Accepted Manuscript

Abstract

A facile approach for the total synthesis of neurotrophic diyne tetraol petrosiol A and petrosiol E

Pamarthi Gangadhar, A. Sathish Reddy, Pabbaraja Srihari

PII: \quad S0040-4020(16)30767-0
DOI: 10.1016/j.tet.2016.08.009
Reference: TET 27990

To appear in: Tetrahedron

Received Date: 1 June 2016
Revised Date: 27 July 2016
Accepted Date: 3 August 2016

Please cite this article as: Gangadhar P, Sathish Reddy A, Srihari P, A facile approach for the total synthesis of neurotrophic diyne tetraol petrosiol A and petrosiol E, Tetrahedron (2016), doi: 10.1016/ j.tet.2016.08.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

A facile approach for the total synthesis of
neurotrophic diyne tetraol petrosiol A and
petrosiol E
P. Gangadhar, A. Sathish Reddy, P. Srihari*

Leave this area blank for abstract info.

A facile approach for the total synthesis of neurotrophic diyne tetraol petrosiol A and petrosiol E

Gangadhar Pamarthi, A. Sathish Reddy, Srihari Pabbaraja*
Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India

ARTICLE INFO

Article history:

Received
Received in revised form
Accepted
Available online

Keywords:

polyacetylene
neurotrophic
Cadiot Chodkiewicz
Swern oxidation
CBS reduction

Abstract

The first total synthesis of neurotrophic diacetylenic tetraol, petrosiol A and stereoselective total synthesis of petrosiol E was accomplished. The total synthesis involves Cadiot-Chodkiewicz coupling reaction as the key step for petrosiol A. The diastereorich chiral alcohol (third chiral center) was synthesized from CBS mediated stereoselective ketone reduction reaction for petrosiol E. Of the three chiral centers, the two chiral centers are originated from (+)-diethyl Ltartrate and the third chiral center was generated by an addition reaction of lithium trimethylsilylacetylide leading to two diastereomers which were used for the synthesis of both the natural products and their diastereomer C6-epi-petrosiol A and C6-epi-petrosiol E respectively.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

Polyacetylene containing molecules continue to attract significant attention due to their impressive biological properties such as anti-inflammatory, antimicrobial, antitumor, antiviral, cytotoxic, neurotrophic and phytotoxic properties. ${ }^{1}$ For example panaxydol ${ }^{2} \mathbf{1}$ displayed antiproliferative effects against malignant cells and panaxytriol ${ }^{3} 2$ displayed inhibitory activity against MK1 cells with $\mathrm{IC}_{50} 8.5 \mathrm{ng} / \mathrm{mL}$. Very often the scarce availability of natural products becomes the bottleneck for investigating their further biological properties, and this challenge can be easily overcome by their total synthesis. For example, our recent attempt for the total synthesis of diacetylene natural products oploxyne A (3) and B (4) not only lead to the accessibility of the materials but also ended up with structural revision of the natural product oploxyne B. ${ }^{4}$ Also, on further investigation these molecules were found to display cytotoxicity against neuroblastoma and prostate cancer cell lines. In continuation to our studies on the total synthesis of natural products and their analogues for CNS activities, ${ }^{5}$ we have recently accomplished the first total synthesis of petrosiol D 5, ${ }^{6}$ which was isolated from an extract of the Okinawan sponge Petrosia strongylata along with four other acetylene metabolites petrosiol A-C (6-8) (Figure 1) and petrosiol E 9 by Ojika et al. ${ }^{7}$ In biological aspects, these compounds induced nerve growth factor (NGF)-like neuronal differentiation of PC12 cells and in terms of cytotoxicity, the IC_{50} value of petrosiol A was found to be $5.4 \mu \mathrm{M}$ in the MTT assay and $0.22 \mu \mathrm{M}$ for A431(human epidermoid) cell line. ${ }^{7}$ So far there have been only two synthetic contributions for petrosiols.

The first contribution was from our own group ${ }^{6}$ wherein we have accomplished the total synthesis of petrosiol D in a linear fashion and the second contribution was from Yoguo Du et al. wherein they have accomplished the total synthesis of (-)petrosiol E following a chiron approach starting from D-xylose. ${ }^{8}$ Herein, we describe the total synthesis of petrosiol A, petrosiol E and their diastereomers starting from the readily available material (+)-Diethyl L-tartrate.

Petrosiol C 8

Figure 1: Diacetylene polyol compounds

[^0]
2. Results and discussion

Our retrosynthetic analysis for petrosiol A is depicted in scheme 1. Accordingly, we envisaged the target compound 6 to be synthesized by Cadiot-Chodkiewicz coupling reaction of 3-bromo-2-propyne-1-ol $\mathbf{1 0}$ with substituted alkyne $\mathbf{1 1}$ followed by acetonide deprotection. The intermediate $\mathbf{1 1}$ can be synthesized from alcohol $\mathbf{1 2}$ in three steps i.e., oxidation of primary alcohol to aldehyde, an addition reaction with lithium trimethylsilylacetylide followed by trimethylsilyl deprotection. The alcohol $\mathbf{1 2}$ in turn can be synthesized from $\mathbf{1 3}$ through 5-step

Tetrahedron

sequence i.e., oxidation, Ohira Bestmann reaction, coupling of acetylene with n-iodo octane, Lindlars reduction of triple bond to cis double bond and finally TBDPS deprotection or in 3-step sequence i.e., oxidation, 9 -carbon Wittig reaction and TBDPS deprotection. Compound $\mathbf{1 3}$ can be synthesized from $\mathbf{1 4}$ through one pot benzyl deprotection and olefin reduction. Compound 14 in turn can be obtained from known intermediate $\mathbf{1 5}$ by an oxidation reaction followed by a 7 -carbon Wittig reaction. Compound 15 can be easily accessible from commercially available inexpensive (+)-diethyl L-tartrate.

(+)-Diethyl L-tartrate

Scheme 1: Retrosynthesis for petrosiol A

2.1 Synthesis of petrosiol A 6

The synthesis began with the oxidation of the readily available alcohol 15 (synthesized from (+)-diethyl L-tartrate in three steps with an overall yield of $81 \%)^{6,9}$ employing iodoxybenzoic acid $(\text { IBX })^{10}$ to yield the aldehyde which was subjected to a Wittig reaction with 7-(benzyl)oxy-1-heptyl-(triphenyl)phosphonium iodide and n -BuLi to provide the corresponding olefin 14. One pot debenzylation and double bond saturation was easily achieved with $\mathrm{Pd}(\mathrm{OH})_{2}$ under hydrogen atmosphere to yield the alcohol $\mathbf{1 3}$ in 92% yield (Scheme 2). The resulting primary
alcohol was further oxidized with IBX to yield aldehyde and was subjected to Ohira-Bestmann reaction to get the terminal acetylene 16. Coupling of $\mathbf{1 6}$ with n-iodo octane afforded disubstituted acetylene 17. Lindlar's reduction of alkyne 17 afforded cis olefin $\mathbf{1 8}$ exclusively. Alternatively, $\mathbf{1 8}$ was also synthesized in 2 -step sequence from 13 through an oxidation reaction (IBX oxidation) followed by the Wittig reaction with (1nonyl)triphenylphosphonium bromide in presence of n -BuLi to give cis-Wittig product $\mathbf{1 8}$ exclusively. ${ }^{11}$ The compound $\mathbf{1 8}$ upon exposure to TBAF furnished desilylated alcohol 12.

Scheme 2: Synthesis of intermediate 12.

After constructing the right hand portion of the molecule, we proceeded further for the total synthesis of the molecule. Towards this, the alcohol $\mathbf{1 2}$ was oxidized under Swern conditions ${ }^{12}$ to yield the corresponding aldehyde and then subjected to an addition reaction with lithium trimethylsilylacetylide to yield the mixture of diastereomers 19 and 19a without useful level of stereoselectivity (1:1). ${ }^{13}$ To obtain diastereorich hydroxy compound, the mixture of $\mathbf{1 1}$ and 24 obtained after desilylation of $\mathbf{1 9}$ and 19a with TBAF was oxidized to ketone under Dess-Martin conditions and then subjected to the stereoselective ketone reduction ${ }^{15}$ with Corey-Bakshi-Shibata (CBS) catalyst to yield the desired alcohol 19 albeit with poor diastereoselectivity 40% de. Yet this nonselectivity was not an issue as the undesired diastereomer 19a can be easily converted to the desired compound $\mathbf{1 1}$ through a Mitsunobu inversion ${ }^{14}$ reaction to improve the overall yield for selected target. Presently, we decided to proceed further with both the diastereomers independently to synthesize the target molecule petrosiol A (Scheme 3,4) and also its diastereomer 6epi petrosiol A (Scheme 5).

Scheme 3: Synthesis of petrosiol A (6) from 20 and 11.

The geometry of the resulting chiral center for $\mathbf{1 9}$ was confirmed relatively after one step ahead based on its conversion to the similarly known intermediate $\mathbf{1 1}$ obtained after TMS deprotection. ${ }^{6}$ Also, the diastereomer 19 was converted to the final target molecule (vide infra) thus reconfirming the geometry of the chiral center generated. To proceed further, the TMS deprotection in 19 was achieved with TBAF to provide the corresponding propargyl alcohol $\mathbf{1 1}$ in 84% yield. ${ }^{6}$ Our initial attempts to couple $\mathbf{1 1}$ with brominated PMB protected propargyl alcohol 20 under Cadiot-Chodkiewicz conditions ${ }^{16}$ provided
compound 21 in 60% yield. The spectral properties of $\mathbf{2 1}$ was compared with the similar compound synthesized earlier having one extra methylene group in the long chain. ${ }^{6}$ Though our attempts for one pot deprotection of PMB group and acetonide moiety with TFA was successful and resulted in petrosiol A, the yield was very poor (20%). Thus, as an alternate, we employed 3-bromoprop-2-yn-1-ol 22 directly to couple with monosubstituted alkyne $\mathbf{1 1}$ under Cadiot-Chodkiewicz coupling reaction conditions to furnish the precursor 23. Compound 23 upon exposure to PTSA in methanol furnished the target compound petrosiol A 6 neatly in 83% yield (Scheme 4). The spectral properties of the synthetic petrosiol A were comparable with that of the reported data for the isolated natural product. ${ }^{7}$

Scheme 4: Synthesis of petrosiol A (6) employing 22 and 11.
After successfully accomplishing the total synthesis of natural product from 19, the other diastereomer 19a was also utilized further to synthesize 6-epi-petrosiol A 26 following similar set of reactions as used for the synthesis of petrosiol A. Thus, 19a was treated with TBAF to get the free terminal alkyne 24 and was coupled with 22 under Cadiot-Chodkiewicz coupling reaction condition to furnish precursor 25, which upon exposure to PTSA methanol provided C6-epi-petrosiol A 26 (Scheme 5).

