 102.2, 78.3, 74.1, 51.9, 41.5, 35.6, 20.4. Anal. Calcd for 

C15H18N2·H2O·C2H2O4: C, 61.07; H, 6.63; N, 8.38. Found: C, 60.69; H, 6.27; N, 8.75 

5-Methyl-3-(piperidin-1-ylmethyl)-1-(prop-2-yn-1-yl)-1H-indole (32). Following the general 

method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 8 (190 mg, 1.12 mmol) 

with piperidine (111 µL, 1.12 mmol) and formaldehyde (84 µL, 1.12 mmol) in glacial acetic acid 

(0.5 mL) yielded 32 as an oil that did not required further purification (287 mg, 96%). 1H NMR 

(300 MHz, CDCl3) δ 7.48 (m, 1H, H4), 7.27 (d, 1H, J = 11.6 Hz, H7), 7.13 (s, 1H, H2), 7.07 (dd, 
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1H, J = 2.1, 12.5 Hz, H6), 4.81 (d, 2H, J = 3.8 Hz, NCH2CCH), 3.68 (s, 2H, C3CH2), 2.86 (s, 

1H, NCH2CCH), 2.57–2.39 (m, 7H, H2’, CH3C5), 1.68–1.51 (m, 4H, H3’), 1.49–1.38 (m, 2H, 

H4’). Its oxalate salt was prepared as described above. Mp 115–118 ºC. 13C NMR (75.4 MHz, 

DMSO-d6) δ 164.1, 134.0, 131.2, 129.0, 128.4, 123.6, 118.5, 110.2, 102.4, 78.8, 76.0, 51.0, 50.1, 

35.4, 22.4, 21.4, 21.2. Anal. Calcd for C18H22N2·2H2O·C2H2O4: C, 61.21; H, 7.19; N, 7.14. 

Found: C, 61.51; H, 6.80; N, 7.02. 

5-Bromo-1-(4-chlorobutyl)-3-(piperidin-1-ylmethyl)-1H-indole (33). Following the general 

method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 9 (311 mg, 1.08 mmol) 

with piperidine (107 µL, 1.08 mmol) and formaldehyde (81 µL, 1.08 mmol) in glacial acetic acid 

(0.9 mL) yielded 33, which was further purified by trituration with diethyl ether, obtaining a 

yellow oil (419 mg, >99%). 1H NMR (300 MHz, acetone-d6) δ 7.89 (dd, 1H, J = 0.3, 1.9 Hz, 

H4), 7.38 (d, 1H, J = 8.5 Hz, H7), 7.23 (m, 2H, H6, H2), 4.18 [t, 2H, J = 6.9 Hz, 

NCH2(CH2)3Cl], 3.58 (m, 4H, CH2Cl, C3CH2), 2.37 (m, 4H, H2’), 2.02–1.70 (m, 4H, 

NCH2CH2CH2CH2Cl), 1.56–1.45 (m, 4H, H3’), 1.45–1.35 (m, 2H, H4’).13C NMR (75.4 MHz, 

DMSO-d6) δ 146.0, 140.8, 139.3, 134.4, 132.9, 122.3, 122.1, 121.9, 64.8, 64.7, 55.7, 54.9, 40.4, 

38.1, 36.6, 35.0. Anal. Calcd for C18H24BrClN2: C, 56.34; H, 6.30; N, 7.30. Found: C, 56.42; H, 

6.46; N, 7.02. 

1-(4-Chlorobutyl)-5-methyl-3-(piperidin-1-ylmethyl)-1H-indole (34). Following the general 

method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 10 (155 mg, 0.70 mmol) 

with piperidine (69 µL, 0.70 mmol) and formaldehyde (52 µL, 0.70 mmol) in glacial acetic acid 

(1.5 mL) yielded 34 as a yellow oil that did not required further purification (229 mg, >99%). 1H 

NMR (300 MHz, acetone-d6) δ 7.50 (m, 1H, H4), 7.27 (d, 1H, J = 8.4 Hz, H7), 7.09 (s, 1H, H2), 
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6.97 (dd, 1H, J = 1.4, 8.4 Hz, H6), 4.16 [t, 2H, J = 6.8 Hz, NCH2(CH2)3Cl], 3.60–3.53 (m, 4H, 

