

Subscriber access provided by Nottingham Trent University

Article

#-Methylation of 2-Arylacetonitrile by a Trimethylamine-Borane/CO2 System

Xiaowei Zhang, Sheng Wang, and Chanjuan Xi

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b01587 • Publication Date (Web): 10 Jul 2019

Downloaded from pubs.acs.org on July 10, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

α-Methylation of 2-Arylacetonitrile by a Trimethylamine-Borane/CO₂ System

Xiaowei Zhang,[†] Sheng Wang,[†] Chanjuan Xi^{*†‡}

[†]MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China

[‡]State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

*E-mail: cjxi@tsinghua.edu.cn

ABSTRACT: A highly selective monomethylation of 2-arylacetonitrile using CO_2 is described. The utilization of trimethylamine-borane facilitates the six-electron reduction of CO_2 . This reaction is the first selective six-electron reductive functionalization of CO_2 facilitated by $C(sp^3)$ -H bonds. A variety of 2-arylpropionitrile was obtained in good yields. The reaction could also be applied at gram scale.

INTRODUCTION

Methylation has played a significant role in medicine chemistry for many reasons, such as magic methyl effect.¹ For example, 2-arylpropionitriles, the methylated products of 2-arylacetonitriles, are important precursors in anti-inflammatory products, such as ibuprofen, flurbiprofen, and naproxen². Several methylating reagents have been applied to access the methylated products. (Scheme 1).^{1e,2-5} For instance, methyl iodide,² dimethyl sulfate², dimethyl carbonate,^{3a,b} and trimethyl orthoformate^{3c} are often used as methylating reagents. However, the methylation reactions using above-mentioned methylating reagents suffered low selectivity and harsh reaction conditions such as high temperature (over 150 °C), which limit their application. Methanol has been widely applied as the methylating reagent⁴ in the monomethylation of 2-arylacetonitriles with a transition metal catalyst, such as Ru,^{4a-c} Co,^{4d} and Ir^{4e}. Recently, Wang and co-workers reported Me₂NH-BH₃ assisted α -monomethylation of 2-arylacetonitrile utilizing DMF as the methyl source (Scheme 1b).⁵

Nevertheless, it is still desirable to develop a new methylation reaction using more environmentally-friendly and more efficient methylating reagents. CO_2 has demonstrated great potential as an abundant, renewable, and low-toxic C_1 chemical feedstock.⁶

Many reactions in utilization of CO_2 have been reported to generate carboxylic acids and their derivatives.^{7,8} However, CO_2 as a methylation reagent^{9,10} in the C-C bond formation is rarely reported. Recently, Beller's group first realized a Rucatalyzed reductive methylation of $C(sp^2)$ -H bond in electron-rich arenes with CO_2 and H_2 ,¹¹ which paves a new way for C-C bond formation using CO_2 . Selective monomethylation of $C(sp^3)$ -H bond using CO_2 is not achieved up to now, to the best of our knowledge. Herein, we report a transi-

a. Direct methylation without reductant

tion-metal-free monomethylation of 2- arylacetonitriles using CO_2 and $\text{Me}_3\text{N-BH}_3$ (Scheme

59

60

1c). This reaction realized the conversion of CO_2 into methyl group with formation of $C(sp^3)$ - $C(sp^3)$ bond.

RESULTS AND DISCUSSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57 58 59

60

The initial optimization studies were conducted using 2-naphthylacetonitrile (1a, 0.3 mmol) as a model substrate to test our hypothesis (Table 1). Learning from our previous studies in the area of reductive functionalization with CO_2^{12} , we first used NaBH₄ as reductant, ^tBuOK as base, and DME (1,2dimethoxyethane) as solvent to realize this methylation reaction (entry 1), no product was observed and **1a** remained. When NH₃-BH₃ served as the reductant, the desired product was obtained in 10% yield (entry 2). TBD (1,5,7triazabicyclo[4.4.0]dec-5-ene) is a powerful organic base, which was frequently employed to activate CO_2 . We tried utilization of TBD instead of ^tBuOK as the base, there is no improvement in the yield (entry 3). Notably, reaction ran well when TBD and ^tBuOK were used together (entry 4). TBD works as a predator of CO₂ and ^tBuOK works as a strong base in deprontonation of 2-naphthylacetonitrile 1a. Other amine-boranes like Me₂HN-BH₃ and Me₃N-BH₃ were also examed as the reductant and the vield of product 2a improved (entry 5 and 8). After a screening of charge ratio (entries 5-11), we found Me₃N-BH₃ can promote this reaction effectively (entry 9). Notably, an exclusive monomethylated product 2a was detected on GC-MS and NMR, which revealed high efficiency and selectivity of this reaction. Furthermore, the reaction temperature and time were examined and the yield of **2a** reduced to 80 % and 82 %, respectively (entries 12-13).

