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Abstract: Relative to other cyclic poly-phosphorus species (i.e. cyclo-
Pn), the planar cyclo-P4 group is unique in its requirement of two 
additional electrons to achieve aromaticity. In the coordination 
chemistry of cyclo-P4 ligands, these additional electrons are supplied 
from one or more metal centers. However the degree of charge 
transfer to the cyclo-P4 ligand is highly dependent on the nature of the 
metal fragment to which it is bound. Reported here are unique 
examples of dianionic mononuclear h4-P4 complexes that can be 
viewed as the simple coordination of the [cyclo-P4]2– dianion to a 
neutral metal fragment. Treatment of the neutral, molybdenum cyclo-
P4 complexes Mo(h4-P4)I2(CO)(CNArDipp2)2 and Mo(h4-
P4)(CO)2(CNArDipp2)2 with KC8 produces the dianionic, three-legged 
piano stool complexes, [Mo(h4-P4)(CO)(CNArDipp2)2]2– and [Mo(h4-
P4)(CO)2(CNArDipp2)]2–, respectively. Structural, spectroscopic and 
computational studies on these dianions reveal a distinct similarity to 
the classic h6-benzene complex (h6-C6H6)Mo(CO)3 with respect to 
both the valence state of the metal center and electronic population of 
the p-system of the planar-cyclic ligand. 
 

Aromaticity is a central tenant of molecular orbital theory 
and governs the electronic stabilization of unsaturated cyclic 
molecules.[1,2] While aromaticity is most well established for cyclic 
hydrocarbons, there has been a long standing interest in the 
synthesis, development and study of all-inorganic aromatic 
compounds, especially those featuring the heavier main group 
elements.[3] Of these, cyclic poly-phosphorus aromatic 
compounds (i.e. cyclo-Pn) have received considerable attention 
due to the proclivity of phosphorus, relative to other heavier main-
group elements, to form homonuclear multiple bonds.[4-6] 
Accordingly, there has been a vibrant coordination chemistry of 
cyclic poly-phosphorus compounds that mirrors the well-
established coordination chemistry of some Hückel-type 4n+2 
aromatic hydrocarbons. Examples of such coordinated poly-
phosphorus rings include the all-phosphorus analogue of the 
cyclopentadienyl ion (i.e. [cyclo-P5]–),[7,8] complexes of which have 
found wide utility as supramolecular building blocks.[9-11] In 
addition, coordination compounds featuring the all-phosphorus 
analogue of benzene (i.e. cyclo-P6) have been reported,[12,13] as 
have complexes containing the all-phosphorus analogue of the 
more enigmatic cyclobutadiene dianion (i.e. cyclo-[P4]2–).[14-16] 

For cyclo-P4 complexes in particular, the most common 
examples are multinuclear, where the cyclo-P4 ring is bound h4 to 
one metal and k1 to up to four other metals via the phosphorus 
lone pairs (Scheme 1).[15-18] In addition, examples featuring 

 

 
 
Scheme 1. Known coordination modes for the [cyclo-P4]2– ligand.  
 
