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ABSTRACT
CN

NH R
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o} + N K2CO; (2.0 equiv) A mild reaction condition
R\ MeCN, Oy, 75 °C R A 0, as terminal oxidant

N-H CN ACH A safe cyanide source
R (AIBN) R'

The direct copper-catalyzed N-cyanation of sulfoximines was achieved by using AIBN as a safe cyanide source. It
represents a simple and environmentally benign procedure for the construction of N-CN bond. Furthermore, some sec-

amines can also be tolerated well under this procedure.

The N-CN bonds are ubiquitous and frequently found in innumerable natural products, biologically active molecules
and medicinally relevant structures (Scheme 1)."® For example, sulfoxaflor and thiacloprid play key roles in insecticide
field.*” Inhibitors of cathepsin K show efficiency on bone resorption," while inhibitors of cathepsin C are utilized in

neutrophil-dominated inflammatory diseases.” Meanwhile, cyanamides are not only employed as ligands in coordina-

12-16 17-24

tion chemistry,”"" but also the key intermediates leading to guanidines and heterocycles. Moreover, as a safe

. . . . . . . 25.28
cyanide source, cyanamides were widely applied in the cyanation reaction.

Scheme 1 Bioactive Compounds Containing N-CN Bonds.
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To date, several elegant approaches have been developed in C-CN bond formation by safe cyanide sources.”

However, to the best of our knowledge, the construction of N-CN bond was generally limited to von Braun reaction,
where XCN (X= halo) was highly toxic.”™* Very recently, we developed the formation of N-CN bond via oxidative
coupling using CuCN as cyanide source.* In view of the toxicity of CuCN, the development of safe cyanide source in
N-CN bond formation is still highly promising.

Scheme 2 The Employment of AIBN as “CN” Source

Han's Work:
Cu(OAc), (1.1 equiv)

- or CuOAc (1.1 equiv) =
< %—<\ ) +AIBN
N-7 0,, MeCN, 135 °C < 2 <N />(eq1)
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47-48

AIBN was widely known as a radical initiator. However, recently, Han pioneered the application of AIBN as
“CN” source in the formation of C-CN bonds (Scheme 2, eq 1).* Subsequently, we described an S-cyanation reaction
by AIBN (Scheme 2, eq 2).° Herein, we wish to report the employment of AIBN in N-cyanation of sulfoximines
(Scheme 2, eq 3). Importantly, N-cyano sulfoximines have attracted significant attention in crop protection as promis-
67,51

ing pesticides.

Table 1. Optimization of the Reaction Conditions “
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O\\s//NH Cu catalyst \\ -N-CN
+ ABN _ Base
©/ @ Solvent ©/ @
1a
entry catalyst solvent base yield (%)

1 CuBr; MeCN K>CO; 65

2 Cu(OAc), MeCN K>CO; 38

3 CuS MeCN K>CO3 18

4 Cul MeCN K>CO; 90 (20%)°(< 1)°¢

5 - MeCN K>CO; <1

6 Cul DCM K>CO; <1

7 Cul 1,4-dioxane K,CO5 18

8 Cul MeOH K>CO; <1

9 Cul MeCN - <1

10 Cul MeCN NaHCO; 58

11 Cul MeCN K3PO4 67

12 Cul MeCN TEA 80

¢ Reactlon conditions: 1a (0.2 mmol), AIBN (0.3 mmol), Cu catalyst (0.04 mmol), base (0.4 mmol), solvent (3.0 mL) at 75 °C for 24 h,
under 0,. 50 °C. ¢ Under N,

Initially, the reaction of sulfonimidoyldibenzene 1a with AIBN (1.5 equiv) was tested in the presence of two equiva-
lents of K,COj3 and 0.2 equivalent of CuBr; in MeCN at 75 °C under O,. To our delight, the N-cyanation product 2a
was isolated in 65% yield (Table 1, entry 1). Among copper salts screened, such as Cu(OAc),, CuS and Cul (Table 1,
entries 2-4), Cul was the best, providing 2a in 90% yield. The reaction became sluggish at 50 °C and could not proceed
under N, (Table 1, entry 4). Blank reaction indicated that no cyanation product was detected at all in the absence of
catalyst (Table 1, entry 5). Other common solvents, such as DCM, MeOH and 1,4-dioxane, were found to be less ef-
fective or ineffective for this transformation (Table 1, entries 6-8). Further investigation implied base played a crucial
role in this reaction. No cyanation reaction took place in the absence of base (Table 1, entry 9). Other inorganic bases

or organic base, such as NaHCO;, K;PO,4 or TEA, was inferior to K,COj; (Table 1, entries 10-12).

