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Abstract: Tricyclic isotaxane and taxane derivatives have

been synthesized by a very efficient cascade ring-closing di-
enyne metathesis (RCDEYM) reaction, which formed the A
and B rings in one operation. When the alkyne is present at

C13 (with no neighboring gem-dimethyl group), the
RCEDYM reaction leads to 14,15-isotaxanes 16 a,b and 18 b

with the gem-dimethyl group on the A ring. If the alkyne is

at the C11 position (and thus flanked by a gem-dimethyl
group), RCEDYM reaction only proceeds in the presence of
a trisubstituted olefin at C13, which disfavors the competing

diene ring-closing metathesis reaction, to give the tricyclic
core of Taxol 44.

Introduction

TaxolÒ (paclitaxel), together with its derivatives TaxotereÒ (doce-
taxel) and JevtanaÒ (cabazitaxel) are the largest selling anti-

cancer drugs of all time, with sales of over three billion USD
per year for Taxotere alone in 2010.[1] Originally indicated for

the treatment of ovarian and breast cancers, they are now
widely prescribed to treat a broad range of malignancies.[2] The
structures of these three compounds only differ in terms of

the functionalization of the amine on the side chain and the
hydroxyl groups at C10 and C7 (Scheme 1). Taxol is currently

being manufactured through plant-cell fermentation by
Phyton Biotech, LLC, a DFB Pharmaceuticals Company for Bris-
tol–Myers Squibb, whilst Taxotere and Jevtana are produced
by semisynthesis from 10-deacetylbaccatin III by Sanofi, which

still requires an expensive extraction process of natural resour-

ces. There have been six total syntheses of Taxol by the groups
of Holton,[3] Nicolaou,[4] Danishefsky,[5] Wender,[6] Mukaiyama[7]

and Kuwajima,[8] as well as three formal syntheses by the
groups of Takahashi,[9] Nakada[10] as well as Sato and Chida,[11]

but they all comprise at least 37 steps.[12] An efficient synthesis

of active taxoid analogues has yet to be achieved, because of
the sterically hindered, complex and highly functionalized
structure of these compounds.

A rapid synthesis of the tricyclic core of Taxol where all of
the functional groups required for activity are present or in

a latent form would facilitate access to a diverse array of novel
taxoids with potential anticancer activity. We report here a syn-
thetic strategy featuring a cascade ring-closing dienyne meta-
thesis (RCDEYM) reaction that allows access to the ABC tricyclic

Scheme 1. Taxol and derivatives; retrosynthesis of the ABC tricycle of Taxol
featuring a ring-closing metathesis (RCM).
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ring system of taxanes as well as taxane analogues that pos-
sess a novel skeleton and cannot be prepared by semi-synthe-

sis.[13]

Results and Discussion

Our initial retrosynthesis is outlined in Scheme 1. We aimed for
a formal synthesis of Taxol, so we chose the intermediate 4 de-

scribed by Holton during his synthesis of this natural product
as our primary target.[3] The A ring would be closed by a pina-

col coupling between the ketones at C11 and C12 in com-
pound 5, as previously described by Mukaiyama on a similar
substrate.[7] The ketone at C12 would be installed by hydration

of alkyne 6. The eight-membered B ring would be formed by
a ring-closing metathesis (RCM) reaction[14] between the al-
kenes at C10 and C11 in compound 7. This key step was suc-
cessful in our synthesis of model BC bicyclic systems of Taxol
(with no hydroxyl group at C7 and a butyl side chain at C1).[15]

Finally, the metathesis precursor 7 would be assembled by

a Shapiro reaction between hydrazone 8 and aldehyde 9. This

coupling reaction has proved to be very diastereoselective on
similar substrates during our previous approaches to taxoids.[16]

Our synthesis commenced with the preparation of aldehyde
9 (Scheme 2). Commercially available 3-pentyn-1-ol was oxi-

dized with the Dess–Martin periodinane[17] (DMP) and the re-
sulting aldehyde was subjected to a Barbier reaction with

prenyl bromide under the Luche conditions[18] to furnish alco-

hol 10 in excellent yield. Oxidation of alcohol 10 gave the cor-
responding ketone 11, which was submitted to trimethylsilyl

cyanide in the presence of a the tertiary amine 1,4-diazabicy-
clo[2.2.2]octane (DABCO) as a catalyst. The resulting cyanohy-

drin was reduced to the intermediate imine, which was hydro-
lyzed to give the racemic aldehyde (�)-9 by exposure to silica

gel. Optically active aldehyde 9 was also prepared in 99 % ee in

a similar fashion[19] using a chiral amine base for the cyanation
reaction,[20] but we chose to pursue the synthesis of the meta-

thesis precursors with the racemic aldehyde to widen the array
of taxoids generated, and to study the influence of the stereo-

chemistry of the precursor on the RCM reaction outcome.