Table 1. Optimization of Reaction Conditions^a

	1a	CN + CO ₂ reduced to the formation of t	20 °C, 16 h	CN
entry	solvent	base (x equiv.)	reductant (x equiv.)	yield [%] ^b
1	DME	^t BuOK (1)	NaBH ₄ (3)	0
2	DME	^t BuOK (1)	H ₃ N-BH ₃ (3)	10
3	DME	TBD (1)	H ₃ N-BH ₃ (3)	8
4	DME	TBD (1) ^t BuOK (1)	H ₃ N-BH ₃ (3)	22
5	DME	TBD (1) ^t BuOK (1)	Me ₂ NH-BH ₃ (3)	32
6	DME	TBD (2) ^t BuOK (1.2)	Me ₂ NH-BH ₃ (4)	46
7	DME	TBD (1) ^t BuOK (1)	Me ₂ NH-BH ₃ (6)	49
8	DME	TBD (1) ^t BuOK (1)	Me ₃ N-BH ₃ (3)	34
9	DME	TBD (2) ^t BuOK (1.2)	Me ₃ N-BH ₃ (4)	91 (83)
10	DME	TBD (2) ^t BuOK (1.2)	Me ₃ N-BH ₃ (5)	90
11	DME	TBD (2) ^t BuOK (1.2)	Me ₃ N-BH ₃ (6)	93
12 ^c	DME	TBD (2) ^t BuOK (1.2)	Me ₃ N-BH ₃ (4)	80
13 ^d	DME	TBD (2) ^t BuOK (1.2)	Me ₃ N-BH ₃ (4)	82
14	THF	TBD (2) ^t BuOK (1.2)	Me ₃ N-BH ₃ (4)	7
15 1	,4-dioxane	TBD (2) ^t BuOK (1.2)	Me ₃ N-BH ₃ (4)	11
16	Toluene	TBD (2) ^t BuOK (1.2)	Me_3N-BH_3 (4)	Trace

^{*a*}The reactions were carried out using 0.3 mmol of **1a** in 0.5 mL solvent. ^{*b*}¹H NMR yield determined using dibromomethane as an internal standard, isolated yield is given in parenthesis. ^{*c*}100 °C. ^{*d*}12 h. In addition, different solvents such as tetrahydrofuran (THF), 1,4-dioxane, and toluene,were screened (entries 14-16), and poor yields were observed.

With the optimized reaction conditions in hand, we investigated the generality of this methylation protocol. A range of arylacetonitriles were treated with Me_3N-BH_3/CO_2 system to gain the methylated products. The representative results are shown in Table 2. First, various para-substituted arylacetonitriles were studied. Benzene ring bearing a wide range of functional groups could be converted to methylated products in good to excellent yields. The para-substituted arylacetonitriles bearing electrondonating groups, such as $-NMe_2$ (for 2d), -SMe (for 2e), and -OBn (for 2f) exhibited higher reactivity, respectively. When the substrates with electronwithdrawing groups such as -F and -CN were used and the desired products were obtained in 61% (for 2i) and 75% (for 2j) yield, respectively. Notably, the methylation of 1k failed, which is presumably contributed to the lower nucleophilicity of the corresponding carbon anion. When 2-(4-(phenylethynyl)phenyl)acetonitrile **11** and 2-(4-(trimethylsilyl)phenyl)acetonitrile 1m were employed in this reaction and the corresponding methylation product **2l** and **2m** also obtained in good yield. When 2-(o-tolyl)propanenitrile 1n and 2-([1,1'biphenyl]-2-yl)propanenitrile **10** were used in this reaction and the desired product 2n and 2o were generated in 90% and 91%, respectively, which indicate the reaction is not affected by steric effect. Utilization of 2-(benzo[*d*][1,3]dioxol-5-yl)acetonitrile **1q** in this

Table 2. Substrate Scope of 2-Arylacetonitriles^a

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50 51

52

53

54

55

56

57 58 59

60

system afforded the corresponding product 2q in 84% yield. Naphthalenylacetonitriles (1r and 1s) were used and the desired products (2r and 2s) were obtained in 77% and 83% yield, respectively. Remarkably, 2-heteroarylpropanenitriles can also achieve this reaction with desirable yields, including 2-(1-methyl-1H-indol-3-yl)propanenitrile (2t), 2-(benzofuran-3-vl)propanenitrile (2u). 2and (benzo[b]thiophen-3-yl)propanenitrile (2v). It is noteworthy that in all cases only the monomethylated products were obtained without the detection of any traces of the dimethylated ones. Furthermore, other C(*sp*³) nucleophiles such as propanedinitrile, methyl phenylacetate, and dimethyl malonate were employed in this reaction and the reaction led to the formation of complex, inseparable mixture, respectively. Aliphatic nitrile such as pimelic dinitrile can also not achieve this reaction with starting materials remaining.

In order to verify the applicability of the current methodology, the reaction was amplified to 10 mmol scale with a yield of **2a** in 79% (1.43 g) under the standard conditions in 20 mL DME. (Scheme **2**)

Scheme 2. Gram Scale Reaction

To elucidate the mechanism of the reaction, a series of control experiments were conducted. Initially, the reaction was treated using N₂ instead of CO₂, no product was observed and starting material **1a** remained (Eq. 1). In addition, isotopic labelling ¹³CO₂ was also used in the reaction and the corresponding product **2a'** was obtained (Eq. 2) (see Fig. S1 in SI). These results indicate that the methyl group comes from CO₂.

More experiments were conducted to illustrate the key intermediate during the reduction of CO_2 (Scheme 3). CO_2 was treated with TBD, ^tBuOK, and Me₃N-BH₃ in DME at 120 °C for 16 hours and methoxyborane **3** was obtained as the major product (see Fig. S2-S3 in SI), which indicates CO_2 undergoes six-electron reduction

to form methyl group when using Me_3N-BH_3 as a reductant. Addition of **1a** (1 equiv.) to above mixture under N_2 afforded the corresponding **2a** in 75% yield (Scheme 3, a). Furthermore, the intermediate **3** was captured by other nucleophiles such as thiophenol **1w** and aniline **1x** to give the corresponding methylation product **2w** and **2x** in 65% and 71% yield, respectively (Scheme 3, b and c).