Figure 1 Substrate Scope of Sulfoximines.”
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? Reaction conditions: sulfoximine 1 (0.2 mmol), AIBN (0.3 mmol), Cul (0.04 mmol), K,COs (0.4 mmol), MeCN (3.0 mL) at 75 °C for 24

functionalization possible.

Figure 2 Substrate Scope of sec-Amines, Imine and Guanidine.”

ACS Paragon Plus Environment

With the optimal conditions established, the substrate scope of sulfoximines was tested. Both diaryl and aryl alkyl
sulfoximines are tolerated well in this procedure (Figure 1), and most of the diaryl analogues provided target products
in excellent yields (2a-2f). Besides, aryl alkyl sulfoximines provided the desired products in moderate to good yields
(2g-21). For example, 4-chloro (S-butylsulfonimidoyl)benzene (1k) generated the cyanation product in 73% yield (2k).

Notably, substrates with halogen groups on the aromatic rings tolerated well (2¢, 2i, 2k and 2I), which make the further
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Cul (20 mol %)

R’ ! R’
\ K,CO; (2.0 equiv, \
N-H + ABN —=2 20equv),_ N-CN
R MeCN, O,, 75 °C R
3 4
0 g
N
N N
N
CN on NOL
4a70% 4b 55% 4c 55%
N -CN o
S ' N
N
e OO OO
4d 57% 4e 30% (48 h) 4 36% (48 h)
N _CN
NP @@N
- CN
49 72% 4h 36%

“ Reaction conditions: sec-amine (0.2 mmol), AIBN (0.3 mmol), Cul (0.04 mmol), K,COj; (0.4 mmol), MeCN (3.0 mL) at 75 °C for 12 h,
Under O,.

In addition, some cyclic sec-amines also ran smoothly under the standard procedure leading to corresponding N-
cyanation products in good to moderate yields (4a-4d, 4h). For example, 1,2,3,4-tetrahydroisoqunoline could provide
the desired product 4h in 36% yield. However, noncyclic sec-amines could not tolerate well, and only trace amount of
products were detected by GC-MS. Gratifyingly, this procedure could be applicable for N-cyclohexylaniline (4f). Im-
portantly, the substrate scope was not limited to sec-amines, benzophenone imine also worked well under the standard
procedure as well (4e). Although we made great efforts in order to improve the yields of 4e and 4f, the results were still
unsatisfactory. Disappointedly, other secondary anilines such as N-methylaniline, diphenylamine, N-ethylaniline and
lactam derivatives could not proceed under standard conditions. To our delight, 1,1,3,3-tetramethylguanidine delivered

the N-cyanation product in 72% yield (4g).

To test the practicality of this procedure, a 2 mmol scale reaction was conducted and 2a was isolated in an excellent

84% yield.

Further experiments were carried out to gain insight into the mechanism. Firstly, after adding 4.0 equivalents of

TEMPO, the cyanation process of 3a was completely inhibited, which implied this procedure might contain a radical

pathway. As the byproduct, acetone was detected in this process by GC-MS (for details, see Supporting Information).
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Moreover, the cyanide anion was detected by indicating paper even in the absence of MeCN (for details, see Support-

ing Information).>
Based on the aforementioned experimental results, the proposed mechanism is outlined in Scheme 3.
Scheme 3. Plausible Mechanism.

1R2 Base 102
cu(ll) + R'RENH —————=  R'R2NCu(ll) AIBN

/ CN
R'R?NCu(lIICN CN’ 0
AN

8

Initially, under O,, the catalyst Cu(l) is oxidized to Cu(ll). In the presence of base, the reaction between sec-amine
and Cu(II) produces Cu(Il) species 5. Meanwhile, 6 is formed by homolytic cleavage of the C-N bond of AIBN by lib-
erating one equivalent of N,. Then, in the presence of O,, intermediate 7 produces cyanide radical and extrudes one
equivalent of acetone.”® Subsequently, single electron transfer between Cu(ll) intermediate 5 and the cyanide radical
takes place, and Cu(Ill) species 8 is formed. Finally, reduction elimination of 8 provides the desired products and re-

generates Cu(I).