In order to test the key metathesis reaction, we decided to

use a 7-deoxy C ring as a coupling partner in the Shapiro reac-
tion. It is worth noting that removal of the functional group at

C7 in Taxol did not result in a significant loss of bioactivity.[21]

When hydrazone 12 (Scheme 3), prepared in 76 % yield from

the corresponding known ketone,[22] was submitted to tBuLi
for the Shapiro coupling, only degradation was observed.[23]

We surmised that this was due to the deprotonation at the al-
lylic position, and thus the alkene was masked as a protected

primary alcohol. Enantiopure hydrazone 13[15b] was treated
with aldehyde (�)-9 using conditions we had developed pre-

viously.[15b] To our surprise, the reaction only proceeded in 20 %
yield. Several additives were screened. Addition of MgBr2 and
ZnCl2 did not lead to any of the desired product, but we ob-
served a dramatic increase in yield when dry CeCl3 was stirred
for 30 min with the vinyllithium reagent derived from hydra-
zone 13 before addition of aldehyde (�)-9, and diols 14 a,b
were obtained in 85 % combined yield after hydrolysis of the

TMS ether. The reason for this difference in reactivity between
the model aldehyde (butyl side chain at C1) and (�)-9(2-butyn-

yl side chain at C1) is unclear.[15b] As had been observed previ-

ously for the model aldehydes, this reaction was highly diaste-
reoselective, giving the trans diol compounds[24] 14 a and 14 b
after hydrolysis of the trimethylsilyl ether. The stereochemistry
of 14 a and 14 b was assigned by comparing their proton NMR

spectra with those of the corresponding model Shapiro ad-
ducts possessing a butyl side chain at C1.[25] Diols 14 a and

14 b were then submitted separately to trityl ether hydrolysis,

elimination of the resulting primary alcohol using the Grieco
protocol[26] and protection of the C1-C2 diol as the cyclic car-

bonate ester to furnish the metathesis precursors 15 a and
15 b in 75 % and 65 % overall yields for the four steps, respec-

tively. No intermediate purification was required for these
transformations.

We first tried out the key RCM reaction on carbonate 15 a,

which possesses the opposite configuration at C1 and C2 com-
pared to Taxol. Treatment of this compound with 10 mol % of
the second-generation Grubbs precatalyst in toluene at reflux
for 24 h did not lead to the desired cyclooctene, but gave tri-
cyclic derivative 16 a instead (Scheme 4). This product resulted

from an enyne metathesis reaction between the alkene at C10
and the alkyne at C13, furnishing the intermediate bicycle

Scheme 2. Synthesis of aldehyde (�)-9. a) DMP, CH2Cl2 ; b) Zn, NH4Cl, prenyl
bromide, 99 % (over 2 steps) ; c) a) DMP, CH2Cl2, 95 %; d) TMSCN, DABCO,
CH2Cl2 ; e) DIBAL-H, CH2Cl2 ; SiO2 (58 % over 2 steps). DMP = Dess–Martin peri-
odinane, TMS = trimethylsilyl, DABCO = 1,4-diazabicyclo[2.2.2]octane, DIBAL-
H = diisobutylaluminium hydride.

Scheme 3. Synthesis of metathesis precursors 15 a,b. a) tBuLi, CeCl3, THF,
¢78 8C; b) 1 N aq. HCl, 14 a 45 % (over 2 steps), 14 b 40 % (over 2 steps) ;
c) Amberlyst H-15, MeOH; d) o-NO2C6H4SeCN, PBu3, THF; e) Im2CO, toluene,
110 8C; f) (NH4)6Mo7O24·4 H2O, H2O2, H2O, 15 a, 75 % (over 4 steps), 15 b 65 %
(over 4 steps). THF = tetrahydrofuran, Im = imidazolyl.
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16 a’, which further cyclized by a diene metathesis to give 16 a
in good yield. This intermediate 16 a’ could be isolated as a 1:1

mixture with 16 a if only 5 mol % of the precatalyst was used
for the reaction. The first enyne metathesis reaction was not

unexpected;[27] what was more surprising to us was the ease of
formation of the strained tricyclic system in compound 16 a.