Different kinds of amine-boranes were employed to elucidate the superiority of Me₃N-BH₃ in CO₂ reduction. H₃N-BH₃ can only reduce CO₂ to formyl according to our previous work.^{10a} group Furthermore, when CO₂ was treated with TBD and Me₂NH-BH₃ in DME at 120 °C for 16 hours, N,Ndimethylformamide (DMF) 4 was obtained (see Fig. S4-S5 in SI). Notably, no six-electron reduction product was observed, which indicates CO₂ undergoes two-electron reduction when using Me₂NH-BH₃ as reductant. When compound **1a** (1 equiv.) and Me₂NH- BH_3 (2.0 equiv.) were added into the generated mixture of 4 in situ under N₂, the product 2a was obtained in 48% yield (Scheme 3, d). Remarkably, the desired product 2a was not observed without addition Me₂NH-BH₃ (Scheme 3, e). These results indicate that Me₂NH-BH₃ is unable to reduce CO₂ to methyl group directly, which is due to side reaction between Me₂NH and the 2-electron intermediate. Me₂NH could cut off the reductive route to the 6electron intermediate with the formation of amide. As a result, the utilization of Me₃N-BH₃ as reductant avoids the side reaction and facilitate the 6-electron reduction of CO₂.

Scheme 3. Control Experiments

Based on the above results and previous work on CO_2 reduction, a plausible mechanism for the methylation reaction is demonstrated in Scheme 4. First, CO_2 -TBD adduct reacts with amine-borane to produce the formatoborohydride intermediate **A**. Then, further reduction of **A** with extra Me₃N-BH₃

affords methyl borate derivative **3**. Finally, 2arylacetonitrile in the presence of ^tBuOK as a nucleophilic reagent attacks the carbon atom of **3** to form the desired C-monomethylated product **2**. In addition, Me₂NH-BH₃ promotes this reaction *via* DMF **4** in the presence of Me₂NH. The reaction of DMF with 2-arylacetonitrile under ^tBuOK/Me₂NH-BH₃ led to Cmonomethylated product **2**, which has been reported by Wang and co-workers.⁵

Scheme 4. A Plausible Mechanism

CONCLUSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

In summary, the first examples for methylation of $C(sp^3)$ -H bonds using CO_2 and amine-boranes are disclosed. Amine in amine-boranes exhibits competitiveness against boranes in CO_2 reduction and could capture the 2-electron intermediate. The utilization of 3° amine-boranes avoid the side reaction and facilitate the 6-electron reduction of CO_2 . 2-Arylacetonitrile could be methylated into the desired 2-arylpropionitrile in good yields. The reaction could also be applied at gram scale. Further detailed studies on this selective reductive mechanism and expansion of CO_2 utilization are in progress in our group.

EXPERIMENTAL SECTION

General Information: Toluene, THF (tetrahydrofuran), 1,4-dioxane were purified by solvent purification system. Arylacetonitriles $\mathbf{1d}$, $\mathbf{13}$ $\mathbf{1h}$, $\mathbf{13}$ $\mathbf{1j}^{14}$, $\mathbf{1t}^{14}$, $\mathbf{2l}^{15}$ were known compounds and prepared according to the literature procedures. Unless otherwise mentioned, reagents were commercially available and used without further purification. HRMS were recorded with ESI in positive ion mode on IT-TOF instrument. ¹H NMR, ¹³C{¹H} NMR, ¹⁹F NMR spectra were recorded with 600 MHz, 400 MHz spectrometer. CDCl₃ was selected as the solvent and residual proton resonance of CDCl₃ was referenced using the 7.26 ppm in ¹H NMR and 77.16 ppm in ${}^{13}C{}^{1}H$ NMR. Coupling constants (J) were obtained in Hertz (Hz). The abbreviation of s, d, t, q and m means singlet, doublet, triplet, quartet and multiplet, respectively. Flash column chromatography was performed using silica gel with distilled solvents. CO₂ comes from tank directly.

General procedure: 25 mL Sealed tube was evacuated and backfilled will CO₂ for 3 times, 2-arylacetonitriles (1) (0.3 mmol), Me₃N-BH₃ (87.7 mg, 1.2 mmol), ^tBuOK (40.3 mg, 0.36 mmol), TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene) (83.5 mg, 0.6 mmol) and 0.5 mL DME were added. The reaction mixture was stirred at 120 °C (heating mantle temperature) for 16 h. The reaction was then quenched with H₂O (10 mL) and extracted with ethyl acetate (20 mL x 3). The combined organic layers

were washed with brine, dried over Na₂SO₄, and concentrated. Then, it was isolated by silica gel flash chromatography (petroleum ether/ EtOAc: 20/1). The product was charactered by NMR.

A gram scale reaction: 250 mL Sealed tube was evacuated and backfilled will CO_2 for 3 times, 2-(naphthalen-2yl)acetonitrile (1a) (1.67 g, 10 mmol), Me₃N-BH₃ (2.9 g, 40 mmol), ^tBuOK (1.34 g, 12 mmol), TBD (2.78 mg, 20 mmol) and 25 mL DME were added. The reaction mixture was stirred at 120 °C (heating mantle temperature) for 16 h. The reaction was then quenched with H₂O (50 mL) and extracted with ethyl acetate (80 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated as well as isolated by silica gel flash chromatography (petroleum ether/ EtOAc).