CH2Cl, C3CH2), 2.44-2.33 (m, 4H, H2’), 2.40 (s, 3H, CH3C5), 1.93 [m, 2H, 

NCH2CH2(CH2)2Cl], 1.72 [m, 2H, N(CH2)2CH2CH2Cl], 1.56–1.47 (m, 4H, H3’), 1.45–1.36 (m, 

2H, H4’). Its oxalate salt was prepared as described above. Mp 130–133 ºC. 13C NMR (75.4 

MHz, DMSO-d6) δ 164.2, 134.2, 131.3, 128.5, 128.2, 123.4, 121.4, 118.5, 110.1, 51.3, 46.8, 

44.9, 44.9, 29.4, 27.2, 24.7, 22.7, 21.2. Anal. Calcd for C19H27ClN2·C2H2O4: C, 61.68; H, 7.15; 

N, 6.85. Found: C, 61.31; H, 7.05; N, 6.65. 

1-(5-Bromo-1-(4-(piperidin-1-yl)butyl)-1H-indol-3-yl)-N,N-dimethylmethanamine (35). 

Following the general method for the synthesis of 1 derivatives 16–18 and 20–38, reaction of 11 

(92 mg, 0.27 mmol) with dimethylamine (35 µL, 0.27 mmol) and formaldehyde (21 µL, 0.27 

mmol) in glacial acetic acid (1.8 mL) yielded 35 as an oil that did not required further 

purification (115 mg, >99%). 1H NMR (300 MHz, acetone-d6) δ 7.85 (d, 1H, J = 2.0 Hz, H4), 

7.39 (d, 1H, J = 8.7 Hz, H7), 7.23 (m, 2H, H6, H2), 4.18 [t, 2H, J = 7.1 Hz, NCH2(CH2)3N], 3.52 

(s, 2H, C3CH2), 2.30–2.19 [m, 6H, N(CH2)3CH2N, H2’], 2.17 [s, 6H, N(CH3)2], 1.83 [m, 2H, 

NCH2CH2(CH2)2N], 1.53–1.32 [m, 8H, N(CH2)2CH2CH2N, H3’, H4’]. Its oxalate salt was 

prepared as described above. Mp 123–125 ºC. 13C NMR (75.4 MHz, D2O + few drops of 

acetone-d6 for ppm calibration) δ 165.7, 135.2, 133.2, 129.4, 125.5, 121.2, 113.6, 112.6, 102.1, 

56.5, 53.3, 52.1, 45.9, 41.8, 26.8, 23.0, 21.4, 21.2. Anal. Calcd for C20H30BrN3·H2O 2C2H2O4: C, 

48.82; H, 6.15; N, 7.12. Found: C, 49.26; H, 6.04; N, 6.75. 

5-Bromo-1-(4-(piperidin-1-yl)butyl)-3-(piperidin-1-ylmethyl)-1H-indole (36). Following the 

general method for the synthesis of 1 derivatives, reaction of 11 (70 mg, 0.21 mmol) with 

piperidine (21 µL, 0.21 mmol) and formaldehyde (16 µL, 0.21 mmol) in glacial acetic acid (400 
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µL) yielded 36 as an oil that did not required further purification (90 mg, >99%). 1H NMR (300 

MHz, acetone-d6) δ 7.99 (d, 1H, J = 1.8 Hz, H4), 7.37 (d, 1H, J = 8.7 Hz, H7), 7.22 (dd, 1H, J4-6 

= 1.8, 8.7 Hz, H6), 7.19 (s, 1H, H2), 4.16 [t, 2H, J = 7.1 Hz, NCH2(CH2)3N], 3.56 (s, 2H, 

C3CH2), 2.37 (m, 4H, H2’’), 2.29–2.18 [m, 6H, N(CH2)3CH2N, H2’], 1.83 [m, 2H, 

NCH2CH2(CH2)2N], 1.55–1.34 [m, 14H, N(CH2)2CH2CH2N, H3’, H4’, H3’’, H4’’]. Its oxalate 

salt was prepared as described above. Mp 90–92 ºC. 13C NMR (75.4 MHz, D2O + few drops of 

acetone-d6 for the ppm calibration) δ 168.2, 135.1, 133.3, 129.8, 125.4, 121.4, 113.7, 112.6, 

101.8, 56.5, 53.3, 52.5, 51.4, 45.9, 26.8, 23.2, 23.0, 21.5, 21.2. Anal. Calcd for 

C23H34BrN3·2C2H2O4: C, 52.94; H, 6.25; N, 6.86. Found: C, 52.89; H, 6.67; N, 6.86. 