the binuclear inverted sandwich motif, wherein the cyclo-P4  ring 
serves as a bridging ligand between two metals, have been 
reported in recent years (Scheme 1).[19-23] In such species, it has 
been proposed that the aromaticity of the cyclo-P4 unit is achieved 
by multi-center charge transfer to the central phosphacycle from 
the two transition metal centers.[20,21,23] Contrastingly, 
mononuclear, or so-called “end-deck”, cyclo-P4 complexes 
(Scheme 1), in which the bonding interactions between the metal 
center and the cyclo-P4 unit are potentially more simplified, 
remain uncommon. There are currently only eight structurally 
characterized  “end-deck” cyclo-P4 complexes, all of which are 
either neutral or monoanionic in charge, and are limited to the 
metals V, Nb, Ta, Mo, Fe and Co.[14, 24-29] However, the charge of 
these mononuclear complexes can create an inherent ambiguity 
- rather than simplification - of the bonding interactions between 
the metal and the cyclo-P4 unit. This ambiguity centers on the 
nominal degree of metal-ligand covalency versus formal metal-to-
ligand charge transfer.In turn, these bonding properties govern 
both the extent of aromaticity of the cyclo-P4 unit and the valence 
state of the metal center. Indeed, this uncertainty is analogous to 
the debate on the iron cyclobutadiene complex, Fe(h4-C-
4H4)(CO)3,[30-32] where metal d8 and d6 electronic configurations 
have been proposed as limiting forms.[33-34] Missing from the set 
of mononuclear cyclo-P4 complexes are examples of dianionic 
species, which can be viewed simply as the coordination of the 
[cyclo-P4]2– dianion[35] to a neutral metal fragment. Such 
complexes would obviate the need to invoke a charge-transfer 
paradigm within the bonding framework and could serve as a 
benchmark for other mononuclear [cyclo-P4]2– complexes. 
Accordingly, here we report the synthesis and structures of the 
dianionic complexes [(cyclo-P4)Mo(CO)2(CNArDipp2)]2– and 
[(cyclo-P4)Mo(CO(CNArDipp2)2]2– (ArDipp2  = 2,6-(2,6-(i-
Pr2)2C6H3)2C6H3), which are direct electronic analogues of the 
classic h6-benzene complex, (h6-C6H6)Mo(CO)3,[36] and allow for 
a direct assessment of the effects of metal coordination on the 
ostensible aromatic framework of the [cyclo-P4]2– dianion. 

We recently reported the diiodo-monocarbonyl complex, 
(h4-P4)MoI2(CO)(CNArDipp2)2 (1), which along with its more 
reduced dicarbonyl counterpart, (h4-P4)Mo(CO)2(CNArDipp2)2 (2), 
represented the first examples of monomeric cyclo-P4 complexes 
of molybdenum.[28] On account of its high-valent nature, we 
reasoned that complex 1 could be used to access a low-valent 
and low-coordinate cyclo-P4 complex via chemical reduction. 
Treatment of 1 with an excess of potassium graphite (KC8) in THF 
solution resulted in a color change to dark red from orange 
(Scheme 2). Analysis of the reaction mixture by 1H NMR  
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Scheme 2. Synthesis of dianionic molybdenum cyclo-P4 complexes.  
 
spectroscopy revealed the formation of a single product featuring 
two distinct environments for the  CNArDipp2 iso-propyl group 
methyl and methine resonances. However, only one chemical 
environment was present for the central aryl group, thereby 
indicating a product with Cs symmetry. In addition, 1H-coupled, 31P 
NMR spectroscopic analysis of the reaction mixture revealed one 
singlet resonance centered at d = +105 ppm. This chemical shift 
is within the range found for complexes 1 and 2 (d =  +90 and +60 
ppm for 1; d = +113 ppm for 2),[28] which suggested that the cyclo-
P4 ligand remained intact upon treatment of 1 with KC8. Notably, 
FTIR spectroscopy of this product in C6D6 solution revealed an 
asymmetric set of broad, low-energy nCN and nCO bands (1900 – 

1650 cm-1) consistent with both a highly reduced metal center and 
contact ion pairing between the complex and potassium ions.[37] 
Such IR spectroscopic features have been observed previously in 
a number of anion transition metal complexes supported by m-
terphenyl isocyanide ligands.[38-40]  

Attempts to obtain single crystals of this reduction product 
were unsuccessful under a variety of conditions. However, 
addition of dibenzo[18-crown-6] to the product enabled the 
formation of red single crystals from a toluene solution. 
Crystallographic structure determination revealed this species to 
be the dipotassium salt, [K2(dibenzo[18-crown-6]][(h4-
P4)Mo(CO)(CNArDipp2)2] ([K2(db18-c-6)][3]; Figure 1). Accordingly, 
we formulate the initial product of reduction as a THF-solvated 
salt of K2[(h4-P4)Mo(CO)(CNArDipp2)2] (K2[3]), which represents a 
formal 4e– reduction of complex 1 accompanied by the loss of two 
iodide ligands. In the solid state, the Mo center of [K2(db18-c-6)][3] 
adopts a three-legged piano stool motif that is most recognizably 
associated with neutral (h6-arene)ML3 complexes of the Group 6 
metals (L = 2e– donor ligand). One potassium ion is partially 
encapsulated by the crown ether and makes a secondary 
interaction to one phosphorus atom of the cyclo-P4 ring. The other 
K+ ion is engaged in contact-ion interactions with the CºN and 
arene portions of the CNArDipp2 ligands as suggested from the IR 
spectroscopic data.[38-40] Treatment of [K2(db18-c-6)][3] with up to 
five additional equivalents of dibenzo[db18-crown-6] did not 
succeed in the encapsulation of the second K+ ion, thereby 
indicating that contact-ion pairing in this complex is substantial. 