2-(*Naphthalen-2-yl*)*propanenitrile* (**2a**): white solid, yield: 83%, 54.3 mg; mp: 61-64 °C; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.95 – 7.83 (m, 3H), 7.70 (d, *J* = 6.9 Hz, 1H), 7.61 – 7.46 (m, 3H), 4.62 (q, *J* = 7.2 Hz, 1H), 1.78 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 134.1, 132.7, 129.9, 129.4, 129.0, 127.0, 126.2, 125.7, 124.8, 122.2, 121.9, 28.4, 20.7. The spectral data for this compound match that reported in the literature.⁵ GC-MS:181

2-Phenylpropanenitrile (**2b**): colorless oil, yield: 83%, 32.6 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.46 – 7.29 (m, 5H), 3.90 (q, *J* = 7.3 Hz, 1H), 1.65 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 137.2, 129.2, 128.1, 126.8, 121.7, 31.3, 21.6. The spectral data for this compound match that reported in the literature.⁵ GC-MS:131

2-(*p*-*Tolyl*)*propanenitrile* (2*c*): colorless oil, yield: 81%, 35.2 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.23 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 3.85 (q, *J* = 7.3 Hz, 1H), 2.34 (s, 3H), 1.61 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 137.9, 134.2, 129.9, 126.7, 121.9, 31.0, 21.6, 21.1. The spectral data for this compound match that reported in the literature.⁵ GC-MS:145

2-(4-(Dimethylamino)phenyl)propanenitrile (**2d**): colorless oil, yield: 89%, 46.5 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.19 (d, *J* = 8.8 Hz, 2H), 6.71 (d, *J* = 8.7 Hz, 2H), 3.80 (q, *J* = 7.3 Hz, 1H), 2.94 (s, 6H), 1.59 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 150.3, 127.5, 124.6, 122.3, 112.8, 40.6, 30.4, 21.6. The spectral data for this compound match that reported in the literature.⁵ GC-MS:174

2-(4-(Methylthio)phenyl)propanenitrile (**2e**): colorless oil, yield: 86%, 45.7 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.24 – 7.26 (m, 4H), 3.85 (q, *J* = 7.3 Hz, 1H), 2.47 (s, 3H), 1.60 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 138.8, 133.8, 127.2, 127.1, 121.6, 30.8, 21.5, 15.8. The spectral data for this compound match that reported in the literature.⁵ GC-MS:177

2-(4-(Benzyloxy)phenyl)propanenitrile (**2f**): white solid, yield: 89%, 63.2 mg; mp: 70-72 °C ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.44 – 7.28 (m, 5H), 7.29 – 7.22 (m, 2H), 7.00 – 6.95 (m, 2H), 5.06 (s, 2H), 3.84 (q, *J* = 7.3 Hz, 1H), 1.61 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 158.6, 136.8, 129.4, 128.7, 128.2, 128.1, 127.5, 121.9, 115.5, 70.2, 30.6, 21.6. The spectral data for this compound match that reported in the literature.¹⁶ GC-MS:237

2-(4-Bromophenyl)propanenitrile (**2g**): colorless oil, yield: 75%, 47.0 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.55 – 7.49 (m, 2H), 7.26 – 7.21 (m, 2H), 3.87 (q, *J* = 7.3 Hz, 1H), 1.63 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 136.1, 132.4, 128.5, 122.2, 121.1, 30.9, 21.4. The spectral data for this compound match that reported in the literature.⁵ GC-MS: 208, 210

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

2-(4-Chlorophenyl)propanenitrile (2h): colorless oil, yield: 87%, 43.1 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.37 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 3.88 (q, J = 7.3 Hz, 1H), 1.63 (d, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 135.6, 134.2, 129.4, 128.2, 121.2, 30.8, 21.5. The spectral data for this compound match that reported in the literature.⁵ GC-MS:165

2-(4-Fluorophenyl)propanenitrile (**2i**): colorless oil, yield: 61%, 27.3 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.35 – 7.28 (m, 2H), 7.06 (t, *J* = 8.6 Hz, 2H), 3.88 (q, *J* = 7.3 Hz, 1H), 1.62 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 162.4 (d, *J* = 247.2 Hz), 132.9 (d, *J* = 3.3 Hz), 128.5 (d, *J* = 8.4 Hz), 121.6, 116.2 (d, *J* = 21.7 Hz), 30.7, 21.6; ¹⁹F NMR (565 MHz, CHLOROFORM-D) δ -113.81 (s). The spectral data for this compound match that reported in the literature.⁵ GC-MS:149

4-(1-Cyanoethyl)benzonitrile (**2***j*): colorless oil, yield: 75%, 35.3 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 3.96 (q, *J* = 7.3 Hz, 1H), 1.65 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 142.2, 133.1, 127.8, 120.4, 118.2, 112.4, 31.4, 21.3. HRMS (ESI) calcd for C₁₀H₉N₂⁺[M+H]: 157.0760, found: 157.0761.