N,N-Dimethyl-1-(5-methyl-1-(4-(piperidin-1-yl)butyl)-1H-indol-3-yl)methanamine (37). 

Following the general method for the synthesis of 1 derivatives, reaction of 12 (93 mg, 0.34 

mmol) with dimethylamine (44 µL, 0.34 mmol) and formaldehyde (26 µL, 0.34 mmol) in glacial 

acetic acid (0.6 mL) yielded 37 as a yellow oil that did not required further purification (102 mg, 

91%). 1H NMR (300 MHz, acetone-d6) δ 7.46 (m, 1H, H4), 7.28 (d, 1H, J = 8.3 Hz, H7), 7.11 (s, 

1H, H2), 6.96 (dd, 1H, J = 1.5, 8.3 Hz, H6), 4.13 [t, 2H, J = 7.0 Hz, NCH2(CH2)3N], 3.53 (s, 2H, 

C3CH2), 2.40 (s, 3H, CH3C5), 2.31–2.20 [m, 6H, N(CH2)3CH2N, H2’], 2.18 [s, 6H, N(CH3)2], 

1.82 [m, 2H, NCH2CH2(CH2)2N], 1.54–1.44 (m, 4H, H3’), 1.44–1.34 (m, 2H, H4’). Its oxalate 

salt was prepared as described above. Mp 146–149 ºC. 13C NMR (75.4 MHz, DMSO-d6) δ 164.6, 

134.1, 131.6, 128.6, 128.1, 123.4, 118.4, 110.1, 102.3, 55.3, 52.0, 50.9, 45.1, 41.2, 26.7, 22.4, 

21.4, 21.2, 20.7. Anal. Calcd for C21H35N3·H2O·2C2H2O4: C, 57.13; H, 7.48; N, 7.99. Found: C, 

57.49; H, 7.11; N, 7.61. 

Page 46 of 72

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

5-Methyl-1-(4-(piperidin-1-yl)butyl)-3-(piperidin-1-ylmethyl)-1H-indole (38). Following the 

general method for the synthesis of 1 derivatives, reaction of 12 (120 mg, 0.44 mmol) with 

piperidine (44 µL, 0.44 mmol) and formaldehyde (33 µL, 0.444 mmol) in glacial acetic acid (1.8 

mL) yielded 38 as an oil that did not required further purification (162 mg, 96%). 1H NMR (300 

MHz, acetone-d6) δ 7.48 (m, 1H, H4), 7.27 (m, 1H, H7), 7.07 (s, 1H, H2), 6.95 (dd, 1H, J = 2.1, 

12.3 Hz, H6), 4.11 [t, 2H, J = 10.4 Hz, NCH2(CH2)3N], 3.56 (d, 2H, J = 1.0 Hz, C3CH2), 2.44-

2.32 (m, 7H, H2’’, CH3C5), 2.30–2.16 [m, 6H, N(CH2)3CH2N, H2’], 1.80 [m, 2H, 

NCH2CH2(CH2)2N], 1.59–1.33 [m, 14H, N(CH2)2CH2CH2N, H3’, H4’, H3’’, H4’’]. Its oxalate 

salt was prepared as described above. Mp 64–66 ºC. 13C NMR (75.4 MHz, DMSO -d6) δ 164.2, 

134.0, 131.7, 128.6, 128.4, 123.4, 118.4, 110.1, 101.7, 55.4, 52.1, 51.3, 50.5, 45.1, 26.6, 22.5, 

22.5, 21.4, 21.4, 21.2, 20.8.. Anal. Calcd for C24H37N3·H2O·2C2H2O4: C, 59.45; H, 7.66; N, 7.43. 

Found: C, 59.82; H, 7.36; N, 7.18. 

Molecular Modeling. The structure and conformational analysis of ligand 23 were obtained 

with the Monte Carlo method in Spartan10. The most stable conformer were subsequently 

optimized with ab initio Hartree-Fock 6-31G* calculations, and selected for docking studies. The 

3D structure of the Protein Phosphatase 2A bound to OA was obtained from the Protein Data 

Bank (PDB ID: 2IE4).70 All solvent molecules and the co-crystallized ligand okadaic acid were 

removed from the complex. Molecular docking calculations for PP2A and compound 23 were 

undertaken using Molegro Virtual Docker 3.0,93 under a large enough sphere able to 

accommodate the cavity, centering it on the binding site of the protein structure, to allow the 

ligand to search the best pose. Different orientations of the ligands were searched and ranked 

based on their energy scores. Poses with the best both energies and conformations were selected 
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for further 3D analysis. MolDock Score was used as algorithm, which is adapted from the 

Differential Evolution (DE) algorithm.  