 

 
Figure 1. Molecular Structures of K2(dibenzo[18-crown-6]][(h4-P4)Mo(CO)(CNArDipp2)2] ([K2(db18-c-6)][3]; left), the dianionic portion of K2[(h4-P4)Mo(CO)2(CNArDipp2)] 
(K2[4]; middle) and the neutral paramagnetic complex (h4-P4)MoI(CO)(CNArDipp2)] (6; right).[49] 

 
Table 1. Metrical and Spectroscopic Parameters for h4-P4 Molybdenum Complexes. av = average; cent = centroid; E = O or N. 

Compound/Parameter d(P-P)av  
(Å) 

d(Mo-(h4-P4)cent) 
(Å) 

d(Mo-C) av  
(Å) 

nCE  
 (cm-1) 

Proposed 
Mo 

Valence 
(h4-P4)MoI2(CO)(CNArDipp2)2 

(1) 
2.157(±0.005) 2.077(3) Ciso – 2.119(±0.001) 

CCO – 1.988(3) 
 

nCO – 2007 
nCN – 2142, 2104 
 

4 

(h4-P4)Mo(CO)2(CNArDipp2)2 
(2) 

2.163(±0.015) 2.075(1) Ciso –2.109(±0.009) 
CCO – 2.013(±0.013) 
 

vCO – 2001, 1941 
vCN – 2130, 2101 
 

2 

[K2(18-c-6)][(h4-P4)Mo(CO)(CNArDipp2)2] 
([K2(18-c-6)][3]) 

2.160(±0.012) 2.112(2) Ciso – 1.962(±0.019) 
CCO – 1.973(3) 
 

nCO – 1654 1635 
nCN – 1877, 1780 
 

0 

K2[(h4-P4)Mo(CO)2(CNArDipp2)] 
(K2[4]) 

2.161(±0.021) 2.102(3) Ciso – 1.972(3) 
CCO – 1.935(±0.007) 
 

nCO –1760, 1679 
nCN –1981, 1915 
 

0 

[Cp2Co][(h4-P4)MoI(CO)(CNArDipp2)2] 
([Cp2Co][5]) 

2.169(±0.010) 2.051(2) Ciso –2.074(±0.009) 
CCO – 1.984(4) 
 

nCO – 1884 
nCN – 2050, 1997 
 

2 

(h4-P4)MoI(CO)(CNArDipp2)2 
(6) 

2.168(±0.020) 2.049(4) Ciso – 2.116(±0.011) 
CCO – 2.004(5) 
 

nCO – 1984 
nCN – 2137, 2121 
 

3 
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Whereas (h4-P4)MoI2(CO)(CNArDipp2)2 (1) possesses 
iodide ligands that are readily lost, the dicarbonyl complex (h4-
P4)Mo(CO)2(CNArDipp2)2 (2) can also serve as a precursor to 
dianionic cyclo-P4 complexes upon reduction. Treatment of 2 
with an excess of KC8 in THF solution followed by analysis by 
31P NMR spectroscopy revealed the formation of K2[3] along 
with an equimolar quantity of another cyclo-P4 product, as 
indicated by an additional 31P singlet centered at d = + 121 ppm 
(Scheme 2). Dissolution of this mixture in 10:1 n-pentane/THF, 
solubilized K2[3], leaving a dark red precipitate that could be 
crystallized from a THF solution stored at –40 ˚C. Structure 
determination on single crystals produced in this manner 
revealed the dicarbonyl salt, K2[(h4-P4)Mo(CO)2(CNArDipp2)] 
(K2[4]), resulting from the formal loss of one CNArDipp2 ligand 
from complex 2. Similar to the bis-isocyanide salt [K2(db18-c-
6)][3], the molybdenum core of dicarbonyl K2[4] adopts a three-
legged piano stool motif (Figure 1). However, in the solid state, 
multiple contacts between the [(h4-P4)Mo(CO)2(CNArDipp2)]2– 
unit and the K+ ions organize K2[4] into a linear coordination 
polymer (Figure S4.3). Notably, treatment of the K2[3]/K2[4] 
reaction mixture with 10.0 equivalents of CO at room 
temperature results in the complete formation of K2[4] and the 
corresponding amount of free CNArDipp2 after 1h of stirring.  
However, extended reaction times and/or heating up to 80 ˚C 
does not liberate the remaining CNArDipp2 ligand from K2[4]. 
Like the inability to encapsulate the second K+ ion in [K2(db18-
c-6)][3], we attribute this lack of additional reactivity between 
K2[4] and CO to the strong p-arene/cation binding[41] 
capabilities of the CNArDipp2 ligand.  