This 14,15-isotaxane has an unprecedented skeleton, which is
very similar to that of taxane derivatives, except that the C14
and C15 carbons have swapped positions, which places the

gem-dimethyl group in the A-ring alone. In addition, the C2
stereogenic center possesses the undesired configuration for

Taxol.

In an effort to assess the influence of the nature of the diol
protecting group on the outcome of the metathesis reaction,

which was shown to be crucial for model compounds,[15b] the
benzoate 17 a was prepared by addition of phenyllithium to

the carbonate 15 a (Scheme 4). Unfortunately, benzoate 17 a
did not undergo metathesis when treated with the Grubbs 2

precatalyst, but slowly decomposed.

A similar cascade dienyne metathesis reaction was observed
with stereoisomer 15 b, but the reaction proceeded under

milder conditions and gave tricycle 16 b in 91 % yield
(Scheme 4). This time, RCM of benzoate 17 b, obtained by phe-

nyllithium addition to 15 b, furnished isotaxane 18 b in 57 %
yield, underscoring the influence of the configuration at C1

and C2 on the outcome of the metathesis reactions.[15b] These

isotaxanes possess the undesired configuration at C1. Isotax-
ane 16 b was crystalline, and its X-ray crystallographic analy-

sis[28] (Figure 1) established its tricyclic structure and confirmed
the configuration of the carbonate-bearing stereocenters at C1

and C2.
The isotaxanes 16 a, 16 b and 18 b represent a novel class of

Taxol analogues, and could be transformed into potentially

active compounds. Indeed, taxanes such as tasumatrols E, F
and G (Figure 2), isolated from Taxus sumatrana, do not pos-

sess the classical ABC 6,8,6-tricyclic system of Taxol; however,
they exhibit more potent activity than Taxol in vitro against

four human cancer cell lines.[29]

An easy way to circumvent the unwanted dienyne metathe-
sis cascade is to perform the alkyne hydration before the RCM

step, and this has been achieved in excellent yield (Scheme 5).
Diol 19 was prepared in three steps from the Shapiro adduct

14 b in 68 % overall yield. Treatment of alkyne 19 with the
Gagosz catalyst[30] in the presence of water did not give the
corresponding ketone but hemiketal 20.[31] Fortunately, com-

pound 20 underwent ring-closing metathesis in 98 % yield to
form the BC ring system of Taxol 21. Work is in progress for

the completion of the synthesis of the tricyclic core of Taxol ac-
cording to the retrosynthesis shown in Scheme 1.

On the other hand, we also wanted to take advantage of

this very efficient metathesis cascade to synthesize the ABC tri-
cycle of Taxol, and our revised retrosynthesis is shown in

Scheme 6. The 2-ene-1,4-diol unit of compound 4 would be in-
stalled by a TiIII radical-mediated opening of the corresponding

1,3-diepoxide, which can be generated from the 1,3-diene
moiety at C10-C13 of compound 22.[12b] A hydroboration/oxi-

Scheme 4. Attempts at metathesis and synthesis of isotaxanes. a) 5 mol %
Grubbs 2, toluene, 110 8C, 48 h, 1:1 16 a/16 a’ 30 %; b) 10 mol % Grubbs 2,
toluene, 110 8C, 24 h, 16 a 62 %; c) PhLi, THF, ¢78 8C, 17 a 54 %, 17 b 70 %;
d) 5 mol % Grubbs 2, toluene, 80 8C, 2 h, 91 %; e) 5 mol % Grubbs 2, toluene,
110 8C, 1 h, 57 %. For the structure of Grubbs 2, see Table 1.

Figure 1. ORTEP (50 % probability) representation of compound 16 b.

