

Journal of Fluorine Chemistry 97 (1999) 65-67

Short communication

N-Fluoro-3-ethyl-3-methyl-1,1-dioxo-2,3-dihydro-1*H*-1 λ^6 -benzo[e]1,2-thiazin-4-one, a new and efficient agent for electrophilic fluorination of carbanions

Yoshio Takeuchi^{a,*}, Zhaopeng Liu^a, Emiko Suzuki^a, Norio Shibata^a, Kenneth L. Kirk^b

^aFaculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-0194, Japan ^bLaboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA

Received 12 November 1998; received in revised form 11 December 1998; accepted 11 December 1998

Dedicated to Professor Emeritus Yoshio Kobayashi on the occasion of his 75th birthday

Abstract

N-Fluoro-3-ethyl-3-methyl-1,1-dioxo-2,3-dihydro-1H-1 λ^6 -benzo[e]1,2-thiazin-4-one (1) was prepared in good yield by fluorination of the corresponding sultam (3) with FClO₃. The sultam (3) was prepared from saccharin (2) in 3 steps. The *N*-fluorosultam (1), a very stable crystalline solid, was found to fluorinate carbanions readily in good to excellent yields. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: N-fluorosultams; Electrophilic fluorination; a-fluoroketones

The replacement of hydrogen or hydroxyl with fluorine is an extensively used strategy for enhancement of biological activity in the design of analogues of biologically important molecules [1,2]. Electrophilic fluorination of carbanions is one of the most effective methods for this purpose because it permits the replacement of a C-H bond by a C-F bond in a single step [3-11]. Historically, electrophilic fluorination could be accomplished only by using toxic, corrosive, and/or explosive gaseous materials such as molecular fluorine, FClO₃ or CF₃OF. Usually, specialized equipment and techniques were required. In an important advance that helped overcome these limitations, Barnette found that the N-fluorosulfonamides can effectively fluorinate carbanions [12,13]. Although several N-fluorosulfonamides have been developed as electrophilic fluorination agents [14-19] since this report, there remains a need for additional fluorinating agents that are both readily accessible and give high chemical yields of fluorination product. In this paper, we wish to report the synthesis of a stable, crystalline compound, *N*-fluoro-3-ethyl-3-methyl-1,1-dioxo-2,3-dihydro-1*H*-1 λ^{6} benzo[e]1,2-thiazin-4-one (1), that effectively transfers fluorine to carbanions, exists as a stable crystalline com-

pound, and, moreover, is readily and conveniently prepared in bulk quantities from inexpensive starting materials.

N-Fluorosultam (1) was readily prepared according to the route outlined in Scheme 1. Thus, saccharin (2) was converted into 3-ethyl-3-methyl-1,1-dioxo-2,3-dihydro-1*H*- $1\lambda^{6}$ -benzo[e]1,2-thiazin-4-one (3) in three steps that consisted of sequential alkylation, bromination, and ring expansion according to the procedure of Abramovitch et al. [20]. This sequence was carried out on a 10 g scale in more than 40% over all yield. Fluorination of **3** was first attempted by

Reagents: a) sec-BuLi / THF, b) Br₂ / benzene, c) KOH / H₂O

Scheme 1.

^{*}Corresponding author. Tel.: +81-764-34-2281; fax: +81-764-34-5053; e-mail: takeuchi@ms.toyama-mpu.ac.jp

^{0022-1139/99/\$ –} see front matter 1999 Elsevier Science S.A. All rights reserved. PII: \$0022-1139(99)00028-7

passing 10% molecular fluorine in nitrogen in a 1:1 solution of Freon-11 and chloroform in the presence of spray-dried NaF [21] at various temperatures. However, this procedure resulted in decomposition of **3**, even at -50° C. In contrast, fluorination of the sodium salt of **3** with FClO₃ in THF [22,23] readily gave **1**, obtained in pure form in 71% yield after silica-gel column chromatography and recrystallization from hexane. *N*-Fluorosultam (**1**) is a colorless, crystal-

line	soli	l, mp	68°C	(from	hexane)	, whicl	ı is	stable	over
several weeks when stored at room temperature.									

The results of electrophilic fluorination of a variety of enolates of ketone using 1 are summarized in Table 1. In experiments designed to optimize reaction parameters, we first examined fluorination of 2-methyl-1-tetralone (**4a**) under a variety of conditions. We found that the lithium enolate was a much more suitable substrate than the sodium

Table 1				
Fluorination	of	ketones	with	1

Entry	Ketone 4	Conditions	Product 5		Isolated Yield (%)
1 2	Me 4a	A B	Me F	5a	72 35
3	Bn 4b	A	O F	5b	96
4	Et 4c	A		5c	81
5	Me 4d	A	Me F	5d	79
6	Bn 4e	A	Bn F	5e	76
7	PMB 4f	A	РМВ	5f	96
Mee 8 Mee	Bn 4g	A	MeO MeO	5g	64
9	Me 4h	A	Me F	5h	77
10	Bn 4i	A	G Bn F	5i	73
11	COOMe 4j	С		le 5j	100
12	COOEt 4k	с		5k	95
13	Ph Me	с	Ph F COOEt Me	51	52

^a Fluorinations were carried out using 1.5 eq. of base and 1.5 eq. of **1**. Bn: benzyl; PMB: *p*-methoxybenzyl. Conditions: A: LiHMDS/THF/ – 78°C to – 20°C; B: NaHMDS/THF/ – 78°C to – 20°C; C: NaH/THF/0°C.

enolate (entries 1, 2), producing the α -fluoroketone in good yield when subjected to fluorination with 1 in THF at -78° C to -20° C. Under similar conditions, lithium enolates derived from other ketones such as tetralones (**4b,c**), indanones (**4d–g**) and benzosuberons (**4h,i**) also gave the corresponding α -fluoroketones in good yields. The sodium salts of β -dicarbonyl compounds, including cyclic and acyclic ketones (**4j–l**), were also successfully fluorinated with 1 to give the products in good to excellent yields. It is noteworthy that fluorination of silyl enol ether (**6**) with 1 proceeded under neutral conditions to give **5e**, although the yield was modest (66%). Scheme 2.