Scheme 5: Synthesis of 6-epi-petrosiol A 26.

2.2 Synthesis of petrosiol E

With the successful accomplishment of first total synthesis of petrosiol A, we turned our attention to another natural product petrosiol E 9. Once again, we relied on addition reaction of acetylene moiety onto aldehyde to generate mixture of diastereomers towards accessing the natural product along with its diastereomer. Retrosynthetically, petrosiol E 9 was envisaged to be obtained by the addition reaction of terminal acetylene 27 onto the aldehyde (obtained from oxidation of the alcohol 28) followed by TBS deprotection. While the alcohol 28 can be obtained from the corresponding di-unsaturated benzyl ether $\mathbf{3 0}$ through one pot di-olefin reduction and benzyl deprotection, the diacetylene TBS ether 27 can be obtained from commercially

Tetrahedron

available dialkyne 29. The compound $\mathbf{3 0}$ can be synthesized from 31 through oxidation followed by a Wittig reaction and 31 in turn can be prepared from the common intermediate 32 which is easily accessible from commercially available (+)-diethyl Ltartrate.

Scheme 6: Retrosynthesis of petrosiol E 9.

The synthesis starts from known benzyl alcohol 32 easily synthesized from (+)-diethyl L-tartrate in three steps following literature procedures. ${ }^{17}$ The alcohol 32 was oxidized with iodoxybenzoic acid (IBX) and then subjected to a Wittig reaction with
(10-()tertbutyldiphenylsilyl)oxy)decyl)triphenylphosphonium iodide in presence of $\mathrm{n}-\mathrm{BuLi}$ as the base to yield 33 in 86% yield. TBS deprotection of silyl ether $\mathbf{3 3}$ was easily achieved with TBAF to furnish alcohol 31, which was further subjected to an oxidation reaction with IBX followed by the Wittig reaction with (3methylbutyl)(triphenyl)phosphonium bromide in presence of nBuLi afforded the di-unsaturated benzyl ether $\mathbf{3 0}$. The compound 30 on exposure to $\mathrm{Pd}(\mathrm{OH})_{2}$ under hydrogen atmosphere afforded fully saturated and debenzylated alcohol 28 . Compound 28 on oxidation under Swern conditions afforded aldehyde 34, which was treated with lithium acetylide (obtained by in situ treatment of 27 with $\mathrm{n}-\mathrm{BuLi}$) to get the mixture of diastereomeric alcohols (1:1) 35 and 35a that were separable by silica gel column chromatography ($230-400 \mathrm{mesh}$). The compound 27 was synthesized from bis(trimethylsilyl)butadiyne 29 following known protocol. ${ }^{18}$ The diastereo rich chiral compound $\mathbf{3 5}$ can be obtained by oxidation of mixture of $\mathbf{3 5}$ and 35 a to the corresponding ketone and stereoselective reduction of ketone functionality following Corey's protocol with (R)-CBS catalyst (Scheme 7). The two diastereomers were independently utilized further to synthesize the natural product and also its C6-epimer respectively. Thus, compound 35 upon global deprotection by exposing to PTSA in MeOH at $0{ }^{\circ} \mathrm{C}$ afforded natural product petrosiol E. The spectral properties were identical with the data of the isolated natural product. ${ }^{7}$ Similarly, the diastereomer 35a upon exposure to PTSA afforded C6-epi-petrosiol E 36.

3. Conclusion

In conclusion, we have accomplished the total synthesis of the natural products petrosiol A and petrosiol E and also their diastereomers 6-epi petrosiol A and 6 -epi petrosiol E in a simple
fashion starting from the readily available raw material (+)Diethyl L-tartrate. The synthesis of petrosiol A was achieved in 11 steps with an overall yield of 9.04% from the known alcohol 15. And the synthesis of petrosiol E was achieved in 11 steps with an overall yield of 29.40% from known intermediate 32. Although CBS catalysis reduction reaction has been successful for petrosiol E to get the third chiral center in the stereoselective manner, the similar attempt for petrosiol A was unsuccessful. The utilization of alkyne addition reaction onto aldehyde enabled us to access both the natural products and their diastereomers. The synthesis of other members and analogues for these compounds for further biological evaluation are currently being investigated in our laboratory.

Scheme 7: Total synthesis of petrosiol E 9 and its C6-epimer 36.

4. Experimental section

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} or $\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ mixture as solvent on 300 MHz or 500 MHz spectrometer at ambient temperature. The coupling constant J is given in Hz. The chemical shifts are reported in ppm on scale downfield from TMS as internal standard and signal patterns are indicated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qd}=$ quartet of doublet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. FTIR spectra were recorded on KBr disc and reported in wave number $\left(\mathrm{cm}^{-1}\right)$. For
low (MS) and High (HRMS) resolution, m / z ratios are reported as values in atomic mass units. Mass analysis was done in ESI mode. Optical rotations were measured on Anton Paar digital polarimeter and the values given are specific rotations. All reagents were reagent grade and used without further purification unless specified otherwise. Solvents for reactions were distilled prior to use: THF, toluene and diethyl ether were distilled from Na and benzophenone ketyl; MeOH from Mg and $\mathrm{I}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from CaH_{2}. All air- or moisture-sensitive reactions were conducted under a nitrogen or argon atmosphere in flame-dried or oven-dried glassware with magnetic stirring. Reactions were monitored by thin-layer chromatography carried out on silica plates (silica gel 60 F254, Merck) using UV-light, iodine and anisaldehyde for visualization. Column chromatography was carried out using silica gel (60-120 mesh or 100-200 mesh) packed in glass columns. Technical grade ethyl acetate and petroleum ether used for column chromatography were distilled prior to use.

4.1. (7((4S,5S)-5-((E)-8-(Benzyloxy)oct-1-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)methoxy)(tertbutyl)diphenylsilane (14)

To the mono protected alcohol $\mathbf{1 5}(10.0 \mathrm{~g}, 25 \mathrm{mmol})$ dissolved in a solvent mixture THF:DMSO ($1: 1,140 \mathrm{~mL}$), was added at once 2-iodoxybenzoic acid (IBX) ($10.5 \mathrm{~g}, 37 \mathrm{mmol}$) and stirred for 2 h at room temperature. The reaction mixture was diluted with ice cold water (300 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 100 \mathrm{~mL})$. Combined organic layers were washed with saturated NaHCO_{3} $(250 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure yielded the crude aldehyde ($10.0 \mathrm{~g}, 25.1 \mathrm{mmol}$), which was directly used for next step without further purification. 7-(Benzyl)oxy-n-heptyl(triphenyl)phosphonium iodide (22.38 g , 37.6 mmol) was dissolved in dry THF (150 mL) and cooled to $78{ }^{\circ} \mathrm{C}$. To this $\mathrm{n}-\mathrm{BuLi}(20.4 \mathrm{~mL}, 32.6 \mathrm{mmol}, 1.6 \mathrm{M}$) was added drop wise and stirred for 3 h at the same temperature. During this time reaction color was changed from colorless to brick red. To this, the crude aldehyde dissolved in anhydrous THF (50 mL) was added drop wise and stirred for overnight after allowing the reaction mixture to warm to room temperature. The reaction mixture was quenched with saturated ammonium chloride (40 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate ($5 \times 40 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting crude was purified through silica gel (60-120 mesh) column chromatography to afford compound $\mathbf{1 4}$ as colorless liquid (12.01 $\mathrm{g}, 20.50 \mathrm{mmol}, 82 \%$ over two steps). $R_{f}=0.75(20 \% \mathrm{EtOAc}-$ Hexane) $[\alpha]^{25}{ }_{\mathrm{D}}=+6.87\left(c, 1.5, \mathrm{CHCl}_{3}\right)$. IR ${v_{\text {max }}: 2931,2857 \text {, }}^{2}$ $1719,1428,1370,1030,822,606,702 \mathrm{~cm}^{-1} .{ }^{1}$ HNMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.72-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 11 \mathrm{H}), 5.66-5.61(\mathrm{~m}$, $1 \mathrm{H}), 5.39-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H})$, 3.83 (dd, $J=11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.65$ (dd, $J=$ $11.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H})$, $2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}$, $3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 5 \mathrm{H}), 1.06(\mathrm{~s}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 7 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.67,136.13,135.68$, $135.60,133.36,133.16,129.65,129.60,128.31,127.62,127.59$, 127.44, 126.37, 108.83, 81.71, 72.84, 70.45, 62.24, 29.74, 29.61, 29.33, 29.18, 27.83, 27.33, 27.02, 26.78, 26.11, 19.23 ppm . MS(ESI): $m / z 605\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{NaSi}$ 609.33706, found 609.33588.