Figure 2. Structures of tasumatrols E, F and G.
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dation sequence of the C3-C4 olefin would lead to the ketone
at C4.[5] Tricycle 22 would be formed by a metathesis cascade

reaction from dienyne 23, where the alkyne at C11 and the
alkene at C13 have swapped positions compared to those in

compound 15 b. In order to direct the metathesis cascade re-

action so it starts with the olefin at C10 and not with the one
at C13, we elected to have a disubstituted olefin at C13, which

would react more slowly with the metathesis precatalysts. It is
important to note that this extra methyl group will not be

present in the metathesis product 22, but will be part of the
propene released after the diene metathesis reaction. Discon-

nection of dienyne 23 through the C2¢C3 bond reveals the

two precursors aldehyde 24 and hydrazone 25.

The synthesis of aldehyde 24 in its racemic form was not as

straightforward as the synthesis of the corresponding aldehyde

9. It started with ester 26,[32] obtained by propargylation of
ethyl isobutyrate (Scheme 7). Attempts to isomerize the termi-

nal alkyne of 26 into the internal one with potassium tert-but-
oxide only resulted in degradation products. Fortunately, this

isomerization reaction was successful on the corresponding
acid 27, and acid 28 was obtained in 94 % yield. Addition of

crotylmagnesium chloride to the corresponding Weinreb
amide (compound 41, see Scheme 9 for structure) furnished

a complex mixture of products, so we next turned to the croty-
lation of aldehyde 29. Treatment of this aldehyde with crotyl

magnesium chloride in the presence of aluminum trichloride[33]

led to a 1:1.5 mixture of a and g crotylation products. Fortu-
nately, allyl transfer from 2,3-dimethyl-4-penten-2-ol catalyzed
by tin(II) triflate[34] gave the desired alcohol 30 (as an inconse-
quential 3:1 mixture of E/Z isomers) in 76 % yield after 2 days.

Oxidation of 30 with 2-iodoxybenzoic acid (IBX) followed by
homologation of the resulting ketone 31 furnished aldehyde
(�)-24[35] in good overall yield.

The dienynes 32 a,b and 34 a,b were prepared using a similar
reaction sequence to the one used for compounds 15 a,b and

17 a,b, as described in the preliminary account of our work.[13]

Metathesis reactions of carbonates 32 a,b and benzoates 34 a,b
with Grubbs 2 precatalyst did not produce tricyclic com-

pounds, but led to the bicycles 33 a,b and 35 a,b, respectively,
resulting from a simple diene RCM between the olefins at C10
and C13 (Scheme 8).[13]

Compound 33 a was crystalline, and its X-ray crystallographic
analysis[36] (Figure 3) confirmed the configuration at C1 and C2
of the metathesis precursors 32 a and 34 a.

We had assumed that in the case of compounds 15 and 17
(Scheme 4), the initial enyne methathesis (between C10 and
C13) would be favored compared to the alternative diene
metathesis (between C10 and C11) because it would lead to
a more stable tricyclic product after subsequent diene meta-

thesis, but it seems that in all cases the first RCM takes place
with the less hindered unsaturated functional group having no

neighboring gem-dimethyl group. Since this gem-dimethyl
group is part of the Taxol skeleton, it is not possible to relieve
the steric hindrance at the propargylic position in compounds

32 and 34, but another option is to increase the steric hin-
drance of the alkene at C13, so the undesired diene RCM is dis-

favored. We thus embarked on the synthesis of metathesis pre-
cursors bearing a trisubstituted olefin at C13. The synthesis of

Scheme 5. Alkyne hydration followed by RCM. a) Amberlyst H-15, MeOH,
98 %; b) PPh3, imidazole, I2, 82 %; c) NaH, DMF, 84 %; d) Ph3PAuNTf2, THF, H2O,
80 %; e) 5 mol % Grubbs 2, CH2Cl2, reflux, 1.5 h, 98 %. DMF = dimethylforma-
mide, Tf = trifluroromethanesulfonyl.

Scheme 6. Novel retrosynthesis of taxol featuring a cascade ring-closing di-
enyne metathesis (RCDEYM).