In summary, we have synthesized *N*-fluoro-3-ethyl-3methyl-1,1-dioxo-2,3-dihydro-1*H*-1 λ^6 -benzo[e]1,2-thiazin-4-one (**1**) and have found it to be an effective new agent for electrophilic fluorination of carbanions. The presence of an asymmetric carbon at the position adjacent to the nitrogen atom of **1** points to the obvious potential of development of asymmetric fluorinating agents [24–27] based on this structure. Such agents should be very useful for enantioselective fluorinations to produce chiral organofluorine compounds [28]. Accordingly, synthetic studies on asymmetric variants of **1** are now under investigation.

Acknowledgements

This work was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan. N.S. wishes to thank the Kowa Life Science Foundation for support.

References

- Biomedical Aspects of Fluorine Chemistry R. Filler, Y. Kobayashi (Eds.), Elsevier Biomedical Press, New York, 1982.
- [2] J.T. Welch, Tetrahedron 43 (1987) 3123.
- [3] G. Furin in: L. German, S. Zemskov (Eds.), New Fluorinating Agents in Organic Synthesis, Springer, Berlin, 1989, p. 35.
- [4] G.G. Furin, Sov. Sci. Rev. B. Chem. 16 (1991) 1.
- [5] S.T. Purrington, B.S. Kagen, T.B. Patrick, Chem. Rev. 86 (1986) 997.
- [6] R.E. Banks, S.N. Mohialdin-Khaffaf, G.S. Lal, I. Sharif, R.G. Syvret, J. Chem. Soc. Chem. Commun. (1992) 595.
- [7] M. Abdul-Ghani, R.E. Banks, M.K. Besheesh, I. Sharif, R.G. Syvret, J. Fluorine Chem. 73 (1995) 255.
- [8] G.S. Lal, G.P. Pez, R.G. Syvret, Chem. Rev. 96 (1996) 1737.
- [9] T. Umemoto, Rev. Heteroatom Chem. 10 (1994) 123.
- [10] T. Umemoto, S. Fukami, G. Tomizawa, K. Harasawa, K. Kawada, K. Tomita, J. Am. Chem. Soc. 112 (1990) 8563.
- [11] R.E. Banks, J. Fluorine Chem. 87 (1998) 1.
- [12] W.E. Barnette, J. Am. Chem. Soc. 106 (1984) 452.
- [13] D.H.R. Barton, R.H. Hesse, M.M. Pechet, H.T. Toh, J. Chem. Soc., Perkin Trans. 1 (1974) 732.
- [14] S. Singh, D.D. DesMarteau, S.S. Zuberi, M. Witz, H.-N. Huang, J. Am. Chem. Soc. 109 (1987) 7194.
- [15] E. Differding, R.W. Lang, Helv. Chim. Acta 72 (1989) 1248.
- [16] E. Differding, H. Ofner, Synlett, (1991) 187.
- [17] F.A. Davis, P. Zhou, C.K. Murphy, Tetrahedron Lett. 34 (1993) 3971.
- [18] F.A. Davis, W. Han, C.K. Murphy, J. Org. Chem. 60 (1995) 4730.
- [19] I. Cabrera, W.K. Appel, Tetrahedron 51 (1995) 10205.
- [20] R.A. Abramovitch, K.M. More, I. Shinkai, P.C. Srinivasan, J. Chem. Soc., Chem. Commun. (1976) 771.
- [21] N. Ishikawa, T. Kitazume, T. Yamazaki, Y. Mochida, T. Tatsuno, Chem. Lett. (1981) 761.
- [22] D.H.R. Barton, R.H. Hesse, R.E. Markwell, M.M. Pechet, J. Am. Chem. Soc. 98 (1976) 3034.
- [23] D.H.R. Barton, R.H. Hesse, R.E. Markwell, M.M. Pechet, S. Rozen, J. Am. Chem. Soc. 98 (1976) 3036.
- [24] E. Differding, R.W. Lang, Tetrahedron Lett. 29 (1988) 6087.
- [25] F.A. Davis, W. Han, Tetrahedron Lett. 32 (1991) 1631.
- [26] F.A. Davis, P. Zhou, C.K. Murphy, G. Sundarababu, H. Qi, W. Han, R.M. Przeslawski, B.-C. Chen, P.J. Carroll, J. Org. Chem. 63 (1998) 2273.
- [27] Y. Takeuchi, A. Satoh, T. Suzuki, A. Kameda, M. Dohrin, T. Satoh, T. Koizumi, K.L. Kirk, Chem. Pharm. Bull. 45 (1997) 1085.
- [28] P. Bravo, G. Resnati, Tetrahedron: Asymmetry 1 (1990) 661.