4.2. 8-((4S,5S)-5-(((tert-Butyldiphenylsilyl)oxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)octan-1-ol (13)

To the compound $\mathbf{1 4}(3.0 \mathrm{~g}, 5.11 \mathrm{mmol})$ dissolved in HPLC grade EtOAC (7 mL) was added $\mathrm{Pd}(\mathrm{OH})_{2}(75 \mathrm{mg})$ and the reaction was stirred under H_{2} atmosphere for 8 h . The reaction mixture was filtered over celite and concentrated under reduced pressure. The crude product was purified through silica gel (60120 mesh) column chromatography to afford compound $\mathbf{1 3}$ as colorless liquid ($2.34 \mathrm{~g}, 4.70 \mathrm{mmol}, 92 \%$). $R_{f}=0.3(25 \% \mathrm{EtOAc}-$ Hexane). $[\alpha]^{25}{ }_{\mathrm{D}}=-9.33\left(c 0.6, \mathrm{CHCl}_{3}\right)$. IR $v_{\text {max }}: 3447,3070,2984$, 2930, 2857, 1590, 1465, 1372, 1109, 822, 703, 607, $505 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.34(\mathrm{~m}$, $6 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.69(\mathrm{~m}, 3 \mathrm{H}), 3.63(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.67-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.25(\mathrm{~m}$, 10 H), 1.05 (s, 9 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.61$, 135.54, 135.49, 129.70, 129.67, 127.83, 127.68, 108.34, 81.10, 78.51, 66.30, 64.21, 63.06, 33.44, 32.78, 29.69, 29.53, 29.48, 29.44, 29.39, 27.42, 26.98, 26.80, 26.60, 25.71, 25.54, 19.21 ppm . HRMS(ESI) m / z calculated for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{NaSi} 521.30576$, found 521.30603.
4.3. tert-Butyl(((4S,5S)-2,2-dimethyl-5-(non-8-yn-1-yl)-1,3-dioxolan-4-yl)methoxy)diphenylsilane (16)

To the alcohol (13) ($1.0 \mathrm{~g}, 2.0 \mathrm{mmol}$) dissolved in a solvent mixture THF:DMSO ($1: 1,20 \mathrm{~mL}$) was added at once IBX (0.84 $\mathrm{g}, 3.0 \mathrm{mmol}$) and the mixture was stirred for 1 h at room temperature. The reaction mixture was diluted with ice-cold water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 15 \mathrm{~mL})$. Combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield the crude aldehyde ($1.0 \mathrm{~g}, 2.01 \mathrm{mmol}$) which was directly used for next step without further purification.

The solution of crude aldehyde ($1.0 \mathrm{~g}, 2.01 \mathrm{mmol}$) in dry methanol (10 mL) was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(0.41 \mathrm{~g}, 3.0 \mathrm{mmol})$. To this mixture was added Ohira-Bestmann reagent i.e., dimethyl-(1-diazo-2-oxopropyl)phosphonate ($0.46 \mathrm{~g}, 2.4 \mathrm{mmol}$) at room temperature. After 12 h , the reaction mixture was concentrated under reduced pressure and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, washed sequentially with water (15 mL) and saturated aqueous $\mathrm{NaCl}(17 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Silica gel column chromatography ($60-120$ mesh) afforded the alkyne 16 (0.85 g , 87%) as a pale yellow liquid. $R_{f}=0.5$ (10:90 ethyl acetate/hexanes); $[\alpha]_{\mathrm{D}}^{25}=-6.96\left(c 1.0, \mathrm{CHCl}_{3}\right)$. IR $v_{\text {max }}: 3304$, 2928, 2858, 1733, 1462, 1430, 1374, 1249, 1220, 1102, 1078, $859,815,750,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.71-7.64$ $(\mathrm{m}, 4 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 3.95(\mathrm{dt}, J=4.2,7.6 \mathrm{~Hz} 1 \mathrm{H}), 3.76-$ $3.69(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{dt}, J=2.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.61-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.25(\mathrm{~m}$, 10 H), 1.06 (s, 9 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.60$, 133.23, 133.19, 129.71, 129.68, 127.66, 108.34, 84.69, 81.09, 78.49, 68.08, 64.21, 33.36, 29.67, 29.55, 28.96, 28.67, 28.44, 27.41, 26.99, 26.80, 26.02, 19.21, 18.36 ppm. MS(ESI): $m / z 515$ $[\mathrm{M}+\mathrm{Na}]^{+}$.

4.4. tert-Butyl(((4S,5S)-5-(heptadec-8-yn-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)methoxy)diphenylsilane (17)

Under nitrogen atomosphere, a solution of $\mathrm{n}-\mathrm{BuLi}$ (1.6 M in hexane, $1.2 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was added to a THF solution (10 mL) of alkyne $16(500 \mathrm{mg}, 1.0 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Then solution of n -iodo octane ($360 \mathrm{mg}, 1.5$ mmol) was added to the solution, and the mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 8 h . Then the reaction was quenched by adding aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ solution and the aqueous solution was extracted with ether ($10 \mathrm{~mL} \times 4$). The organic layer was washed with brine (20 mL), and dried over MgSO_{4}. After removal of the solvent, compound 17 ($448 \mathrm{mg}, 73 \%$) was

Tetrahedron

obtained by $60-120$ silica gel column chromatography. $R_{f}=0.6$ $\left(10 \%\right.$ EtOAc-Hexane). $[\alpha]^{25}=-6.24\left(c 0.52, \mathrm{CHCl}_{3}\right) . \mathrm{IR} v_{\text {max }}$: 3062, 2927, 2857, 1461, 1432, 1373, 1250, 1104, 1081, 859, 816, $740,701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.65(\mathrm{~m}$, $4 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 3.95(\mathrm{dt}, J=4.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.69$ $(\mathrm{m}, 3 \mathrm{H}), 2.16-2.11(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37$ $(\mathrm{s}, 3 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 21 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 135.61, 133.25, 133.19, 129.71, 129.68, 127.66, 108.35, 81.12, 80.26, 80.15, 78.50, $77.19,64.21,33.39,31.83,29.64,29.17,29.21,29.64,29.12$, 29.06, 28.87, 28.83, 27.42, 26.99, 26.80, 26.07, 22.65, 19.21, 18.75, 14.09 ppm . MS(ESI): $m / z 628[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{3} \mathrm{SiNa627.4204}$, found 627.4209.

4.5. tert-Butyl(((4S,5S)-5-((Z)-heptadec-8-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)methoxy)diphenylsilane (18)

Dry ethyl acetate (3 mL) was added to a 25 mL Round bottomed flask with $\mathrm{Pd}-\mathrm{BaSO}_{4}(0.050 \mathrm{~g})$. At room temperature the mixture was saturated with H_{2}. Under a stream of N_{2}, a solution of $\mathbf{1 7}$ (0.3 $\mathrm{g}, 0.49 \mathrm{mmol})$ in dry ethyl acetate $(2 \mathrm{~mL})$ and quinoline $(0.1 \mathrm{~mL})$ were added. After exchanging the N_{2} with H_{2}, the reaction mixture was stirred for 1 h at rt . The mixture was filtered and evaporated to afford the crude residue. Purification by column chromatography (5% ethyl acetate:hexane) afforded 18 as a colorless liquid ($0.28 \mathrm{~g}, 94 \%$).

4.6. (Z)-tert-Butyl((5-(heptadec-8-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)methoxy)diphenylsilane (18)

To the compound $\mathbf{1 3}(5.0 \mathrm{~g}, 10.04 \mathrm{mmol})$ dissolved in a solvent mixture THF: DMSO ($1: 1,60 \mathrm{~mL}$) was added IBX $(4.21 \mathrm{~g}, 15.06$ mmol) in one portion and stirred for 2 h at room temperature. The reaction mixture was diluted with ice-cold water (50 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($5 \times 40 \mathrm{~mL}$). Combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield the crude aldehyde (5.0 g) which was directly used further without purification.
n -BuLi $(9.4 \mathrm{~mL}, 15.1 \mathrm{mmol})$ was added to a solution of ($1-$ nonyl)triphenylphosphonium bromide ($7.5 \mathrm{~g}, 16.1 \mathrm{mmol}$) in dry THF (80 mL) at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 h at same temperature. During this time, the reaction color was changed from colorless to red. To this solution, the above crude aldehyde $(5.0 \mathrm{~g}, 10.08$ mmol, dissolved in 40 mL THF) was added drop wise at- $78{ }^{\circ} \mathrm{C}$ and stirred for overnight at room temperature. The reaction mixture was quenched with aq. saturated ammonium chloride solution (30 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate ($5 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified through silica gel (60-120 mesh) column chromatography to afford compound $\mathbf{1 8}$ as a colorless liquid (5.1 $\mathrm{g}, 8.73 \mathrm{mmol}, 84 \%$ over 2 steps). $R_{f}=0.6(5 \% \mathrm{EtOAc}-H e x a n e)$. $[\alpha]_{\mathrm{D}}^{2{ }_{\mathrm{D}}}=-3.86\left(c \quad 0.78, \mathrm{CHCl}_{3}\right)$. IR $v_{\text {max }}: 2928,2857$, $1464,1377,1219,1111,823,773,704 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.70-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.37-5.34(\mathrm{~m}$, $2 \mathrm{H}), 3.39(\mathrm{dt}, J=4.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 3 \mathrm{H}), 2.04-1.98$ $(\mathrm{m}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 25 \mathrm{H}), 1.06(\mathrm{~s}$, $9 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \square $\delta 135.60,133.23,133.18,129.91,129.79,129.71,129.68$, 127.66, 108.33, 81.12, 78.49, 64.19, 33.40, 31.88,29.76, 29.71, 29.51, 29.44, 29.31, 29.27, 27.42, 27.21, 26.98, 26.79, 26.09, 22.66, 19.20, 14.10 ppm. MS(ESI): m/z $629[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{3} \mathrm{SiNa} 629.4360$, found 629.4377.