Scheme 7. Synthesis of aldehyde (�)-24. a) KOH, H2O, MeOH, 93 %; b) tBuOK,
DMSO, 75 8C, 94 %; c) LiAlH4, THF; d) (COCl)2, DMSO, Et3N, CH2Cl2, 76 % (over
2 steps) ; e) 2,3-dimethyl-4-penten-2-ol, Sn(OTf)2, CH2Cl2, 76 %; f) IBX, DMSO,
THF, 93 %; g) TMSCN, ZnI2, CH2Cl2, reflux; g) DIBAL-H, hexane; SiO2 (62 % over
2 steps). DMSO = dimethyl sulfoxide, IBX = 2-iodoxybenzoic acid.
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the aldehyde (�)-36 required for their preparation is shown in
Scheme 9. Prenyl transfer to aldehyde 29 from 2,3,3-trimethyl-

4-penten-2-ol was unreliable, with yields of 37 ranging from 15

to 61 %. Ketone 38 was then obtained by IBX oxidation. An
umpolung synthesis of 38 was also achieved. Prenylation of di-

thiane 39, prepared from aldehyde 29, furnished 40 in excel-
lent yield. Hydrolysis of the dithiane moiety gave ketone 38.

However, this route was not very convenient on large scale, so
as a last resort prenylation of the Weinreb amide 41 derived

from acid 28 (Scheme 7) was also attempted. To our surprise,
this reaction was very clean and afforded ketone 38 in 95 %

yield. In this fashion, aldehyde (�)-36[37] was obtained after ho-
mologation of 38 in 7 steps and 66 % overall yield from ethyl

isobutyrate.

Compounds 42 a,b and 43 a,b bearing a trisubstituted olefin
at C13 were synthesized in the same way as compounds 32 a,b
and 34 a,b as previously described, then subjected to the
Grubbs 2 precatalyst in toluene at reflux (Scheme 10).[13] We

were disappointed to find out that carbonate 42 a and ben-
zoate 43 a, possessing the undesired configurations at C1 and

C2, furnished the bicyclic compounds 33 a and 35 a that we

had already observed for the metathesis reactions of 32 a and
34 a (Scheme 8). Taxol-like benzoate 43 b also underwent diene

RCM to produce 35 b. However, Taxol-like carbonate 42 b fur-
nished compound 44 after RCDEYM, which corresponds to the

tricyclic core of Taxol, along with the undesired bicyclic com-
pound 33 b.[13]

In order to confirm the structure of the highly strained tricy-

clic product 44, we converted it to the crystalline p-nitroben-
zoate derivative 45 by hydrolysis of the carbonate and acyla-
tion of the resulting secondary alcohol (Scheme 11). X-ray crys-
tallographic analysis of 45[38] not only confirmed the tricyclic
structure, but also established without ambiguity the configu-
rations at C1 and C2 for the Taxol-like series of compounds.

We then set to optimize the yield of the desired tricyclic
compound 44. The 44/33 b ratio was the same under different
concentrations ranging from 3 Õ 10¢3 to 15 Õ 10¢3 m,[13] so all

metathesis reactions were performed at 5 Õ 10¢3 m. Toluene at
reflux proved to be a better choice than 1,2-dichloroethane at

reflux (80 8C) or xylene at reflux (140 8C).[13] Various precatalysts
were then screened (Table 1). No reaction was observed with

the less reactive Grubbs 1 precatalyst, so we tested second-

generation ruthenium complexes. The Hoveyda–Grubbs preca-
talyst HG2 gave an improved yield of the desired compound

44 compared to the Grubbs 2 precatalyst (69 vs. 45 %), and so
did the Grela complex, which possesses a nitro substituent on

the benzylidene ligand. Pleasingly, the HG2 derivative Zhan-1B,
which possesses a N,N-dimethylsulfonamido group gave the

Scheme 8. Attempts at metathesis cascade. a) 10 mol % Grubbs 2, toluene,
110 8C, 12 h, 33 a 63 %, 35 a 78 %, 33 b 68 %, 35 b 86 %.

Figure 3. ORTEP (50 % probability) representation of compound 33 a.

Scheme 9. Synthesis of aldehyde (�)-36. a) 2,3,3-Trimethyl-4-penten-2-ol,
Sn(OTf)2, CH2Cl2, 15–61 %; b) IBX, DMSO, THF, 85 %; c) TMSCN, ZnI2, CH2Cl2 ;
d) DIBAL-H, hexane; SiO2 (83 % over 2 steps) ; e) 1,2-ethanedithiol ; BF3·OEt2,
CH2Cl2, 75 %; f) BuLi, prenyl bromide, THF, ¢78 8C, 99 %; g) MeI, CaCO3,
MeCN, H2O, 83 %; h) Mg, THF, prenyl chloride, 95 %.
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best yield (70 %) of compound 44. It seems that RCDYEM is fa-

vored with precatalysts possessing high initiation rates.