In conclusion, we have developed a facile approach leading to N-cyanation compounds by AIBN as a safe cyanide
source. Sulfoximines, some sec-amines as well as 1,1,3,3-tetramethylguanidine are compatible with this procedure
well. In addition, the transformation employs O, as the clean terminal oxidant under mild condition. Thus, it represents

an important and practical progress to N-cyanation reaction.
EXPERIMENTAL SECTION

General Information: All chemicals were used as received without further purification unless stated otherwise. 'H
NMR and C NMR spectra were recorded at ambient temperature on a 300 or 400 MHz spectrometer (75 or 100 MHz
for *C). NMR experiments are reported in & units, parts per million (ppm), and were referenced to CDCl; (8 7.26 or
77.0 ppm) as the internal standard. The coupling constants J are given in Hz. Column chromatography was performed

using EM Silica gel 60 (300-400 meshes) or neutral aluminum oxide (200-300 meshes).
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General Procedure for 0.2 mmol Scale: Under O,, a 20 mL Schlenk tube equipped with a stir bar was charged
with sulfoximine or sec-amine (0.2 mmol), AIBN (0.3 mmol, 49.3 mg), Cul (0.04 mmol, 7.6 mg), K,CO; (0.4 mmol,
55.3 mg) and CH;CN (3 mL), and sealed with a Teflon lined cap. The reaction mixture was stirred at 75 °C for 24 or
12 h in oil bath. After the completion of the reaction (monitored by TLC), the solvent was concentrated in vacuum and
the residue was purified by flash column chromatography on silica gel or Al,0; with petroleum ether-ethyl acetate as

the eluent to give the desired product.

General Procedure for 2 mmol Scale: A 100 mL round-bottom flask equipped with a stir-bar was charged with
sulfonimidoyldibenzene 1a (2 mmol, 434.6 mg), AIBN (3 mmol, 492.6 mg), Cul (0.4 mmol, 76 mg), K,CO; (4 mmol,
552.8 mg) and CH;CN (30 mL). A balloon filled with oxygen gas was installed to the reaction flask. The reaction mix-
ture was stirred at 75 °C for 24 h in oil bath. After the completion of the reaction (monitored by TLC), the solvent was
concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum

ether- ethyl acetate as the eluent to give 2a in 84% yield.

N-(Cyano) diphenyl sulfoximine (22):* Flash column chromatography on a silica gel (ethyl acetate: petroleum
ether, 1: 6) give the product (44.0 mg, 90% yield) as a white solid; m.p.: 104-106 °C (lit.: 108-110 °C) 'H NMR
(CDCls, 400 MHz) § 7.56-7.60 (m, 4H), 7.65-7.69 (m, 2H), 7.97-7.99 (m, 4H); *C NMR (CDCls, 75 MHz) & 111.9,

127.7,129.9, 134.7, 137.1.

N-(Cyano)-4,4’-dimethyldiphenyl sulfoximine (2b): Flash column chromatography on a silica gel (ethyl acetate:
petroleum ether, 1: 6) give the product (48.2 mg, 89% yield) as a yellowish solid; m.p.: 103-105 °C. '"H NMR (CDCl;,
400 MHz) & 2.41 (s, 6H), 7.35-7.37 (m, 4H), 7.83-7.85 (m, 4H); °C NMR (CDCl;, 100 MHz) & 21.5, 112.2, 127.7,
130.5, 134.4, 146.0. MS (EI): 270 (M"); HRMS (ESI) m/z calcd for C;sH;sN,OS (M+H)" 271.0900, found 271.0893.

IR (KBr): 3086, 3065, 3038, 2982, 2924, 2197, 1591, 1491.

N-(Cyano)-4,4’-dichlorodiphenyl sulfoximine (2¢):*® Flash column chromatography on a silica gel (ethyl acetate:
petroleum ether, 1: 6) give the product (54.6 mg, 88% yield) as a white solid; m.p.: 131-134 °C (lit.: 137-139 °C). 'H
NMR (CDCls, 300 MHz) & 7.58 (d, J = 8.8 Hz, 4H), 7.92 (d, J = 8.8 Hz, 4H); *C NMR (CDCls, 75 MHz) § 111.2,

129.3,130.5, 135.3, 142.2.