4.7 (Z)-(5-(Heptadec-8-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4yl)methanol (12)

Compound $\mathbf{1 8}(4.0 \mathrm{~g}, 6.60 \mathrm{mmol})$ was dissolved in dry THF (35 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. To this n-tetrabutylammonium fluoride $(9.9 \mathrm{~mL}, 9.9 \mathrm{mmol}, 1.0 \mathrm{M})$ was added dropwise and stirred for 2 h. The reaction was quenched with saturated aqueous ammonium chloride solution (15 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified through silica gel (60-120 mesh) column chromatography, to afford compound $\mathbf{1 2}$ as pale yellow liquid $(2.1 \mathrm{~g}, 0.005 \mathrm{mmol}, 87 \%) . R_{f}=0.4$ (10% EtOAc-Hexane). $[\alpha]^{25}{ }_{\mathrm{D}}$ $=0.72\left(c 0.36, \mathrm{CHCl}_{3}\right)$. IR $\nu_{\max }: 3449,2925,2854,1740,1461$, 1374, 1257, 1168, 1047, 855, 800, $872 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.36-5.33(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{dt}, J=4.2,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{dd}, J=3.0,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dd}$, $J=4.4,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}$, $3 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 24 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 130.03,129.86,108.64,81.65,77.38,62.16$, $33.18,31.99,29.86,29.82,29.78,29.61,29.49,29.41,29.30$, 27.46, 27.30, 27.27, 27.11, 26.08, 22.77, 14.21ppm. MS(ESI): $\mathrm{m} / \mathrm{z} 391[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{O}_{3}$ 369.3363 , found 369.3358 .
$4.8 \quad(R),(S) \quad-1-((4 S, 5 S)-5-((Z)$-Heptadec-8-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-(trimethylsilyl)prop-2-yn-1-ol (19)

A solution of oxalyl chloride $(0.7 \mathrm{~mL}, 8.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. A solution of DMSO ($1.2 \mathrm{~mL}, 16 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added at a rate such that the reaction temperature remained below $-65{ }^{\circ} \mathrm{C}$. After stirring for 5 min , a solution of $\mathbf{1 2}(1.50 \mathrm{~g}, 4.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added slowly, and the resulting mixture was stirred for 15 min . Triethyl amine $(3.4 \mathrm{~mL}, 24$ mmol) was added slowly and after stirring the reaction for additional 10 min . at $-78^{\circ} \mathrm{C}$, the cooling bath was removed and the reaction was allowed to warm to room temperature for 45 min . Upon reaching room temperature, water (35 mL) was added and stirring was continued for additional 15 min . The reaction mixture was transferred to a separatory funnel, washed successively with, saturated NaHCO_{3} solution (30 mL), and brine $(20 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure to afford an oil (aldehyde), which was directly used for next step without further purification.
A solution of $\mathrm{n}-\mathrm{BuLi}$ in hexane ($1.6 \mathrm{M}, 4.6 \mathrm{~mL}, 7.3 \mathrm{mmol}$) was added dropwise to a stirred and cooled solution of trimethylsilyl acetylene ($1.14 \mathrm{~mL}, 8.1 \mathrm{mmol}$) in dry THF (10 mL) at $-70{ }^{\circ} \mathrm{C}$ under argon. After the addition, the stirred mixture was allowed to warm to- $10{ }^{\circ} \mathrm{C}$ to ensure the formation of LiCCTMS. It was then cooled again to $-78^{\circ} \mathrm{C}$ and to this was added a solution of aldehyde ($1.50 \mathrm{~g}, 4.09 \mathrm{mmol}$) obtained from 12 in dry THF (20 mL) dropwise. The mixture was stirred for 1 h at same temperature, and then left to stand overnight with gradual warming to room temperature. The mixture was then diluted with ice and aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with ethyl acetate $(4 \times 20 \mathrm{~mL})$. The organic layer was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo and separated by using silica gel (100-200 mesh) to give 19 as a yellow liquid along with 19a. (19:19a (1:1)), $1.5 \mathrm{~g}, 79 \%$).
19: $R_{f}=0.5$ (10% EtOAc-Hexane). $[\alpha]^{25}{ }_{\mathrm{D}}=-7.17$ (c 0.21, CHCl_{3}). IR $v_{\text {max }}: 3447,2955,2924,2853,1711,1461,1376$, 1248, 1186, 1080, 968, 845, $761 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.36-5.32(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=6.5,1 \mathrm{H}), 3.92(\mathrm{dt}, J=$
$3.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=6.8,1 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.79-$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.35-$ $1.23(\mathrm{~m}, 23 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 129.92,129.77,109.28,102.45$, 83.31, 78.13, 64.43, 34.01, 31.88, 29.74, 29.67, 29.48, 29.26, 27.54, 27.19, 27.10, 26.04, 22.66, 14.10, $-0.30 \mathrm{ppm} . \operatorname{MS}(E S I):$ $m / z 487[M+N a]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{53} \mathrm{O}_{3} \mathrm{SiH}$ 465.3758, found 465.3793.
(S)-1-((4S,5S)-5-((Z)-Heptadec-8-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-(trimethylsilyl)prop-2-yn-1-ol (19a)
$R_{f}=0.5(10 \%$ EtOAc-Hexane $) .[\alpha]^{25}{ }_{\mathrm{D}}=-5.29\left(c 0.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.36-5.31(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{dt}, J=3.3$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (dd, $J=3.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (bs, 1H), 2.04$1.98(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, 1.41 (s, 3H), 1.35-1.24 (m, 22H), $0.88(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.18(\mathrm{~s}$, $9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 129.93,129.78,108.83$, $101.90,92.30,82.26,76.81,62.25,34.06,31.89,29.75,29.73$, 29.51, 29.48, 29.31, 29.26, 27.54, 27.20, 26.86, 26.06, 22.67, 14.10, -0.30.

4.9. (R)-1-((4S,5S)-5-((Z)-Heptadec-8-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-yn-1-ol (11)

To the solution of compound $\mathbf{1 9}(0.07 \mathrm{~g}, 0.15 \mathrm{mmol})$ dissolved in dry THF (5 mL) at $0{ }^{\circ} \mathrm{C}$ was added n-tetrabutylammonium fluoride ($0.22 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.0 \mathrm{M}$) dropwise and stirred for 2 h. The reaction was quenched with saturated aqueous ammonium chloride solution (5 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate ($3 \times 7 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified through silica gel (60-120 mesh) column chromatography, to afford compound $\mathbf{1 1}$ as colorless liquid (49 $\mathrm{mg}, 0.12 \mathrm{mmol}, 84 \%) . R_{f}=0.4(10 \% \mathrm{EtOAc}-$ Hexane $) .[\alpha]^{25}{ }_{\mathrm{D}}=-$ 8.7 (c $0.32, \mathrm{CHCl}_{3}$). IR $v_{\max }: 3446,3309,2987,2925,2854$, 1633, 1461, 1375, 1246, 1218, 1167, 1055, 870, 720, 659. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.37-5.31(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.30(\mathrm{~m}$, 1 H), $3.96(\mathrm{dt}, J=3.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=4.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}$, $4 \mathrm{H}), 1.69-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.21(\mathrm{~m}$, $24 \mathrm{H}), 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 129.92,129.75,109.41,83.23,81.54,77.52,74.33,62.54$, $33.53,31.85,29.69(2 \mathrm{C}), 29.64,29.47,29.34(2 \mathrm{C}), 29.26,29.17$, 27.52, 27.16, 25.89, 22.63, 14.08 ppm.MS(ESI): $m / z 415$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Na} 415.3183$, found 415.3196.

$4.10 \quad(R)-1-((4 S, 5 S)-5-((Z)$-Heptadec-8-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-yn-1-ol (11) from 19a

To a solution of compound $\mathbf{1 9 a}$ ($50 \mathrm{mg}, 0.1 \mathrm{mmol}$) in toluene (3 mL) was added $\mathrm{Ph}_{3} \mathrm{P}(56 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 4 -nitrobenzoic acid $(16.7 \mathrm{mg}, 0.1 \mathrm{mmol})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and then diisopropyl azodicarboxylate DIAD ($0.04 \mathrm{~mL}, 0.2 \mathrm{mmol}$) was added. The solution was warmed to rt over 90 min and stirred for over night. The mixture was concentrated in vacuum to reveal the crude product, which was used for the next step without further purification. IR $v_{\text {max }}: 3451,2925,2854,2182,1737,1640,1608$, $1532,1492,1462,1374,760,719,541 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.32-8.24(\mathrm{~m}, 4 \mathrm{H}), 5.76(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 5.40-5.34$ $(\mathrm{m}, 2 \mathrm{H}), 4.12(\mathrm{dt}, J=3.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.06-$ $1.94(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37-$ $1.22(\mathrm{~m}, 25 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$. HRMS calculated for $\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{NaNO}_{6} \mathrm{Si} 636.3691$, found 636.3727. To the solution of crude ester obtained above ($67 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{MeOH}(4 \mathrm{~mL}$) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(22 \mathrm{mg}, 0.16 \mathrm{mmol})$ and the mixture was stirred for 1 h . The solvents were evaporated under vacuum. The crude product was purified using silica gel (60-120) column
chromatography to afford colorless liquid ($35 \mathrm{mg}, 0.09 \mathrm{mmol}$, 84%). The analytical data of this compound was found to be identical with compound (11).
4.11. (R)-1-((4S,5S)-5-((Z)-Heptadec-8-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)-6-((4-methoxybenzyl)oxy)hexa-2,4-diyn-1-oldiyn-1-ol (21)
$\mathrm{CuCl}(1 \mathrm{mg})$ was added to a 30% n-butylamine solution (3 mL) to get a blue colored solution. After the addition of few crystals of hydroxylamine hydrochloride, blue color was disappeared. Then the alkyne $\mathbf{1 1}(10 \mathrm{mg}, 0.025 \mathrm{mmol})$ in 5 mL diethyl ether was added at once and immediately cooled to $0{ }^{\circ} \mathrm{C}$. Then the bromo alkyne $20(5.8 \mathrm{mg}, 0.022 \mathrm{mmol})$ was added at once and stirred for 60 min . During the reaction it was necessary to add hydroxylamine hydrochloride crystals (to maintain lower oxidation state of copper) in appropriate intervals. The reaction mixture was extracted with diethyl ether ($5 \times 15 \mathrm{~mL}$). Combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified through silica gel ($60-120$ mesh) column chromatography to afford compound 21 ($8.6 \mathrm{mg}, 60 \%$). $R_{f}=0.3$ ($10 \% \mathrm{EtOAc}-$ Hexane). $[\alpha]^{25}{ }_{\mathrm{D}}=-1.00\left(c 0.3, \mathrm{CHCl}_{3}\right)$. IR $v_{\text {max }}: 3423,2924,2853$, $1737,1612,1513,1461,1348,1249,1075,1037,820,578 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.86(\mathrm{~m}$, $2 \mathrm{H}), 5.36-5.32(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.20(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{dt}, J=3.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dd}$, $J=4.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.44$ $(\mathrm{s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.18(\mathrm{~m}, 25 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.48,129.94,129.84$, $129.78,128.95,113.87,109.59,83.02,77.55,76.49,76.38$, $71.38,70.25,70.12,63.06,57.04,55.26,33.49,31.89,29.75$, 29.69, 29.55, 29.51, 29.40, 29.30, 29.22, 27.56, 27.20, 27.18, 26.98, 25.90, 22.67, 14.11 ppm . MS(ESI): $589[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS m / z calculated for $\mathrm{C}_{36} \mathrm{H}_{54} \mathrm{NaO}_{5} 589.3863$, found 589.3896.