2-(4-(Phenylethynyl)phenyl)propanenitrile (**2l**): white solid, yield: 71%, 49.2 mg; mp: 105-106 °C ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.55 – 7.51 (m, 4H), 7.35 – 7.32 (m, 5H), 3.91 (q, *J* = 7.3 Hz, 1H), 1.64 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 137.0, 132.4, 131.7, 128.6, 128.5, 126.9, 123.4, 123.0, 121.3, 90.2, 88.6, 31.2, 21.4. The spectral data for this compound match that reported in the literature.⁵ GC-MS:231

2-(4-(Trimethylsilyl)phenyl)propanenitrile (**2m**): colorless oil, yield: 48%, 29.2 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.54 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 3.89 (q, *J* = 7.3 Hz, 1H), 1.64 (d, *J* = 7.3 Hz, 3H), 0.27 (s, 9H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 140.7, 137.6, 134.2, 126.1, 100.0, 31.3, 21.4, -1.1. The spectral data for this compound match that reported in the literature.⁵ GC-MS:203

2-(o-Tolyl)propanenitrile (**2n**): colorless oil, yield: 90%, 39.2 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.51 – 7.42 (m, 1H), 7.30 – 7.19 (m, 3H), 4.06 (q, *J* = 7.2 Hz, 1H), 2.38 (s, 3H), 1.63 (d, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 135.3, 134.8, 131.1, 128.2, 127.1, 126.8, 121.9, 28.2, 20.1, 19.1. The spectral data for this compound match that reported in the literature.⁵ GC-MS:145

2-([1,1'-Biphenyl]-2-yl)propanenitrile (**2o**): colorless oil, yield: 91%, 56.6 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.69 – 7.61 (m, 1H), 7.49 – 7.34 (m, 5H), 7.31 – 7.23 (m, 3H), 4.03 (q, J = 7.2 Hz, 1H), 1.49 (d, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 141.1, 140.1, 135.2, 130.6, 129.1, 128.8, 128.6, 128.0, 127.8, 127.2, 122.4, 28.0, 21.5. HRMS (ESI) calcd for C₁₅H₁₄N⁺[M+H]: 208.1121, found: 208.1120. GC-MS:174

2-(*m*-Tolyl)propanenitrile (**2p**): colorless oil, yield: 84%, 36.54 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.27 – 7.22 (m, 1H), 7.18 – 7.08 (m, 3H), 3.85 (q, *J* = 7.3 Hz, 1H), 2.36 (s, 3H), 1.62 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 139.1, 137.1, 129.1, 128.8, 127.5, 123.8, 121.8, 31.3, 21.6, 21.5. HRMS (ESI) calcd for C₁₀H₁₂N⁺[M+H]: 146.0964, found: 146.0964

2-(Benzo[d][1,3]dioxol-5-yl)propanenitrile (**2q**): colorless oil, yield: 84%, 44.1 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 6.87 – 6.74 (m, 3H), 5.98 (s, 2H), 3.81 (q, J = 7.3 Hz, 1H), 1.61 (d, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 148.4, 147.5, 130.8, 121.7, 120.2, 108.7, 107.3, 101.5, 31.0, 21.6. The spectral data for this compound match that reported in the literature.⁵ GC-MS:175 *2-(Naphthalen-1-yl)propanenitril* (*2r*): colorless oil, yield: 77%, 41.8 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.91 – 7.79 (m, 4H), 7.55 – 7.47 (m, 2H), 7.46 – 7.39 (m, 1H), 4.05 (q, *J* = 7.3 Hz, 1H), 1.72 (d, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 134.4, 133.4, 132.9, 129.2, 128.0, 127.8, 126.8, 126.6, 125.7, 124.5, 121.7, 31.5, 21.5. The spectral data for this compound match that reported in the literature.⁵ GC-MS:181

2-(6-Methoxynaphthalen-2-yl)propanenitrile (**2s**): white solid, yield: 83%, 52.5 mg; mp: 71-73 °C; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.85 – 7.74 (m, 2H), 7.71 – 7.60 (m, 1H), 7.41 – 7.31 (m, 1H), 7.24 – 7.13 (m, 2H), 4.53 (q, *J* = 7.2 Hz, 1H), 3.96 (s, 3H), 1.80 (d, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 158.5, 131.2, 130.9, 129.5, 128.8, 125.4, 123.4, 121.8, 118.5, 101.3, 100.0, 55.5, 28.5, 20.1. The spectral data for this compound match that reported in the literature.⁵ GC-MS:211

2-(1-Methyl-1H-indol-3-yl)propanenitrile (**2t**): white solid, yield: 83%, 45.9 mg; mp: 62-63 °C; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.67 – 7.60 (m, 1H), 7.35 – 7.25 (m, 2H), 7.19 – 7.14 (m, 1H), 7.09 – 7.04 (m, 1H), 4.16 (q, *J* = 7.2 Hz, 1H), 3.77 (s, 3H), 1.74 (d, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 137.4, 126.3, 125.7, 122.4, 122.0, 119.7, 118.6, 110.5, 109.8, 32.9, 22.9, 20.1. The spectral data for this compound match that reported in the literature.⁵ GC-MS:184

2-(Benzofuran-3-yl)propanenitrile (**2u**): colorless oil, yield: 73%, 37.5 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.70 – 7.63 (m, 2H), 7.57 – 7.47 (m, 1H), 7.42 – 7.27 (m, 2H), 4.09 (q, J = 7.2 Hz, 1H), 1.77 (d, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 155.8, 141.8, 125.4, 125.3, 123.2, 120.5, 119.4, 117.0, 112.1, 21.8, 18.9. The spectral data for this compound match that reported in the literature.⁵ GC-MS:171