N-(Cyano)-4-methyldiphenyl sulfoximine (2d): Flash column chromatography on a silica gel (ethyl acetate: petro-

leum ether, 1: 5) give the product (47.1 mg, 92% yield) as a yellowish liquid. 'H NMR (CDCls, 400 MHz) § 2.42 (s,
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3H), 7.37-7.39 (m, 2H), 7.55-7.59 (m, 2H), 7.64-7.68 (m, 1H), 7.85-7.87 (m, 2H), 7.95-7.98 (m, 2H); °*C NMR
(CDCls, 100 MHz) § 21.6, 112.1, 127.6, 127.9, 129.9, 130.6, 134.0, 134.5, 137.6, 146.2. MS (EI): 256 (M"); HRMS
(ESI) m/z caled for C14H3N,0S (M+H)™ 257.0743, found 257.0746. IR (KBr): 3088, 3063, 2922, 2850, 2197, 1593,

1475, 1446.

N-(Cyano)-4-methoxy diphenyl sulfoximine (2e): Flash column chromatography on a silica gel (ethyl acetate:
petroleum ether, 1: 2) give the product (30.5mg, 56% yield) as a yellowish liquid; m.p.: 99-101 °C. "H NMR (CDCl;,
400 MHz) & 3.86 (s, 3H), 7.03-7.05 (m, 2H), 7.55-7.59 (m, 2H), 7.63-7.67 (m, 1H), 7.90-7.96 (m, 4H); °C NMR
(CDCls, 100 MHz) § 55.9, 112.2, 115.3, 127.5, 127.7, 129.9, 130.3, 134.4, 138.1, 164.6. MS (EI): 272 (M"); HRMS
(ESI) m/z caled for C14H;3N,0,S (M+H)" 273.0692, found 293.0693. IR (KBr): 3096, 3065, 2943, 2843, 2197, 1591,

1494.

N-(Cyano)-4-phenyl diphenyl sulfoximine (2f): Flash column chromatography on a silica gel (ethyl acetate: pe-
troleum ether, 1: 5) give the product (54.1 mg, 85% yield) as a yellowish solid; m.p.: 132-135 °C. '"H NMR (CDCl;,
400 MHz) 6 7.43-7.50 (m, 3H), 7.56-7.57 (m, 2H), 7.60-7.63 (m, 2H), 7.68-7.71 (m, 1H), 7.77-7.79 (m, 2H), 8.03-8.06
(m, 4H); C NMR (CDCl;, 100 MHz) § 112.0, 127.3, 127.8, 128.4, 128.5, 129.0, 129.1, 130.0, 134.7, 135.5, 137.4,
138.4, 147.8. MS (EI): 318 (M"); HRMS (ESI) m/z calcd for C,oH;sN,OS (M+H)" 319.0900, found 319.0901. IR

(KBr): 3088, 3059, 3001, 2959, 2201, 1593, 1446.

N-(Cyano) methyl phenyl sulfoximine (2g):46 Flash column chromatography on a silica gel (ethyl acetate: petrole-
um ether, 1: 2.5) give the product (20.1 mg, 56% yield) as a white solid; m.p.: 66-69 °C (lit.: 68-70 °C). 'H NMR
(CDCls, 400 MHz) & 3.34 (s, 3H), 7.66-7.70 (m, 2H), 7.76-7.80 (m, 1H), 7.98-8.00 (m 2H); *C NMR (CDCl;, 100

MHz) 6 44.7, 111.8, 127.8, 130.2, 135.4, 135.9.

N-(Cyano) methyl 4-methylphenyl sulfoximine (2h):*® Flash column chromatography on a silica gel (ethyl acetate:
petroleum ether, 1: 2) give the product (29.0 mg, 75% yield) as a white solid; m.p.: 78-81 °C (lit.: 84-86 °C). "H NMR
(CDCls, 400 MHz) & 2.48 (s, 3H), 3.31 (s, 3H), 7.46 (d, J = 8.2 Hz, 2H), 7.85 (d, J = 8.3 Hz, 2H); *C NMR (CDCl,,

100 MHz) 6 21.7, 44.8, 112.0, 127.8, 130.8, 132.7, 146.9.

N-(Cyano) methyl 4-chlorophenyl sulfoximine (2i):** Flash column chromatography on a silica gel (ethyl acetate:

petroleum ether, 1: 2) give the product (18.0 mg, 42% yield) as a white solid; m.p.: 99-102 °C (lit.: 108-110 °C). 'H
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NMR (CDCls, 400 MHz) & 3.35 (s, 3H), 7.66 (d, J = 8.7 Hz, 2H), 7.94 (d, J = 8.6 Hz, 2H); '°*C NMR (CDCls, 100

MHz) 6 44.8, 111.4, 129.4, 130.6, 134.4, 142.6.