4.12 (R)-1-((4S,5S)-5-((Z)-Heptadec-8-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)but-2-yne-1,4-diol (23)

$\mathrm{CuCl}(1 \mathrm{mg})$ was added to a 30% n-butylamine solution (3 mL). Then the color was changed to blue. After the addition of few crystals of hydroxylamine hydrochloride, blue color was disappeared. Then the alkyne $11(20 \mathrm{mg}, 0.05 \mathrm{mmol})$ in 5 mL diethyl ether was added at once and immediately cooled to $0^{\circ} \mathrm{C}$. To this the brominated propargyl alcohol $22(6.1 \mathrm{mg}, 0.045$ mmol) was added at once and stirred for 30 min . During the reaction it was necessary to add hydroxylamine hydrochloride crystals (to maintain lower oxidation state of copper) in appropriate intervals. The reaction mixture was extracted with diethyl ether ($5 \times 15 \mathrm{~mL}$). Combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified through silica gel (60-120 mesh) column chromatography to afford compound 23 ($15.4 \mathrm{mg}, 0.03 \mathrm{mmol}$, $68 \%) . R_{f}=0.3(30 \% \mathrm{EtOAc}-\mathrm{Hexane}) .[\alpha]_{\mathrm{D}}=-3.41$ (c 0.09 , $\left.\mathrm{CHCl}_{3}\right)$. IR $\nu_{\text {max }}: 3421,2925,2854,1741,1462,1376,1219$, $1041,772 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.39-5.32(\mathrm{~m}$, $2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.99-$ $3.89(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dd}, J=7.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-$ $1.93(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.40-$ $1.20(\mathrm{~m}, 24 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 129.99,129.79,109.59,83.02,82.43,78.06,77.56$, $63.11,60.39,51.41,33.48,31.89,30.92,29.75,29.69,29.65$, 29.51, 29.43, 29.37, 29.31, 29.22, 29.10, 29.07, 27.55, 27.21, 27.19, 26.99, 25.85, 22.66, 14.11. MS(ESI): $m / z 470[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{NaO}_{4} 469.3288$, found 469.3298.

4.13. Petrosiol A (6)

To a solution of the $\mathbf{2 3}(8 \mathrm{mg}, 0.017 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$, catalytic p-toluenesulfonic acid (PTSA) (2 mg ,) was added at 0 ${ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at rt for 20 h . The reaction mixture was quenched by the addition of solid NaHCO_{3} ($5 \mathrm{mg}, \mathrm{mmol}$) and the solvent was evaporated. The crude residue was purified by column chromatography (70:30) petroleum ether/EtOAc) to obtain petrosiol A ($6 \mathrm{mg}, 0.014 \mathrm{mmol}, 83 \%$) as a colourless liquid. $\mathrm{R}_{f}=0.3(50 \% \mathrm{EtOAc} /$ petroleum ether $) .[\alpha]^{25}{ }_{\mathrm{D}}=$ -4.53 (c 0.34, MeOH); Lit. ${ }^{7}[\alpha]^{25}{ }_{\mathrm{D}}=-2.9$ (c 0.16, MeOH). IR $V_{\text {max }}: 3385,2924,2853,1647,1460,1261,1029,722 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{HNMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD} 4: 1$): $\delta 5.41-5.29(\mathrm{~m}, 2 \mathrm{H})$, $4.46(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 3.83-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.43$ (dd, $J=2.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.49$ $(\mathrm{m}, 1 \mathrm{H}), 1.43-1.23(\mathrm{~m}, 24 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$) 4:1): $\delta 130.47,130.42,78.67$, $76.91,71.63,70.43,69.25,64.85,50.83,34.58,32.55,30.42$, $30.38,30.30,30.20,30.14,29.95,29.77,27.77,26.43,23.28$, 14.38. MS(ESI): $m / z 429[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI) m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{NaO}_{4} 429.2975$, found 429.2989 .

4.14. ((\mathbf{S})-1-(($4 S, 5 S)-5-((Z)$-Heptadec-8-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-yn-1-ol (24)

Compound 19a ($0.07 \mathrm{~g}, 0.15 \mathrm{mmol}$) was dissolved in dry THF (5 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. To this n-tetrabutylammonium fluoride ($0.22 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.0 \mathrm{M}$) was added dropwise and stirred for 2 h . The reaction was quenched with saturated aqueous ammonium chloride solution $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate ($3 \times 7 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified through silica gel (60-120 mesh) column chromatography, to afford compound 24 as colorless liquid ($49 \mathrm{mg}, 0.12 \mathrm{mmol}, 84 \%$). $R_{f}=0.4$ ($10 \% \mathrm{EtOAc}-$ Hexane). $[\alpha]_{\mathrm{D}}^{25}=-5.56\left(c \quad 0.72, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $5.36-5.33(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{dt}, J=3.6,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{dd}, J=3.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (bs, 1 H$), 2.04-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.55(\mathrm{~m}$, $1 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 24 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$ $\mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 129.94,129.79,109.09$, $82.35,80.87,77.38,75.15,62.32,34.03,32.59,32.57,31.89$, $29.75,29.68,29.64,29.51,29.31,29.21,29.06,27.55,27.26$, 27.18, 26.91, 25.98, 22.67, 14.10.

4.15. (S)-1-((4S,5S)-5-((Z)-Hex-2-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)hexa-2,4-diyne-1,6-diol (25)

Similar procedure was adopted as used for the preparation of compound 18 starting from alkyne $24(20 \mathrm{mg}, 0.05 \mathrm{mmol})$ and brominated propargyl alcohol $22(6.1 \mathrm{mg}, 0.045 \mathrm{mmol})$ to yield compound 25 as a pale yellow liquid ($15.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 68 \%$). $R_{f}=0.3(30 \%$ EtOAc-Hexane $) \cdot[\alpha]^{25}=-6.74\left(c 0.36, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.41-5.31(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=2.4$, $1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{dt}, J=3.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=3.7$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H})$, $1.38-1.22(\mathrm{~m}, 30 \mathrm{H}), 0.88(\mathrm{t}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 129.96,129.78,109.38,82.51,77.90,77.50,76.48$, $70.83,69.42,63.10,51.28,33.75,32.58,31.87,29.74,29.66$, 29.62, 29.54, 29.48, 29.38, 29.29, 29.21, 29.16, 29.07, 27.54, 27.19, 26.88, 25.90, 22.65, 14.08.

4.16. C6-epi-PetrosiolA (26)

To a solution of the compound $25(6 \mathrm{mg}, 0.013 \mathrm{mmol})$ in MeOH (3 mL), catalytic PTSA (2 mg) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at rt for 20 h . The reaction mixture was quenched by the addition of solid $\mathrm{NaHCO}_{3}(5 \mathrm{mg})$ and the solvent was evaporated. The crude residue was purified by column chromatography ($70: 30$) petroleum ether/EtOAc) to obtain $26(4.5 \mathrm{mg}, 0.011 \mathrm{mmol}, 83 \%)$ as a yellow liquid. $R_{f}=0.3$
$\left(50 \% \mathrm{EtOAc} /\right.$ petroleum ether). $[\alpha]^{25}{ }_{\mathrm{D}}=-9.41(c 0.07, \mathrm{MEOH})$. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.41-5.31(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{bs}, 1 \mathrm{H})$, $4.35(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{bs}, 1 \mathrm{H}), 3.78(\mathrm{bs}, 1 \mathrm{H}), 3.55(\mathrm{bs}, 1 \mathrm{H}), 2.07-$ $1.97(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 25 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$ $\mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 129.98,129.78,77.56$, 74.21, 71.59, 66.02, 51.41, 31.90, 31.82, 29.69, 29.52, 29.47, $29.44,29.31,29.22,27.22,27.19,25.42,22.68,22.64,14.11$.
4.17. (((Z)-4-((4S,5S)-5-((Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)but-3-en-1-yl)oxy)(tert-butyl)diphenylsilane (33)

To the mono protected alcohol $32(10.0 \mathrm{~g}, 39.6 \mathrm{mmol})$ dissolved in a solvent mixture THF:DMSO ($1: 1,140 \mathrm{~mL}$), was added IBX $(16.6 \mathrm{~g}, 59.5 \mathrm{mmol})$ and stirred for 2 h at room temperature. The reaction mixture was diluted with ice-cold water (300 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 100 \mathrm{~mL})$. Combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(250 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield the crude aldehyde ($10.0 \mathrm{~g}, 40 \mathrm{mmol}$) which was directly used for next step without further purification. (10-((tertButyldiphenylsilyl)oxy)decyl)triphenylphosphonium iodide $(47.04 \mathrm{~g}, 60 \mathrm{mmol})$ was dissolved in dry THF $(150 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. To this $n-\mathrm{BuLi}(22.4 \mathrm{~mL}, 56 \mathrm{mmol}, 2.5 \mathrm{M})$ was added drop wise and stirred for 3 h at the same temperature. During this time reaction color was changed from colorless to brick red. To this, the crude aldehyde dissolved in anhydrous THF (50 mL) was added drop wise and stirred for over night after allowing the reaction mixture to warm to room temperature. The reaction mixture was quenched with saturated ammonium chloride (40 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate ($5 \times 40 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting crude was purified through silica gel (60-120 mesh) column chromatography to afford compound $\mathbf{3 3}$ as yellow liquid (22.1 g , $35.19 \mathrm{mmol}, 86 \%$ over two steps). $R_{f}=0.7(10 \%$ EtOAcHexane). $[\alpha]_{\mathrm{D}}^{25}=+2.79\left(c 1.7, \mathrm{CHCl}_{3}\right)$. IR $v_{\max }: 2925,2856$, 1461, 1430, 1373, 1219, 1099, 1024, 914, $747 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 11 \mathrm{H})$, 5.74-5.66 (m, 1H), 5.46-5.39 (m, 1H), 4.73-4.66 (m, 1H), 4.62 (s, $2 \mathrm{H})$, 3.94-3.87 (m, 1H), 3.73-3.53 (m, 4H), 2.21-1.99 (m, 2H), $1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}), 1.41-1.24(\mathrm{~m}, 14 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 137.94, 136.38, 135.50, $134.74,134.10,129.52,129.40,128.25,127.61,127.53,127.50$, $126.03,109.12,80.38,73.50,73.39,69.14,63.94,32.53,29.64$, $29.55,29.49,29.37,29.31,29.18,27.70,27.13,26.93,26.83$, 26.52, 25.73, 19.17 ppm . MS(ESI): $m / z 651[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{NaO}_{4} \mathrm{Si}$ 651.3840, found 651.3871.