The metrical parameters and IR spectroscopic features 
of [K2(db18-c-6)][3] and K2[4] are consistent with the 
coordination of a dianionic [cyclo-P4]2– ligand to a low-valent 
molybdenum  center. In addition, these data are especially 
informative when further compared to the neutral h4-P4 
complexes 1 and 2. For example, there is a remarkable 
consistency in average P-P bond distances across the series. 
For [K2(db18-c-6)][3] and K2[4], these average distances are 
identical and are essentially the same as complexes 1 and 2 
(Table 1).[28] This similarity strongly suggests that the cyclo-P4 
units of these complexes have a common electronic structure, 
irrespective of the valency of these molybdenum centers. In 
addition, these average P-P bond distances are slightly longer 
than those of the uncoordinated cyclo-tetraphosphide salt, 
Cs2[cyclo-P4]·2NH3 (2.147(±0.002) Å),[35,42] thereby reflecting 
that coordination to Mo decreases P-P p-bonding character to 
a measurable extent.[43] However, there is a pronounced 
increase in the Mo-(h4-P)centroid distance for [K2(db18-c-6)][3] 
and K2[4] relative to complexes 1 and 2 (Table 1) which is 
consistent with a decrease in metal valence state and reflects 
the presence of additional electron density on the metal center. 
Complexes [K2(db18-c-6)][3] and K2[4] also display Mo-C bond 
distances to both the isocyanide and CO ligands that are 0.1 Å 
and 0.2 Å shorter than those within 2 and 1, respectively (Table 
1). These short Mo-C bond lengths coincide with nCN and nCO 
IR signatures of [K2(18-c-6)][3] and K2[4] that are considerably 
lower in energy than those of 1 and 2, thereby providing 
additional support for increased p-backbonding interactions in 
the salts and, correspondingly, the presence of low-valent Mo 
centers. 

Density functional theory (DFT) investigations provided a 
more detailed picture of the electronic structure of these cyclo-
P4 dianions and revealed a distinct electronic relationship to 
the classic h6-benzene complex, (h6-C6H6)Mo(CO)3. As shown 
in Figure 2, the three highest-lying molecular orbitals 
calculated for [(h4-P4)Mo(CO)2(CNArDipp2)]2– ([4]2–) are a metal-
based non-bonding orbital set and are consistent with the d6 
electronic configuration of a zero-valent  

 
 
Figure 2. Highest-lying filled molecular orbitals for (h4-
P4)Mo(CO)2(CNArDipp2)]2– ([4]2–; top) and (h6-C6H6)Mo(CO)3 (bottom). 
 

 
 
Figure 3. Occupied molecular oribitals representing the interaction between  
molybdenum and the cyclo-P4 ligand in (h4-P4)Mo(CO)2(CNArDipp2)]2– ([4]2–; 
left) and benzene in (h6-C6H6)Mo(CO)3 (right). 
 