2-(Benzo[b]thiophen-3-yl)propanenitrile (**2v**): white solid, yield: 82%, 46.0 mg; mp: 108-109 °C; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.99 – 7.84 (m, 1H), 7.84 – 7.73 (m, 1H), 7.53 – 7.32 (m, 3H), 4.24 (q, *J* = 7.2 Hz, 1H), 1.78 (d, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 140.9, 136.4, 130.9, 125.0, 124.7, 123.8, 123.4, 121.2, 120.9, 25.6, 19.2. The spectral data for this compound match that reported in the literature.⁵ GC-MS:187

N, *N*-Dimethylaniline (**2w**): colorless oil, yield: 65%, 23.6 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.41 – 7.31 (m, 2H), 6.80 – 6.88 (m, 3H), 3.03 (s, 6H). ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 150.8, 129.3, 116.8, 112.8, 40.8. The spectral data for this compound match that reported in the literature.^{10b} GC-MS:121

Methyl(p-tolyl)sulfane (2x): colorless oil, yield: 71%, 29.3 mg; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.17 (d, *J* = 8.2 Hz, 2H), 7.09 (d, *J* = 7.9 Hz, 2H), 2.45 (s, 3H), 2.30 (s, 3H). ¹³C{¹H} NMR (101 MHz, CHLOROFORM-D) δ 137.7, 135.9, 129.9, 126.6, 124.7, 20.1, 15.4. The spectral data for this compound match that reported in the literature.¹⁷ GC-MS:138

ASSOCIATED CONTENT

Supporting Information.

These materials are available free of charge via the Internet at http://pubs.acs.org.

NMR spectrum for mechanistic study as shown in Figure S1-S5, and NMR spectra for all products

AUTHOR INFORMATION

Corresponding Author

*E-mail: cjxi@tsinghua.edu.cn

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (Nos 91645120 and 21871163).

REFERENCES

(1) (a) Schçnherr, H.; Cernak, T. Profound Methyl Effects in Drug Discovery and a Call for New C-H Methylation Reactions. *Angew. Chem. Int. Ed.* 2013, *52*, 12256-12267. (b) Barreiro, E. J.; Kgmmerle, A. E.; Fraga, C.A.M. The Methylation Effect in Medicinal Chemistry. *Chem. Rev.* 2011, *111*, 5215-5246. (c) Leung, C. S.; Leung, S. S. F.; Rives, J. T.; Jorgensen, W. L. Methyl Effects on Protein–Ligand Binding. *J. Med. Chem.* 2012, *55*, 4489-4500. (d) Hong, T.; Wu, F.; Fu, B.; Yuan, Y.; Xu, J.; Wang, T.; Zhou, X. 5-Formylcytosine and 5-Carboxylcytosine Significantly Reduce the Catalytic Activity of Hhal DNA Methyltransferase. *Chin. J. Chem.* 2017, *35*, 853-856. (e) Chen Y. Recent Advances in Methylation: A Guide for Selecting Methylation Reagents, *Chem. Eur. J.* 2019, *25*, 3405-3439

(2) Rieu, J.-P.; Boucherle, A.; Cousse, H.; Mouzin, G. Methods for the Synthesis of Antiinflammatory 2-Aryl Propionic Acids. *Tetrahedron.* **1986**, 42, 4095-4131

(3) (a) Tundo, P.; Selva, M. The Chemistry of Dimethyl Carbonate. Acc. Chem. Res. **2002**, *35*, 706-716. (b) Molleti, J.; Yadav, G. D.; Potassium Modified La-Mg Mixed Oxide as Active and Selective Catalyst for Mono-Methylation of Phenylacetonitrile with Dimethyl Carbonate. Mol. Catal. **2017**, *438*, 66-75. (c) Selva, M.; Tundo, P. Trimethyl Orthoformate as a Highly Selective Mono-C-Methylating Agent for Arylacetonitriles. J. Org. Chem. **1998**, *63*, 9540-9544.

(4) (a) Motokura, K.; Nishimura, D.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. A Ruthenium-Grafted Hydrotalcite as a Multifunctional Catalyst for Direct α -Alkylation of Nitriles with Primary Alcohols. J. Am. Chem. Soc. 2004, 126, 5662-5663. (b) Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K. Environmentally Friendly One-Pot Synthesis of α-Alkylated Nitriles Using Hydrotalcite-Supported Metal Species as Multifunctional Solid Catalysts. Chem. Eur. J. 2006, 12, 8228-8239. (c) Thiyagarajan, S.; Gunanathan, C. Facile Ruthenium(II)-Catalyzed *α*-Alkylation of Arylmethyl Nitriles Using Alcohols Enabled by Metal-Ligand Cooperation. ACS Catal. 2017, 7, 5483-5490. (d) Ogawa, S.; Obora, Y. Iridium-Catalyzed Selective α-Methylation of Ketones With Methanol. Chem. Commun. 2014, 50, 2491-2493. (e) Liu, Z.; Yang, Z.; Yu, Z.; Zhang, H.; Yu, B.; Zhao, Y.; Liu, Z. Methylation of $C(sp^3)-H/C(sp^2)-H$ Bonds with Methanol Catalyzed by Cobalt System. Org. Lett. 2017, 19, 5228-5231.

(5) Xia, H.-M.; Zhang, F.-L.; Ye, T.; Wang, Y.-F. Selective α-Monomethylation by an Amine-Borane/*N*,*N*-Dimethylformamide System as the Methyl Source. *Angew. Chem. Int. Ed.* **2018**, *57*, 11770-11775. *Angew. Chem.* **2018**, *130*, 11944-11949.