4.18. (Z)-4-((4S,5S)-5-((Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)but-3-en-1-ol (31)

Compound 33 ($6.0 \mathrm{~g}, 9.5 \mathrm{mmol}$) was dissolved in dry THF (35 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. To this n-tetrabutylammonium fluoride $(14.3 \mathrm{~mL}, 14.3 \mathrm{mmol}, 1.0 \mathrm{M})$ was added dropwise and stirred for 2 h . The reaction was quenched with saturated aqueous ammonium chloride solution $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified through silica gel ($60-120$ mesh) column chromatography, to afford compound 31 as pale yellow liquid $(3.49 \mathrm{~g}, 8.9 \mathrm{mmol}, 94 \%) . R_{f}=0.6$ (20% EtOAc-Hexane). $[\alpha]^{25}{ }_{\mathrm{D}}=$ 5.37 (c 1.2, CHCl_{3}). IR $v_{\text {max }}: 3431,2984,2924,2855,1725$, 1657, 1456, 1372, 1247, 1221, 1165, 1075, 861, $742 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$

NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H})$, 5.71-5.62 (m, $1 \mathrm{H}), 5.42-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.66-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.86$ (dt, 1H, J=2.9, 5.3 Hz), 3.65-3.52 (m, 4H), 2.15-1.95 (m, 2H), $1.59-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 137.91, 136.34, 128.22, 127.51 , 125.99, 109.09, 80.34, 73.46, 73.35, 69.11, 62.83, 32.67, 29.48, 29.42, 29.29, 29.09, 27.63, 27.08, 26.90, 25.65 ppm . MS(ESI): $m / z 413[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{4}$ 391.2843, found 391.2866.
4.19. (4S,5S)-4-((Benzyloxy)methyl)-2,2-dimethyl-5-((1Z,4Z)-7-methylocta-1,4-dien-1-yl)-1,3-dioxolane (30)

To the alcohol $31(5.0 \mathrm{~g}, 12.8 \mathrm{mmol})$ dissolved in a solvent mixture THF:DMSO ($1: 1,60 \mathrm{~mL}$), was added at once IBX (5.38 $\mathrm{g}, 19.2 \mathrm{mmol}$) and stirred for 2 h at room temperature. The reaction mixture was diluted with ice cold water (70 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 50 \mathrm{~mL})$. Combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(120 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure yielded the crude aldehyde ($5.0 \mathrm{~g}, 12.8 \mathrm{mmol}$) which was directly used for further step without purification. (3-methyl)butyl triphenyl phosphonium bromide ($15.9 \mathrm{~g}, 38.6 \mathrm{mmol}$) was dissolved in dry THF (90 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. To this $\mathrm{n}-\mathrm{BuLi}(13.9 \mathrm{~mL}$, $34.7 \mathrm{mmol}, 2.5 \mathrm{M}$) was added drop wise and stirred for 1 h at the same temperature. During this time reaction color was changed from colorless to brick red. To this, the crude aldehyde dissolved in anhydrous THF (30 mL) was added drop wise and stirred for overnight after allowing the reaction mixture to warm to room temperature. The reaction mixture was quenched with saturated ammonium chloride 30 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate ($5 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting crude was purified through silica gel ($60-120$ mesh) column chromatography to afford compound (30) as colorless liquid (4.5 $\mathrm{g}, 10.2 \mathrm{mmol}, 81 \%$ over two steps). $R_{f}=0.75(20 \% \mathrm{EtOAc}-$ Hexane). $[\alpha]^{25}{ }_{\mathrm{D}}=+4.98\left(c, 1.08, \mathrm{CHCl}_{3}\right)$. IR $v_{\text {max }}: 2925,2857$, 1733, 1457, 1372, 1219, 1165, 1080, 1027, 914, 862, 745, 698 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.70-$ $5.63(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.33(\mathrm{~m}, 3 \mathrm{H}), 4.66-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~s}$, $2 \mathrm{H}), 3.86(\mathrm{dt}, J=5.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.56-$ $3.52(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.93-$ $1.89(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}), 1.36-1.19(\mathrm{~m}$, $16 \mathrm{H}), 0.89(\mathrm{~d}, 6 \mathrm{H}, J=6.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.93,136.31,130.45,128.44,128.22,127.51,126.04$, 109.07, 80.36, 73.47, 73.36, 69.13, 36.29, 29.66, 29.52, 29.40, 29.36, 29.23, 29.14, 28.60, 27.66, 27.21, 27.11, 26.91, 22.32 ppm. MS(ESI): $m / z 465[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{NaO}_{3} 465.3339$, found 465.3374 .
4.20. ((4S,5S)-2,2-Dimethyl-5-(4-methylpentyl)-1,3-dioxolan-4-yl)methanol (28)
To the compound $30(3.0 \mathrm{~g}, 6.78 \mathrm{mmol})$ dissolved in HPLC grade ethyl acetate (7 mL) was added $\mathrm{Pd}(\mathrm{OH})_{2}(75 \mathrm{mg})$ and the reaction was stirred under H_{2} atmosphere for 8 h . The reaction mixture was filtered over celite and concentrated under reduced pressure. The crude product was purified through silica gel (60120 mesh) column chromatography to afford compound 28 as colorless liquid ($2.27 \mathrm{~g}, 6.30 \mathrm{mmol}, 94 \%$). $R_{f}=0.3(25 \% \mathrm{EtOAc}-$ Hexane). $[\alpha]^{25}{ }_{\mathrm{D}}=-12.36\left(c 0.6, \mathrm{CHCl}_{3}\right)$. IR $v_{\text {max }}: 3453,2928$, 2854, 1737, 1460, 1373, 1248, 1219, 1167, 1096, 1045, 902, 854, 804, 754, $671 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.87(\mathrm{dt}, J=$ $4.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=2.8,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.71$ (m, $1 \mathrm{H}), 3.59(\mathrm{dd}, J=2.8,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.21(\mathrm{~m}, 21 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 108.53,81.47,76.86,62.06$,
39.05, 33.09, 29.93, 29.67, 29.64, 29.55, 29.49, 27.95, 27.40, 27.38, 27.03, 25.97, 22.65 ppm . MS(ESI): $m / z 379[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{45} \mathrm{O}_{3} 357.3363$, found 357.3352.

4.21. Penta-2,4-diyn-1-ol

In an oven-dried round-bottom flask was taken 50 mL dry THF and 0.98 g (5.08 mmol) 1,4-bis(trimethylsilyl)butadiyne. The solution was cooled to $-10^{\circ} \mathrm{C}$ and allowed to stir for 10 min , after which 4.29 mL MeLi $\cdot \mathrm{LiBr}$ (1.5 M in ether, $6.44 \mathrm{mmol}, 1.26$ equiv.) was added dropwise. The solution turned golden in color, and was allowed to stir at $-10^{\circ} \mathrm{C}$ for an additional 15 min . The cold bath was then removed, and the solution was allowed to warm to room temperature and stirred for 1 h . The solution was then recooled to $0{ }^{\circ} \mathrm{C}$, and to this a suspension of $0.26 \mathrm{~g}(8.72$ $\mathrm{mmol}, 1.72$ equiv.) paraformaldehyde in 10 mL dry THF was added slowly, which caused the mixture to become cloudy. The mixture was then warmed to room temperature and was allowed to stir for an additional 8 h . The resultant mixture was washed sequentially with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, saturated NaHCO_{3} solution, and brine. The aqueous washings were combined and extracted with ether. The combined organics were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The resultant oily residue was purified through silica gel (60-120 mesh) column chromatography to afford corresponding formylated product as a pale golden oil $(0.35 \mathrm{~g}$, $4.32 \mathrm{mmol}, 85 \%) . R_{f}=0.3(20 \% \mathrm{EtOAc}-\mathrm{Hexane}) .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz} \mathrm{CDCl} 3): ~ \delta 4.32(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{t}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz} \mathrm{CDCl}_{3}\right) \delta 74.33,69.90,68.44,67.30,51.16$. IR $\nu_{\text {max }}: 3286,2919,2861,2063,1629,848,713 \mathrm{~cm}^{-1}$.

4.22. tert-Butyldimethyl(penta-2,4-diyn-1-yl)silane (27)

Imidazole ($0.51 \mathrm{~g}, 7.5 \mathrm{mmol}$) was added to a solution of penta-2,4-diyn-1-ol $(0.20 \mathrm{~g}, 2.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was stirred for 15 min to dissolve the imidazole, before adding ${ }^{\mathrm{t}} \mathrm{BuPh}_{2} \mathrm{SiCl}(0.56 \mathrm{~g}, 3.75 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt. After 1 h , the reaction mixture was diluted with water (2 mL) and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 5 \mathrm{~mL})$ and dried over $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent under reduced pressure afforded a yellow oil. The resultant yellow oil was purified by silica gel (60-120 mesh) column chromatography to afford tert-butyldimethyl(penta-2,4-diyn-1-yl) silane as a pale yellow oil $(0.44 \mathrm{~g}, 2.4 \mathrm{~m} \mathrm{~mol} 99 \%) ; ~ R_{f}=0.8$ (10% EtOAc-Hexane). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right): \delta 4.36(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{t}, J=$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right): \delta 75.05,69.01,67.77,67.65,51.89,-5.23$. IR $v_{\text {max }}$: $3302,2941,2894,1464,1368,777,720 \mathrm{~cm}^{-1}$.