molybdenum center.[44] These MOs correlate remarkably well 
with the e(xy, x2-y2) and a1(z2) non-bonding orbital set of C3v-
symmetric (h6-C6H6)Mo(CO)3 (Figure 2), with the exception 
that the dx2-y2 orbital of [4]2– is stabilized relative to its dxy orbital. 
Accordingly, this breaking of the degenerate e-orbital set in 
[4]2– is a consequence of the fact that the four-fold symmetric 
nature of the cyclo-P4 ligand can accept only one d-
backbonding interaction from the three-fold symmetric MoL3 
fragment.[45] However, with respect to the primary bonding 
interactions between the cyclo-P4 unit and Mo, the electronic 
similarity of [4]2– and (h6-C6H6)Mo(CO)3 are readily apparent 
(Figure 3). Both complexes possess a filled a-type molecular 
orbital interaction between the totally-symmetric 
representation of the cyclic ligand to the Mo center (Figure 3). 
This feature is accompanied by two filled e-symmetry 
interactions between the molybdenum dxz and dyz orbitals and 
the cyclic ligand, which for the cyclo-P4 unit satisfies the criteria 
for Hückel-type, 4n+2 aromaticity (n = 1). Correspondingly, 
calculation of the diatropic ring current for [4]2– 1 Å above the 
cyclo-P4 centroid resulted in a NICS(1) value of –7.0 ppm 
(NICS = nucleus-independent chemical shift).[46-47] Notably, 
negative NICS(1) values have been strongly correlated with 
the presence of aromaticity in cyclic compounds.47 Accordingly, 
this NICS(1) value for [4]2– can be compared with that 
calculated for  (h6-C6H6)Mo(CO)3 (NICS(1) = –16.3 ppm), with  
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Scheme 3. Synthesis of the neutral paramagnetic cyclo-P4 complex 6.  
 
the more positive value for [4]2– arising from the contributions 
of the exo-cyclic phosphorus lone pairs, which are known to 
oppose calculated diatropic ring currents.[48]  

Whereas the experimental and computational data for 
[3]2– and [4]2– support the view of an  aromatic [cyclo-P4]2– 
dianion bound to a zero-valent metal fragment, it is important 
to emphasize that the structural parameters of the cyclo-P4 
units within complexes 1 and 2 also indicate the presence of 
an aromatic [cyclo-P4]2– dianionic unit. This observation 
suggests that, for this particular system, formal charge transfer 
from the Mo center to the cyclo-P4 ligand in the neutral 
complexes 1 and 2 is significant and Hückel-type aromaticity is 
established. Accordingly, dianions [3]2– and [4]2–, which 
represent an end-point in metal-based valence states, are best 
contextualized for their capacity to benchmark electron 
deficiency at the metal center, especially when the structural 
and/or spectroscopic properties of the cyclo-P4 ligand indicate 
aromatic character. Further illustrating this conclusion are the 
metrical and spectroscopic parameters of the neutral, 
paramagnetic cyclo-P4 complex, (h4-P4)MoI(CO)(CNArDipp2)2 
(6), which was prepared according to the route shown in 
Scheme 3 through the intermediacy of the salt [Cp2Co][(h4-
P4)MoI(CO)(CNArDipp2)2] ([Cp2Co][5]). Monoiodide 6 exhibits 
average P-P bond distances that are similar to the other 
mononuclear molybdenum cyclo-P4 complexes, thereby 
signifying the presence of a [cyclo-P4]2– unit (Table 1; Figure 
1). However, the Mo-(h4-P)centroid distance in 6 is shorter than 
those for [K2(db18-c-6)][3] and K2[4], while its n(CN) and n(CO) 
stretches are intermediate between those of complexes 1 and 
2. These data indicate that complex 6 possesses an Mo center 
in a higher-valent state than [K2(db18-c-6)][3], K2[4] and 2, but 
not diiodide 1.  

Accordingly, we believe this series represents a unique 
case where metal-based valence modulation has been 
identified for cyclo-P4 complexes featuring the same metal 
center and a similar ancillary environment. Given that cyclo-P4 
complexes are desirable initial products in the activation of 
white phosphorus (P4) by transition-metal centers, the ability to 
understand and benchmark metal-based redox changes within 
these complexes may aid in the development of new 
phosphorus-atom functionalization processes. We are 
currently investigating this potential with the aim of developing 
transformations for [K2(db18-c-6)][3] and K2[4] that 
cooperatively involve redox equivalents from both the Mo 
center and the cyclo-P4 ligand. 
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