 

Pharmacology. Data Analysis. Data are shown as means ± standard error of the mean (SEM). 

Statistical significant differences (p ≤ 0.05) were calculated by ANOVA followed by a Newman-

Keuls or Dunnett’s post hoc test, obtained using the Prism software 5.0 (GraphPad) for a Mac 

OS X-operated computer. 

Experimental Use of Animals. All efforts were made to minimize the number of animals used 

for the experiments and their suffering. We followed the guidelines of the EU Council Directive. 

Experiments were approved by the Ethics Committee of the Universidad Autónoma de Madrid, 

Spain. 

Culture and treatment of neuroblastoma cells. SH-SY5Y cells were maintained similarly to 

what was previously described.63 For neuroprotection assays, cells were subcultured in 48 well 

plates at a seeding density of 7 × 104 cells per well. Before cells achieved confluence, 

compounds dissolved in media supplemented with 10% fetal bovine serum (FBS) were 

preincubated for 24 h. For coincubation, media was replaced by fresh new media with 1% FBS, 

compounds and the corresponding toxic stimulus. When coincubation finished, cell viability or 

phosphatase activities were measured. 

Culture and treatment of rat hippocampal slices. Hippocampal slices from 2-month-old 

Sprague-Dawley rats were extracted, isolated, and treated with glutamate according to 

experimental procedures previously described.51 After stabilization at 34 ºC for 45 min, 
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compounds and glutamate dissolved in medium were coincubated for 4 h and cell viability was 

measured by the method of the MTT reduction. 

Culture and treatment of rat motor cortical neurons. Embryos from 18 to 19 days of 

pregnancy were obtained by caesarean operation. After decapitation of the embryos and 

dissection of the brains, meninges were removed and the motor cortex was isolated. The 

fragments obtained from several embryos were subjected to mechanic digestion. Motor cortical 

neurons were resuspended in Neurobasal medium with 2% B-27 and seeded in poly-D-lysine-

pre-coated 48-well plates (density of 3 × 104 cells per well). Neuronal cultures were allowed to 

grow 8 to 10 days until a dense neuronal network was observed. Tested compounds dissolved in 

medium were preincubated for 24 h, after which veratridine was directly added into the wells and 

allowed to coincubate for another 24 h. The cell viability was assessed by the method of the 

MTT reduction. 

Measurement of cell viability in SH-SY5Y cells, hippocampal slices and motor cortex 

neurons. Cell viability was assessed by the quantitative colorimetric method of the MTT 

reduction.76 Briefly, only in living cells the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide, yellow-colored) is chemically reduced by mitochondrial 

dehydrogenase enzymes, thus being cell viability indirectly measured as mitochondrial activity 

of healthy cells. The reduced MTT is a purple-colored formazan derivative, which is dissolved in 

DMSO and offers a concentration-dependent colorimetric signal at 540 nm. MTT dissolved in 

water at 10 mg/mL was added to the wells (final concentration of 0.3 mg/mL) and was incubated 

in the dark at 37 ºC for 2 h (SH-SY5Y cells) or 30 min (hippocampal slices and neurons). After 

harvesting the medium, cells and tissue were lysed and the formazan dissolved with 300 µL, 200 

µL or 120 µL of DMSO, as if it is SH-SY5Y cells, hippocampal slices or neurons, respectively. 
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Absorbance was measured at 540 nm in a colorimetric plate reader (FLUOstar Optima, BMG, 

Germany). Data were expressed as percentage of cell viability, taking as 100% the obtained 

absorbance value in untreated cells. 

Measurement of phosphatase activity in SH-SY5Y cells. The Biosciences Phosphatase Assay 

Kit (Cat. #786-453) was used to measure the activity of phosphatases. Briefly, p-nitrophenyl 

phosphate (pNPP) acts as chromogenic substrate for the phosphatases, generating p-nitrophenol 

when dephosphorylated, which is deprotonated under alkaline conditions to produce p-

nitrophenolate that has a strong absorption at 405 nm. For total phosphatase activity, cellular 

media was removed and 50 µL of assay buffer and substrate (10 mM) were added to each well. 