4.23. $\quad(R) /(S)-6-(($ tert-Butyldimethylsilyl $)$ oxy $)-1-((4 S, 5 S)-2,2-$ dimethyl-5-(4-methylpentyl)-1,3-dioxolan-4-yl)hexa-2,4-diyn-1-ol (35, 35a)

A solution of oxalyl chloride $(0.02 \mathrm{~mL}, 0.28 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ under an atmosphere of argon. A solution of DMSO $(0.039 \mathrm{~mL}, 0.56 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ mL) was added at a rate such that the reaction temperature remained below $-65^{\circ} \mathrm{C}$. After stirring for 5 min , a solution of alcohol $28(50 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added slowly, and the resulting mixture was stirred for 15 min . Triethylamine ($0.11 \mathrm{~mL}, 0.84 \mathrm{mmol}$) was added slowly and after stirring the reaction for additional 10 min . at $-78^{\circ} \mathrm{C}$, the cooling bath was removed and the reaction was allowed to warm to room temperature for 45 min . Upon reaching room temperature, water $(5 \mathrm{~mL})$ was added and stirring was continued for an additional 15 min . The reaction mixture was transferred to a separatory funnel, washed successively with, saturated NaHCO_{3} solution (30 mL),

Tetrahedron

and brine $(20 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure to afford the oil 34 (aldehyde), which was directly used for next step without further purification.

A solution of $\mathrm{n}-\mathrm{BuLi}$ in hexane $(1.6 \mathrm{M}, 0.15 \mathrm{~mL}, 0.23 \mathrm{mmol})$ was added dropwise to a stirred and cooled solution of compound $27(54 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dry THF $(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. To this was added the solution of above crude aldehyde 34 ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$ in 3 mL THF) and the mixture was stirred for 1 h at same temperature, and then left to stand overnight with gradual warming to room temperature. The mixture was then diluted with ice-cooled and aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with ethyl acetate $(4 \times 5 \mathrm{~mL})$. The organic layer was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuum and the products were purified by using silica gel (230400 mesh) chromatography to give $\mathbf{3 5}$ and 35a as a yellow liquids ($77 \mathrm{mg}, 0.14 \mathrm{mmol}, 79 \%$).
(R)-6-((tert-Butyldimethylsilyl)oxy)-1-((4S,5S)-2,2-dimethyl-5-(4-methylpentyl)-1,3-dioxolan-4-yl)hexa-2,4-diyn-1-ol (35)

35: $R_{f}=0.5(10 \% \mathrm{EtOAc}-$ Hexane $) .[\alpha]_{\mathrm{D}}^{25}=-3.37\left(c 075, \mathrm{CHCl}_{3}\right)$. IR $\nu_{\max }: 3247,2924,2855,1716,1461,1372,1251,1219,1165$, 1089, 837, 776, 749, $668 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 4.42-4.39 (m, 1H), $4.38(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{dt}, J=3.9,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.74 (dd, $J=4.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.41$ $(\mathrm{s}, 3 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 24 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $6 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 109.54, 83.05, 78.67, 77.64, 76.24, 70.47, 68.57, 63.28, 52.01, 39.05, $33.55,29.94,29.69,29.59,29.51,27.96,27.55,27.41,26.99$, 25.91, 25.72, 22.65, $-5.20 \mathrm{ppm} . \mathrm{MS}(\mathrm{ESI}): m / z 572[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS(ESI) m / z calculated for $\mathrm{C}_{33} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{SiNa} 571.4153$, found 571.4177.
(S)-6-((tert-Butyldimethylsilyl)oxy)-1-((4S,5S)-2,2-dimethyl-5-(4-methylpentyl)-1,3-dioxolan-4-yl)hexa-2,4-diyn-1-ol (35a)
$R_{f}=0.5(10 \% \mathrm{EtOAc}-$ Hexane $) .[\alpha]_{\mathrm{D}}^{25}=-5.68\left(c 0.64, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.55(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}$, $2 \mathrm{H}), 4.04(\mathrm{dt}, J=3.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=3.5,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.71-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 24 \mathrm{H}), 0.90(\mathrm{~s}$, $9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 109.29,82.48,78.58,75.69,71.26,68.62,63.04$, 52.02, 39.05, 33.82, 31.91, 29.94, 29.69, 29.52, 29.35, 29.26, 29.15, 29.08, 29.04, 28.94, 27.96, 27.57, 27.41, 27.19, 26.88, 25.96, 25.74, 22.65, -5.19.

4.24. Petrosiol E (9)

To a solution of the $35(8 \mathrm{mg}, 0.014 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$, catalytic PTSA ($2.50 \mathrm{mg}, 0.03 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at rt for 20 h . The reaction mixture was quenched by the addition of solid $\mathrm{NaHCO}_{3}(2.52 \mathrm{mg}, 0.03$ mmol) and the solvent was evaporated. The crude residue was purified by column chromatography to obtain petrosiol E 9 (5.2 $\mathrm{mg}, 0.013 \mathrm{mmol}, 91 \%)$ as a colorless liquid: $\mathrm{R}_{f}=0.3(50 \%$ EtOAc/petroleum ether); $[\alpha]^{25}{ }_{\mathrm{D}}=-4.16(c \quad 0.4, \mathrm{MeOH})$; Lit. ${ }^{7}$ $[\alpha]_{\mathrm{D}}^{25}=-1.0(c 0.06, \mathrm{MeOH})$. IR $\nu_{\max }: 3357,2922,2854,1719$, 1459, 1373, 1215, 1028, 752, $669 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD} 4: 1\right): \delta 4.46(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H})$, $3.80-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=2.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.21(\mathrm{~m}$, $24 \mathrm{H}), 0.87(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(4: 1)\right): \delta 78.31,77.64,76.16,71.29,70.09$, $68.94,64.44,50.61,39.25,34.17,30.13,29.87,28.15,27.60$, 25.92, 22.73. MS(ESI): $m / z 417$ [M+Na] ${ }^{+}$. HRMS (ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{NaO}_{4} 417.2975$, found 417.2966.

To a solution of the $\mathbf{3 5 a}(8 \mathrm{mg}, 0.014 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$, catalytic PTSA ($2.5 \mathrm{mg}, 0.03 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at rt for 20 h . The reaction mixture was quenched by the addition of solid $\mathrm{NaHCO}_{3}(2.52 \mathrm{mg}, 0.03$ mmol) and the solvent was evaporated. The crude residue was purified by column chromatography to obtain C6 epimer of petrosiol E $36(5.2 \mathrm{mg}, 0.013 \mathrm{mmol}, 91 \%)$ as a colourless liquid; $\mathrm{R}_{f}=0.3(50 \% \mathrm{EtOAc} /$ petroleum ether $) .[\alpha]_{\mathrm{D}}^{25}=7.52(c 0.073$, $\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(4: 1)$): $\delta 4.44$ (d, J $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=2.4$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), \quad 1.38-1.22(\mathrm{~m}, 25 \mathrm{H}), 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR(75 MHz, $\left.\left.\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right) 4: 1\right): \delta 78.54,75.43,71.02$, $64.77,50.70,42.61,39.42,33.76,32.28,30.29,30.03,29.70$, 28.32, 27.77, 26.02, 23.02, 22.84 ppm.

Procedure for stereoselective reduction of ketone functionality:

4.26. (R)-1-((4S,5S)-5-((Z)-Heptadec-8-en-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-yn-1-ol (11)
Dess-Martin periodinane ($300 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added to the solution of alcohols 11 and $24(139 \mathrm{mg}, 0.35 \mathrm{mmol})$ in dichloromethane (3 mL) solution at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to stir at room temperature for 30 mins. After the reaction was completed as determined by TLC, the solid was removed by filtration of the reaction mixture through a pad of celite and washed twice with dichloromethane (3 mL). The filtrate was washed sequentially with aqueous sodium bicarbonate and brine and dried over MgSO_{4}. The solvent was removed under reduced pressure to afford a solid residue that was purified through silica gel (60-120 mesh) column chromatography to furnish the corresponding propargylic ketone $(127 \mathrm{mg}, 0.32 \mathrm{mmol}, 92 \%)$ as a colourless liquid. $R_{f}=0.5(10 \%$ EtOAc-Hexane). $[\alpha]_{\mathrm{D}}^{25}=-9.40\left(c 0.22, \mathrm{CHCl}_{3}\right) . \mathrm{IR} v_{\max }: 3253$, 2924, 2855, 2312, 2095, 1748, 1688, 1619, 1459, 1376, 1221, $1164,1081,867 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.40-5.32$ $(\mathrm{m}, 2 \mathrm{H}), 4.14(\mathrm{dt}, J=4.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43(\mathrm{~s}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H})$, $1.46(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 24 \mathrm{H}), 0.88(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 186.10,129.96,129.75,111.35$, $85.70,82.80,79.55,78.36,33.44,32.59,32.55,31.89,29.75$, $29.71,29.65,29.51,29.47,29.44,29.34,29.31,29.18,28.18$, $27.29,27.21,27.17,26.08,25.61,22.67,14.10 \mathrm{ppm} . \operatorname{MS}(E S I):$ $\mathrm{m} / \mathrm{z} 392[\mathrm{M}+\mathrm{H}]^{+}$.
To a magnetically stirred solution of $(R)-(+)-2-m e t h y l-C B S-$ oxazaborolidine (1 M solution in toluene, $0.10 \mathrm{~mL}, 0.10 \mathrm{mmol}$) in anhydrous THF (5 mL) was added dropwise $\mathrm{BH}_{3}-\mathrm{DMS}$ (1 M solution in THF, $0.20 \mathrm{~mL}, 0.20 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 30 min . The generated complex was cooled to $-78^{\circ} \mathrm{C}$, and then a solution of above prepared ketone $(0.020 \mathrm{~g}, 0.05 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added dropwise. The stirring was continued until the complete consumption of starting material was observed (as indicated by TLC, approximately 24 h). The reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with water (5 mL). The resulting solution was extracted with EtOAc (4X5 mL). The combined extracts were washed with brine (7 mL), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the crude product. Purification by column chromatography (hexane/EtOAc, 90:10) gave diastereomeric mixture (0.016 g , 84%) of 11 and 24 in 7:3 ratio. The diasteromeric ratio was easily determined from ${ }^{1} \mathrm{H}$ NMR analysis.

