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A one-pot multicomponent synthesis of polysubstituted thiophenes
via the reactions of an isocyanide, a-haloketones,
and b-ketodithioesters in water
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Figure 1. Biologically important molecules containing a polysubstituted th
skeleton.
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An efficient synthesis of polysubstituted thiophene derivatives is achieved via the multicomponent
reaction of b-ketodithioesters, a-haloketones, and cyclohexylisocyanide in aqueous medium.
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Thiophenes are important targets for organic synthetic and
medicinal chemists because of their applications in pharmaceuticals,1

organic semi-conductors,2 conducting polymers, organic light-emit-
ting diodes (OLEDs),3 and lasers.4 The synthesis of highly substituted
thiophenes has also attracted considerable attention in organic
synthesis due to their significant biological activity. For example:
adimanine(I) acts as an anti-inflammatory agent5 and anticaine(II)
is the most commonly used dental anesthetic in Europe6 (Fig. 1).
Moreover, monocyclic, bicyclic, and tricyclic thiophene derivatives
have shown inhibition of protein tyrosine phosphatase 1B, which is
a fascinating target for Type 2 diabetes treatment.7

Numerous synthetic routes to polysubstituted thiophene deriv-
atives have been reported, such as the Fisselmane, Gewald,
Hinsberg, and Paal–Knorr syntheses of thiophene.8 Previously sev-
eral synthetic methods for the synthesis of 2,3,4-trisubstituted
thiophenes have been described. Asokan and co-workers reported
the synthesis of highly functionalized thiophene derivatives via a
two-component [3+2] cycloaddition/annulation,9 while Singh and
co-workers used two-component reactions.10 The regioselective
synthesis of polysubstituted thiophenes from Baylis–Hillman ad-
ducts has been carried out by Kim and co-workers.11 To the best
of our knowledge, there are only a few reports on the synthesis
of 2,3,5-trisubstituted thiophenes.12 In continuation of our re-
search devoted to the synthesis of highly substituted thiophenes,13

we sought to apply specific synthetic strategies to prepare such
derivatives that could be utilized as possible therapeutic inhibitors
and to disrupt certain protein–protein interactions. The application
of b-ketodithioesters as substrates led to two distinct advantages.
First, it allowed us to have a thiomethyl group as a masked methi-
onine side chain. Second, owing to its leaving group ability, we
found that (data not yet published), in the presence of appropriate
nucleophiles, and with stepwise substitution and intramolecular
condensation, the thiomethyl group and the nearby carbonyl can
be utilized for the preparation of fused heterocycles. In addition,
the presence of carbonyl groups enables us to introduce other ami-
no acid side chains by converting the carbonyl group into the de-
sired side-chain containing group. We herein report an efficient
methodology for the preparation of highly substituted thiophenes
via the one-pot, three-component reactions of b-ketodithioesters
with an isocyanide and a-haloketones in water.

Initially, we prepared the starting b-ketodithioesters 3a–c via
the reaction of acetophenone derivatives 1a–c with trithiocarbon-
ate (2) in the presence of sodium hydride according to the reported
procedure14 (Scheme 1).
iophene
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Scheme 1. Synthesis of b-ketodithioesters 3a–c.
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Scheme 2. Synthesis of polysubstituted thiophene derivatives 6a–k.

Table 1
Synthesis of polysubstituted thiophene derivatives 6a–k
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Entry Ar R

1 Ph Ph

2 Ph 4-MeC6H4

3 Ph 4-ClC6H4
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5 4-MeOC6H4 Ph

6 4-MeOC6H4 4-MeC6H4
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Next, we examined the three-component reaction of b-ketodi-
thioester (3a), cyclohexylisocyanide (4), and phenacyl bromide
(5a) as a model system. The conditions were optimized by screen-
ing various bases and using different solvents. The best results
were obtained in water as the solvent with potassium bicarbonate
as the base to afford polysubstituted thiophene 6a in 74% yield
(Scheme 2).

To investigate the scope of this procedure, we reacted b-ketodi-
thioesters 3a–c with cyclohexylisocyanide (4) and a-haloketones
5a–d which gave the derivatives 6a–k in good yields (Table 1).

The results showed that the reaction of b-ketodithioesters
derivatives with a phenyl ring (3a,b) gave better yields compared
to that with a naphthalene moiety (3c). This can be attributed to
the low reactivity of naphthalene rings in comparison with phenyl
rings.

In an effort to extend the applicability of this reaction, b-ketodi-
thioester 3a was reacted with a-chloroamides, a-chloroesters, or
a-chloroacetone and cyclohexylisocyanide under the optimized
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Table 1 (continued)

Entry Ar R Product a Yieldb (%)
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a The products were characterized by IR and NMR spectroscopy and by elemental analysis.
b Isolated yield after recrystallization.
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Scheme 3. A plausible mechanism for the formation of thiophenes 6.
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conditions, but unfortunately the desired products were not
obtained.

The structures of products 6a–k were characterized by IR, 1H
NMR, and 13C NMR spectroscopy and by elemental analysis.15 For
example, the IR spectrum of cycloadduct 6a showed characteristic
absorptions at 1630 and 1705 cm�1 corresponding to the carbonyl
groups. In the 1H NMR spectrum of 6a two singlets appeared at d
2.74 and d 7.81 for the SCH3 and CH of the thiophene ring,
respectively. In the 13C NMR spectrum of 6a, the thiomethyl and
two carbonyl carbons resonated at d 19.3, d 187.0, and d 188.7.

A proposed mechanism for the reaction is shown in Scheme 3.
The first step is the abstraction of the acidic proton of the b-keto-
dithioester by cyclohexyl isocyanide followed by nucleophilic at-
tack on the positively charged ion obtained from the isocyanide
to generate imine 7, which easily isomerizes into enamine 8. Next
enamine 8 undergoes an S-alkylation with the a-haloketone to
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afford the iminium ion 9. Finally, intramolecular cyclization with
the elimination of cyclohexylamine yields the thiophene 6a.

In conclusion, we have developed a novel and efficient
procedure for the synthesis of polysubstituted thiophene deriva-
tives via the reaction of b-ketodithioesters, cyclohexylisocyanide,
and a-haloketone derivatives. The reaction was performed in
aqueous medium and proceeds via a catalyst-free procedure. Other
advantages include good yields of products and a simple work-up,
which should make it a useful and attractive method for the
synthesis of polysubstituted thiophenes.

Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.
01.014.
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