The reaction mixture was incubated in the dark at 37 ºC for 30 min and the absorbance was 

measured at 405 nm (FLUOstar Optima, BMG, Germany). Ser/Thr phosphatase activity was 

measured by adding NaVO3 1 mM to the buffer. Data were reported as percentage of 

phosphatase activity, taking as 100% the obtained absorbance value in untreated cells. 

Measurement of cytosolic Ca2+ in SH-SY5Y cells. Free cytosolic Ca2+ concentration was 

measured using the fluorescent Ca2+ indicator Fluo-4/AM (Fluo-4 acetoxymethylester). SH-

SY5Y cells were seeded onto 96-well black plates at a density of 105 cells per well, achieving 

confluence after 48 h. Cells were washed with Krebs-Hepes solution (KH, in mM: 144 NaCl, 5.9 

KCl, 1.2 MgCl2, 2 CaCl2, 11 D-glucose, 10 HEPES, pH 7.4). Cells were loaded with 10 µM 

Fluo-4/AM and 0.2% pluronic acid in KH and incubated for 45 min at 37 ºC in the dark. Then, 

cells were washed twice with KH to remove the excess of probe. Tested compounds were 

incubated 10 min before KCl 70 mM was applied to evoke the increment of cytosolic Ca2+. To 

normalize Fluo-4 signals, Triton X-100 (5%) and 1 M MnCl2 were applied to register both 
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maximal and minimal fluorescence, respectively. The experiments were analyzed at excitation 

and emission wavelengths of 485 and 520 nm, respectively, and fluorescence was measured in a 

fluorescence microplate reader (FLUOstar Optima, BMG, Germany). Data were calculated as a 

percentage of Fmax − Fmin. 

Culture and measurement of Ca2+ currents in chromaffin cells. Bovine chromaffin cells were 

isolated and cultured according to a protocol previously described.94 All experiments were 

performed at room temperature (24 ± 2 °C) on cells from 1 to 4 days after culture. ICa were 

measured under the whole cell configuration of the patch-clamp technique.95 During recording, 

cells were constantly perfused with a standard control solution at pH 7.4 containing (mM): 145 

NaCl, 5.6 KCl, 1.2 MgCl2, 2 CaCl2, 11 glucose and 10 HEPES/NaOH. Cells were internally 

dialysed with an intracellular solution containing (in mM): 100 Cs-glutamate, 14 EGTA, 20 

tetraethylammonium, 10 NaCl, 5 ATP-Mg, 0.3 GTP-Na, and 20 HEPES/CsOH (pH 7.3). Whole-

cell recordings were made with fire-polished borosilicate pipettes (resistance 2-5 MΩ) that were 

mounted on the headstage of an EPC-9 patch-clamp amplifier (HEKA Electronik, Lambrecht, 

Germany), allowing cancellation of capacitative transients and compensation of series resistance. 

Data were recorded in a frequency of 20 kHz by using PULSE v8.74 software (HEKA 

Elektronik). Data analyses were performed with PULSE v8.74 program (HEKA Elektronik). 

Coverslips containing the cells were placed on a chamber installed on the stage of a inverted 

microscope. The external solutions were exchanged using miniature solenoid valves coupled to a 

multi-barrel concentration clamp apparatus, placing the common outlet within the 100 µm of the 

cell to be patched. The flow rate was 1 mL/min and was regulated by gravity. Nifedipine and 

different compounds were perfused as indicated. In order to measure ICa, cells were held at –80 
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mV and, each 20-s, single depolarizing pulses were applied to voltages where ICa peak was 

reached. 
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Aβ, amyloid β  peptide ; AD, Alzheimer’s disease; ChE, cholinesterases; ICa, Ca2+ currents; 

I/V, current vs. voltage; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; 

NFT, neurofibrillary tangles; NMDA, N-methyl-D-aspartate; OA, okadaic acid; pNPP, p-

nitrophenylphosphate; PP1, phosphoprotein phosphatase 1; PP2A, phosphoprotein phosphatase 

2A; PPP, phosphoprotein phosphatases; TTX, tetrodotoxin; VGCC, voltage-gated Ca2+ channels; 

VGNC, voltage-gated Na+ channels; ω-ctx, ω-conotoxin. 
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