4.27. Stereoseletive synthesis of (R)6-((tert-butyldimethylsilyl)oxy)-1-((4R,5S)-2,2-dimethyl-5-(14-

 methylpentadecyl)-1,3-dioxolan-4-yl)hexa-2,4-diyn-1-ol (35)Dess-Martin periodinane ($155 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added to the mixture of alcohols $\mathbf{3 5} \boldsymbol{\&} \mathbf{3 5 a}(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ mL) at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to stirr at room temperature for 30 min . After the reaction was complete as determined by TLC, the solid was removed by filtration of the reaction mixture through a pad of celite and washed twice with dichloromethane (5 mL). The filtrate was washed sequentially with aqueous sodium bicarbonate and brine and dried over MgSO_{4}. The solvent was removed under reduced pressure to afford a solid residue that was purified through silica gel (60-120 mesh) column chromatography to afford the corresponding propargylic ketone ($91.6 \mathrm{mg}, 0.16 \mathrm{mmol}, 92 \%$) as a colorless liquid $R_{f}=0.6$ (10% EtOAc-Hexane). $[\alpha]^{25}{ }_{\mathrm{D}}=-18.18(c, 0.44$, $\left.\mathrm{CHCl}_{3}\right)$. IR $\gamma_{\text {max }}: 2925,2856,2230,2187,1792,1727,1674$, $1462,1375,1253,1221,1092,838,752,711 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{dt}, J=4.2,7.4 \mathrm{~Hz}), 4.06(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}), 1.77-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.34-$ $1.24(\mathrm{~m}, 24 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 0.13(\mathrm{~s}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 185.83,111.39,87.89$, 85.86, 79.17, 78.54, 77.19, 73.25, 67.79, 52.13, 39.05, 33.35, 29.94, 29.68, 29.53, 29.46, 27.95, 27.41, 27.29, 26.03, 25.66, 25.60, 22.64, -5.24 ppm. MS(ESI): $m / z 569(\mathrm{M}+\mathrm{Na})^{+}$.

To a magnetically stirred solution of (R)-(+)-2-methyl-CBSoxazaborolidine (1 M solution in toluene, $0.073 \mathrm{~mL}, 0.073$ mmol) in anhydrous THF (2 mL) was added dropwise BH_{3}.DMS (1 M solution in THF, $0.14 \mathrm{~mL}, 0.14 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 30 min . The generated complex was cooled to $-40^{\circ} \mathrm{C}$, and then a solution of above prepared ketone $(0.020 \mathrm{~g}, 0.036 \mathrm{mmol})$ in THF (2 mL) was added dropwise. The stirring was continued until there was complete consumption of starting material (indicated by TLC, approximately 24 h). The reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with water (5 mL). The resulting solution was extracted with EtOAc (4X5 mL). The combined extracts were washed with brine (7 mL), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the crude product. Purification by column chromatography (hexane/EtOAc, 90:10) gave diastereomeric mixture $(0.017 \mathrm{~g}$, 89%) of $\mathbf{3 5}$ and $\mathbf{3 5 a}$ in 9.8:0.2 ratio by LCMS analysis.

Acknowledgements

PG thanks CSIR, New Delhi for financial assistance in the form of fellowship. PSH thanks CSIR-New Delhi for funding under XII Five year plan programme project ORIGIN under budget head CSC-0108.

Supplementary Material

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR are available as supplementary material.

References and notes

1. (a) Bu'Lock, J. D.; Prog. Org. Chem. 1964, 6, 86-134. (b) Kobaisy, M.; Abramowski, Z.; Lermer, L.; Saxena, G.; Hancock, R. E. W.; Towers, G. H. N. J. Nat. Prod. 1997, 60, 1210-1213. (c) Bernart, M. W.; Cardellina, J. H.; Balaschak, M. S.; Alexander, M. R.; Shoemaker, R. H.; Boyd, M. R. J. Nat. Prod. 1996, 59, 748-753. (d) Chemistry and Biology of Naturally-Occurring Acetylenes and Related Compounds (NOARC), Bioactive

Molecules, Vol. 7 (Eds.: SJ. Lam, H. Breteler, T. Arnason, L. Hansen), Elsevier, New York, 1988. (e) Pellati, F.; Calo, S.; Benvenuti, S. Adinolfi, B.; Nieri, P.; Melegari, M. Phytochemistry 2006, 67, 1359-1364. (f) Resch, M.; Heilman, J.; Steigel, A.; Bauer, R. Planta Med. 2001, 67, 437-442. (g) Choi, Y. E.; Ahn, H.; Ryu, J. -H. Biol. Pharm. Bull. 2000, 23, 884-886. (h) Zgoda, J. R.; Freyer, A. J. Killmer, L. B.; Porter, J. R. J. Nat. Prod. 2001, 64, 1348-1349. (i) Hudson, J. G.; Graham, E. A.; Chan, G.; Finlayson, A. J.; Towers, G. H. N. Planta Med. 1986, 453-457. (j) Shi Shun, A. L. K.; Tykwinski, R. R. Angew. Chem. Int. Ed. 2006, 45, 1034-1057.
2. Guo, L; Song, L.; Wang, Z.; Zhao, W.; Mao, W.; Yin, M. Chem. Bio. Interact. 2009, 181, 138-143.
3. (a) Katano, M.; Yamamoto, H.; Matsunaga, H.; Mori, M.; Takata, K.; Nakamura, M. Gan To Kagakuryoho 1990, 17, 1045-1049. (b) Matsunaga, H.; Saita, T.; Naguo, F.; Mori, M.; Katano, M. Cancer Chemother. Pharmacol. 1995, 35, 291-296.
4. (a) Yadav, J. S.; Kumaraswamy, B.; Sathish Reddy, A.; Srihari, P.; Janakiram, R. V.; Kalivendi, S. V. J. Org. Chem. 2011, 76, 2568-2576. (b) Srihari, P.; Sathish Reddy, A.; Deepthi, Y.; Kalivendi, S. Tetrahedron Lett. 2013, 54, 5616-5618.
5. (a) Mehta, G.; Ramesh, S.; Srihari, P.; Tetrahedron Lett. 2011, 52, 1663-1666. (b) Mehta, G.; Ramesh, S.; Srihari, P. Tetrahedron Lett. 2012, 53, 829-832. (c) Mehta, G.; Ramesh, S.; Srihari, P.; Gajendra Reddy, R.; Chakravarty, S. Org. Biomol. Chem. 2012, 10, 6830-6833. (d) Chakravarty, S.; Swati, M.; Gajendra Reddy, R.; Das, T.; Priya, J.; Scherazad, K.; Rajan, W. D.; Samanta, A.; Ramesh, S.; Srihari, P.; Kernie, S. G.; Mehta, G.; Kumar, A. Scientific Reports, 2015, DOi: 10.1038/srep14134.
6. Sathish Reddy, A.; Srihari, P. Tetrahedron Lett. 2013, 54, 63706372. The spectral data of TMS deprotected compound was compared to the relatively similar molecule (with one methylene unit less in the long chain).
7. Horikawa, K.; Yagyu, T.; Yoshika, Y.; Fujiwara, T.; Kanamoto, A.; Okamoto, T.; Ojika, M. Tetrahedron 2013, 69, 101-106.
8. Wang, L.; Zhang, X.; Liu, J.; Du, Y. Tetrahedron 2014, 70, 82318235.
9. (a) Wender, P. A.; Hegde, S. G.; Hubbard, R. D.; Zhang, L. J. Am. Chem. Soc. 2002, 124, 4956-4957. (b) Alois, F.; Margarita, W. Chem. Eur. J. 2006, 12, 76-89.
10. (a) Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019-8022. (b) Frigerio, M.; Santagostino, M.; Sputore S.; Palmisano, G. J. Org. Chem. 1995, 60, 7272-7276. (c) De Munari, S.; Frigerio, M.; Santagostino, M. J. Org. Chem. 1996, 61, 92729279.
11. The Z-configuration was determined based on the coupling constant value of the olefinic protons ($J=10.7 \mathrm{~Hz}$).
12. (a) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651-1660. (b) Tidwell, T. T. Synthesis 1990, 857 (b) Tidwell, T. T. Org. React. 1990, 39, 297.
13. Mukaiyama, T.; Suzuki, K.; Yamada, T.; Tabusa, F. Tetrahedron 1990, 46, 265-276. The diastereomeric ratio was determined based on ${ }^{1} \mathrm{H}$ NMR spectral analysis.
14. Mitsunobu, O. Synthesis 1981, 1-28.
15. (a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5531-5553. (b) Corey, E. J.; Bakshi, R. K. Tetrahedron Lett. 1990, 31, 611-614. (c) Sridhar, Y.; Srihari, P. Eur. J. Org. Chem. 2013, 571-587.
16. Cadiot, P.; Chodkiewicz, W. In Chemistry of Acetylenes, Viehe, H. G.; Ed.; Marcel Dekker: New York, 1969, 597-647.
17. (a) Vamshikrishna, K.; Srinu, G.; Srihari, P. Tetrahedron Asymm. 2014, 25, 203-211. (b) Srihari, P.; Mahankali, B.; Rajendraprasad, K. Tetrahedron Lett. 2012, 53, 56-58.
18. V. Fiandanese, D. Bottalico, G. Marchese, A. Punzi, J. Org. Met. Chem. 2005, 690, 3004-3008. (b) Bowling, N. P.; Burrmann, N. J. Halter, R. J.; Hodges, J. A. McMahon, R. J. J. Org. Chem. 2010, 75, 6382-6390.

[^0]: * Corresponding author. Tel.: +914027191815; fax: +914027160512; e-mail: srihari@iict.res.in