N-(Cyano) methyl 4-methoxyphenyl sulfoximine (2j):>' Flash column chromatography on a silica gel (ethyl ace-
tate: petroleum ether, 1: 2) give the product (19.0 mg, 45% yield) as a yellow solid; m.p.: 97-99 °C (lit.: 102-103 °C).
'H NMR (CDCls, 400 MHz) & 3.31 (s, 3H), 3.91 (s, 3H), 7.11 (d, J = 8.9 Hz, 2H), 7.90 (d, J = 9.0 Hz, 2H); °C NMR

(CDCl;, 100 MHz) 6 45.2, 56.0, 112.1, 115.5, 126.6, 130.2, 165.1.

N-(Cyano) butyl 4-chlorophenyl sulfoximine (2k): Flash column chromatography on a silica gel (ethyl acetate: pe-
troleum ether, 1: 3) give the product (37.3 mg, 73% yield) as a yellow solid; m.p.: 89-91 °C. '"H NMR (CDCls, 400
MHz) & 0.88-0.92 (m, 3H), 1.36-1.46 (m, 2H), 1.63-1.78 (m, 2H), 3.27-3.45 (m, 2H), 7.64 (d, J = 8.5 Hz, 2H), 7.88 (d,
J=8.6 Hz, 2H); C NMR (CDCl;, 100 MHz) § 13.3, 21.1, 24.1, 56.5, 111.7, 129.9, 130.5, 133.0, 142.4. MS (EI): 256
(M"); HRMS (ESI) m/z caled for C,;H;4CIN,OS (M+H)" 257.0510, found 257.0509. IR (KBr): 3096, 2964, 2941,

2901, 2189. 1574, 1470, 1456.

N-(Cyano) methyl 4-bromophenyl sulfoximine (2I): Flash column chromatography on a silica gel (ethyl acetate:
petroleum ether, 1: 2) give the product (21.7 mg, 42% yield) as a yellow solid; m.p.: 102-105 °C. "H NMR (CDCls,
400 MHz) & 3.34 (s, 3H) 7.81-7.87 (m, 4H); °C NMR (CDCls;, 100 MHz) & 44.7, 111.4, 129.4, 131.3, 133.6, 135.0.
MS (EI): 257 (M"); HRMS (ESI) m/z caled for CsHsBrN,OS (M+H)™ 258.9535, found 258.9534. IR (KBr): 3086,

3022, 2999, 2916, 2195. 1570, 1466.

Octahydroquinoline-1(2H)-carbonitrile (4a):*® Flash column chromatography on an Al,Os (ethyl acetate: petrole-
um ether, 1: 10) give the product (23.1 mg, 70% yield) as a yellowish liquid. "H NMR (CDCls, 300 MHz) & 0.90-1.10
(m, 2H), 1.18-1.42 (m, 4H), 1.65-1.68 (m, 5H), 1.83-1.88 (m, 1H), 2.04-2.08 (m, 1H), 2.39-2.46 (m, 1H), 2.96-3.06 (m,

1H), 3.41-3.46 (m, 1H); °C NMR (CDCl;, 100 MHz) & 24.7, 25.0, 25.3, 30.0, 31.0, 32.0, 40.9, 51.2, 62.3, 116.8.

4-Phenylpiperidine-1-carbonitrile (4b):* Flash column chromatography on a silica gel (ethyl acetate: petroleum
ether, 1: 15) give the product (20.4 mg, 55% yield) as a white solid; m.p.: 69-71 °C (lit.: 68-71 °C). '"H NMR (CDCl,,
300 MHz) 6 1.82-1.89 (m, 4H), 2.58-2.63 (m, 1H), 3.10-3.20 (m, 2H), 3.51-3.57 (m, 2H), 7.18-7.26 (m, 3H), 7.31-7.36

(m, 2H); "C NMR (CDCls, 75 MHz) § 32.0, 41.2, 50.0, 118.3, 126.6, 126.7, 128.7, 144.5.