(6) (a) Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Efficient, Selective and Sustainable Catalysis of Carbon Dioxide. *Green Chem.* 2017, *19*, 3707-3728. (b) Tortajada, A.; Julia-Hernandez, F.; Borjesson, M.; Moragas, T.; Martin, R. Transition Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide. *Angew. Chem., Int. Ed.* 2018, *57*, 15948-15982. (c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide. *Chem. Rev.* 2007, *107*, 2365-2387. (d) Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the Valorization of Exhaust Carbon: From CO₂ to Chemicals, Materials, and Fuels. *Chem. Rev.* 2014, *114*, 1709-1742. (e) Bontemps, S. Boron-Mediated Activation of Carbon Dioxide. *Coord. Chem. Rev.* 2016, *308*, 117-130. (f) Wang, W.-H.; Himeda, Y.; Muckerman, J.T.; Manbeck, G.F.; Fujita, E. CO₂ Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO₂

Reduction. *Chem. Rev.* **2015**, *115*, 12936-12973. (g) Goeppert, A.; Czaun, M.; Jones, J.-P.; Prakash, G. K.; Olah, G.A. Recycling of Carbon Dioxide to Methanol and Derived Products. *Chem. Soc. Rev.* **2014**, *43*, 7995-8048. (h) Wang, S.; Xi, C. Recent advances in Nucleophiletriggered CO₂-Incorporated Cyclization Leading to Heterocycles. *Chem. Soc. Rev.* **2019**, *48*, 382-404.

(7) For selected examples on CO₂-incorporated carboxylation, see: (a) Takimoto, M.; Nakamura, Y.; Kumura, K.; Mori, M. Highly Enantioselective Catalytic Carbon Dioxide Incorporation Reaction: Nickel-Catalyzed Asymmetric Carboxylative Cyclization of Bis-1,3dienes. J. Am. Chem. Soc. 2004, 126, 5956. (b) Yeung, C.S.; Dong, V.M. Beyond Aresta's Complex: Ni- and Pd-Catalyzed Organozinc Coupling with CO2. J. Am. Chem. Soc. 2008, 130, 7826 (c) Vechorkin, O.; Hirt, N.; Hu, X. Carbon Dioxide as the C1 Source for Direct C-H Functionalization of Aromatic Heterocycles. Org. Lett. 2010, 12, 3567 (d). Len, T.; Correa, A.; Martin, R. Ni-Catalyzed Direct Carboxylation of Benzyl Halides with CO₂. J. Am. Chem. Soc. 2013, 135, 1221 (e) Mita, T.; Chen, J.; Sugawara, M.; Sato, Y. One-Pot Synthesis of a-Amino Acids from Imines through CO2 Incorporation: An Alternative Method for Strecker Synthesis. Angew. Chem., Int. Ed. 2011, 123, 1429. (f) Ochiai, H.; Jang, M.; Hirano, K.; Yorimitsu, H.; Oshima, K. One-Pot Synthesis of α-Amino Acids from Imines through CO2 Incorporation: An Alternative Method for Strecker Synthesis. Org. Lett., 2008, 10, 2681-2683. (g) Shimizu, K.; Takimoto, M.; Sato, Y.; Mori, M. Nickel-Catalyzed Regioselective Synthesis of Tetrasubstituted Alkene Using Alkylative Carboxylation of Disubstituted Alkyne. Org. Lett. 2005, 7, 195-197; (h) Wang, X.; Nakajima, M.; Martin, R. Ni-Catalyzed Regioselective Hydrocarboxylation of Alkynes with CO₂ by Using Simple Alcohols as Proton Sources. J. Am. Chem. Soc. 2015, 137, 8924-8927; (i) Fujihara, T.; Horimoto, Y.; Mizoe, T.; Sayyed, F.B.; Tani, Y.; Terao, J.; Sakaki, S.; Tsuji, Y. Nickel-Catalyzed Double Carboxylation of Alkynes Employing Carbon Dioxide. Org. Lett., 2014, 16, 4960-4963.

(8) For selected reviews on CO₂-incorporated carboxylation, see: (a) Huang, K.; Sun, C.; Shi, Z. Transition-Metal-Catalyzed C-C Bond Formation through the Fixation of Carbon Dioxide. Chem. Soc. Rev. 2011, 40, 2435-2452. (b) Borjesson, M.; Moragas, T.; Gallego, D.; Martin, R. Metal-Catalyzed Carboxylation of Organic (Pseudo)halides with CO2. ACS Catal. 2016, 6, 6739-6749. (c) Janes, T.; Yang, Y.; Song, D. Chemical Reduction of CO₂ Facilitated by C-Nucleophiles. Chem. Commun., 2017, 53, 11390-11398; (d) Maniolinho, F.: Arndt, M.: Gooßen, K.: Gooßen, L. J. Catalytic C-H Carboxylation of Terminal Alkynes with Carbon Dioxide. ACS Catal. 2012, 2, 2014-2021. (e) Gui, Y.-Y.; Zhou, W.-J.; Ye, J.-H.; Yu, D.-G. Photochemical Carboxylation of Activated C(sp³)-H Bonds with CO₂. ChemSusChem. 2017, 10, 1337-1340. (f) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Photochemical and Electrochemical Carbon Dioxide Utilization with Organic Compounds. Chin. J. Chem. 2018, 36, 644-659.