1-(Pyridin-4-yl)piperazine-1-carbonitrile (4c): Flash column chromatography on a silica gel (ethyl acetate: petro-

leum ether: triethylamine, 20: 10: 1) give the product (20.6 mg, 55% yield) as a yellowish solid; m.p.: 64-67 °C. 'H
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NMR (CDCls, 300MHz) & 3.34-3.44 (m, 8H), 6.66 (q, J = 2.2 Hz, 2H), 8.31 (g, J = 2.2 Hz, 2H); *C NMR (CDCl,,
100 MHz) & 45.3, 48.3, 108.9, 116.8, 150.4, 154.4. MS (EI): 188 (M"). HRMS (ESI) m/z caled for C;oH; 3N, (M+H)"

189.1135, found 189.1130. IR (KBr): 3049, 3009, 2976, 2868, 2214, 1603, 1516.

Thiomorpholine-4-carbonitrile (4d):*° Flash column chromatography on a silica gel (ethyl acetate: petroleum ether,
1: 10) give the product (14.6 mg, 57% yield) as a white solid; m.p.: 41-43 °C (lit.: 42-44 °C)."H NMR (CDCls, 400

MHz) § 2.70 (t, J= 5.1 Hz, 4H), 3.46 (t, J = 5.1 Hz, 4H); >C NMR (CDCl;, 100 MHz) § 26.1, 50.8, 117.3.

N-(diphenylmethylene)cyanamide (4e): Flash column chromatography on a silica gel (ethyl acetate: petroleum
ether, 1: 20) give the product (12.4 mg, 30% yield) as a yellowish solid; m.p.: 76-78 °C (lit.”*: 78-79 °C). '"H NMR
(CDCls, 400 MHz)  7.45-7.49 (m, 2H), 7.56-7.57 (m, 4H), 7.63-7.67 (m, 2H), 7.80-7.82 (m, 2H); C NMR (CDCl,,
100 MHz) & 114.6, 128.7, 131.2, 132.2, 134.4, 189.5. MS (EI): 206 (M"); HRMS (ESI) m/z calcd for C4H N,

(M+H)" 207.0917, found 207.0903. IR (KBr): 3085, 2920, 2856, 2176, 1595, 1581, 1549, 1446.

Cyclohexanecarbamonitrile (4f): Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:
80) give the product (14.5 mg, 36% yield) as a yellowish liquid. '"H NMR (CDCls, 400 MHz) & 1.17-1.28 (m, 2H),
1.32-1.42 (m, 2H), 1.64-1.72 (m, 2H), 1.89-1.93 (m, 2H), 2.07-2.10 (m, 2H), 3.52-3.60 (m, 1H), 7.07-7.11 (m, 1H),
7.14-7.16 (m, 2H), 7.34-7.38 (m, 2H); "C NMR (CDCls;, 100 MHz) & 25.0, 25.3, 31.0, 57.6, 112.5, 117.1, 123.7,
129.6, 140.0. MS (EI): 200 (M"); HRMS (ESI) m/z caled for C;3H;7N, (M+H)" 201.1386, found 201.1382. IR (KBr):

3083, 3008, 2933, 2856, 2212, 1597, 1495.

2-Cyano-1,1,3,3-tetramethylguanidine (4g):*® Flash column chromatography on a silica gel (ethyl acetate: petrole-
um ether: triethylamine, 20: 10: 1) give the product (20.3 mg, 72% yield) as a yellow liquid. '"H NMR (CDCls, 400

MHz) § 2.91 (s, 12H); '*C NMR (CDCLs, 100 MHz) & 39.8, 117.6, 166.0.

3,4-Dihydro-2(1H)-isoquinolinecarbonitrile (4h):** Flash column chromatography on a silica gel (ethyl acetate:
petroleum ether, 1: 10) give the product (11.4 mg, 36% yield) as a white solid; m.p.: 63-65 °C (lit.: 68-70 °C)."H NMR
(CDCl;, 400 MHz) 6 2.96 (t, J = 5.9 Hz, 2H), 3.48 (t, J = 5.9 Hz, 2H), 4.41 (s, 2H), 7.03-7.05 (m, 1H), 7.13-7.15 (m,
1H), 7.19-7.22 (m, 2H); °C NMR (CDCls, 100 MHz) & 27.5, 46.7, 49.9, 117.9, 125.9,126.6, 127.1, 129.1, 130.6,

132.5.
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