(9) For selected reviews, see: (a) Gomes, D. N. C.; Jacquet, O.; Villiers, C.; Thuery, P.; Ephritikhine, M.; Cantat, T. A Diagonal Approach to Chemical Recycling of Carbon Dioxide: Organocatalytic Transformation for the Reductive Functionalization of CO₂ Angew. Chem., Int. Ed. **2012**, 51, 187-190. (b) Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. Angew. Chem., Int. Ed. 2016, 55, 7296-7343. (c) Li, Y.; Cui, X.; Dong, K.; Junge, K.; Beller, M. Utilization of CO₂ as a C₁ Building Block for Catalytic Methylation Reactions. ACS Catal. 2017, 7, 1077-1086. (d) Tlili, A.; Blondiaux, E.; Frogneux, X.; Cantat, T. Reductive functionalization of CO₂ with amines: an entry to formamide, formamidine and methylamine derivatives. Green Chem. 2015, 17, 157-168. (e) He, L.-N.; Liu, X.-F.; Li, X.-Y.; Qiao, C. Transition-Metal-Free Catalysis for the Reductive Functionalization of CO₂ with Amines. *Synlett.* **2018**, *29*, 548-555.

(10) For selected examples, see: (a) Frogneux, X.; Blondiaux, E.; Thuery, P.; Cantat, T. Bridging Amines with CO₂: Organocatalyzed

56

57 58 59

60

Reduction of CO₂ to Aminals. ACS Catal. **2015**, *5*, 3983-3987. (b) Jin, G.; Werncke, C. G.; Escudie, Y.; Etienne, S.; Bontemps, S. Iron-Catalyzed Reduction of CO₂ into Methylene: Formation of C-N, C-O, and C-C Bonds. J. Am. Chem. Soc. 2015, 137, 9563-9566. (c) Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Betaine Catalysis for Hierarchical Reduction of CO2 with Amines and Hydrosilane To Form Formamides, Aminals, and Methylamines. Angew. Chem., Int. Ed. 2017, 56, 7425-7429. (d) Xie, C.; Song, J.; Wu, H.; Zhou, B.; Wu, C.; Han, B. Natural Product Glycine Betaine as an Efficient Catalyst for Transformation of CO₂ with Amines to Synthesize N-Substituted Compounds. ACS Sustainable Chem. Eng. 2017, 5, 7086-7092. (e) Schieweck. B. G.: Klankermaver. I. Tailor-made Molecular Cobalt Catalyst System for the Selective Transformation of Carbon Dioxide to Dialkoxymethane Ethers. Angew. Chem., Int. Ed. 2017, 56, 10854-10857. f) Thenert, K.; Beydoun, K.; Wiesenthal, J.; Leitner, W.; Klankermayer, J. Ruthenium-Catalyzed Synthesis of Dialkoxymethane Ethers Utilizing Carbon Dioxide and Molecular Hydrogen. Angew. Chem., Int. Ed. 2016, 55, 12266-12269. (g) Zhu, D. Y.; Fang, L.; Han, H.; Wang, Y.; Xia, J. B. Reductive CO₂ Fixation via Tandem C–C and C–N Bond Formation: Synthesis of Spiro-indolepyrrolidines. Org. Lett. 2017, 19, 4259-4262.

(11) Li, Y.; Yan, T; Junge, K.; Beller. M. Catalytic Methylation of C-H Bonds Using CO_2 and H_2 . Angew. Chem. Int. Ed. **2014**, 53, 10476-10480

(12) (a) Zhang, B.; Du, G.; Hang, W.; Wang, S.; Xi, C. Lewis Base Promoted Reduction of CO_2 with BH_3NH_3 into Boryl Formates: CO_2 as a Carbon Source in Organic Synthesis Under Mild Conditions. *Eur. J. Org. Chem.* , *2018*, 1739-1743. (b) Guo, Z.; Zhang, B.; Wei, X.; Xi, C. 1,4-Dioxane-Tuned Catalyst-Free Methylation of Amines by CO_2 and NaBH₄. *ChemSusChem.* **2018**, *11*, 2296-2299. (c) Guo, Z.; Zhang, B.; Wei, X.; Xi, C. Reduction of CO_2 into Methylene Coupled with the Formation of C-S Bonds under NaBH₄/I₂ System. *Org. Lett.* **2018**, *20*, 6678-6681

(13) Shang, R.; Ji, D.-S.; Chu, L.; Fu, Y.; Liu, L. Synthesis of Aryl Nitriles through Palladium Catalyzed Decarboxylative Coupling of Cyanoacetate Salts with Aryl Halides and Triflates. *Angew. Chem. Int. Ed.* **2011**, *50*,4470-4474

(14) Faul, M. M.; Winneroski, L. L.; Krumrich, C. A. A New, Efficient Method for the Synthesis of Bisindolylmaleimides. *J. Org. Chem.* **1998**, *63*, 6053-6058.

(15) Komaromi, A.; Novak, Z. Efficient Copper-free Sonogashira coupling of Aryl Chlorides with Palladium on Charcoal. *Chem. Commun.* **2008**, 4968-4970.

(16) Chen, G.; Wang, Z.; Wu, J.; Ding, K. Facile Preparation of α -Aryl Nitriles by Direct Cyanation of Alcohols with TMSCN Under the Catalysis of InX₃. *Org. Lett.* **2008**, *10*, 4573-4576.

(17) Egami, H.; Katsuki, T. Fe(salan)-Catalyzed Asymmetric Oxidation of Sulfides with Hydrogen Peroxide in Water. *J. Am. Chem. Soc.* **2007**, *129*, 8940-8941