The different ratios observed with the Hoveyda–Grubbs-type
precatalysts cannot be easily rationalized. Indeed, metathesis

of substrate 42 b with any precatalyst will result in the same
carbene (Scheme 12). This intermediate should then lead to

the same ratios of 44 and 33 b after cyclization, releasing the

same isopropylidene catalyst. The only difference between the
reactions is the ligand released after the first catalytic cycle,

which could recombine with the isopropylidene catalyst to
reform the precatalyst. To probe the influence of the ligand,

a metathesis experiment was run with 10 mol % of the Hovey-
da–Grubbs 2 precatalyst and 300 mol % of the corresponding
ligand, but the observed ratio of 44 and 33 b was very similar

to the one observed without any added ligand.
Attempts to convert bicyclic product 33 b to the desired tri-

cycle 44 by heating it in toluene at reflux in the presence of
the Grubbs 2 or Zhan-1B precatalyst were unsuccessful, even

Scheme 10. Attempts at metathesis cascade and synthesis of the ABC tricy-
cle of taxol. a) 10 mol % Grubbs 2, toluene, 110 8C, 24 h, 33 a 79 %, 35 a 80 %,
44 45 % and 33 b 45 %, 35 b 90 %.

Scheme 11. Synthesis and ORTEP (50 % probability) representation of p-ni-
trobenzoate 45. a) 2 N aq. NaOH, 1,4-dioxane, 80 %; b) p-nitrobenzoyl chlo-
ride, DMAP, Et3N, CH2Cl2, 80 %.

Table 1. Optimization of the formation of 44.[a]

Precatalyst Yield of 44 [%] Yield of 33 b [%]

Grubbs 1 0[b] 0
Grubbs 2 45 45
Hoveyda–Grubbs 2 59 38
Grela 55 45
Zhan-1 B 70 20

[a] Reaction conditions: a) 10 mol % precatalyst, toluene, 5 Õ 10¢3 m,
110 8C. [b] No reaction was observed.

Scheme 12. Metathesis scheme. Conditions: toluene, reflux.
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under microwave conditions. When 10 mol % of precatalyst
was used, only 33 b was recovered, and with 100 mol % of pre-

catalyst decomposition occurred. Ring opening of 33 b in the
presence of ethylene was not considered, because it would

lead to a carbene unsubstituted at C13, carbene’ (Scheme 13),
which would undergo diene metathesis preferentially. In an

effort to regenerate the carbene with a trisubstituted olefin at
C13, bicycle 33 b was submitted to the above conditions in the

presence of 2-methyl-2-butene, the reagent which Grubbs and

co-workers have employed for the synthesis of trisubstituted
olefins from their terminal homologues by cross metathesis,[39]

but to no avail (Scheme 13). These results seem to indicate
that the formation of compound 33 b is not reversible, and

that the metathesis reactions leading to 33 b and 44 are under
kinetic control.

Conclusions

In summary, we have synthesized Taxol analogues with an un-

precedented skeleton as well as the tricyclic core of Taxol in
a very efficient fashion. The key step in these syntheses is a cas-
cade ring-closing dienyne metathesis (RCDEYM) reaction, lead-
ing to either 14,15-isotaxane tricyclic ring systems or the tricyl-

ic ring system of Taxol in one operation from simple precur-
sors, by judicious choice of the position of the alkyne (C13 for
isotaxanes or C11 for taxanes). Furthermore, in the case of the
taxane synthesis, we have shown that we can direct the course
of the crucial metathesis reaction by adding a temporary

methyl substituent to the olefin at C13, which does not appear
in the structure of the tricycle. Calculations rationalizing the

different outcomes of the metathesis reactions of compounds
42 a,b and 43 a,b, which strongly depend on the stereochemis-
try and the protecting group of the diol at the C1 and C2 posi-

tions in the metathesis precursors, will be reported in due
course.

Experimental Section

All experimental details can be found in the Supporting Informa-
tion. The material includes compound characterization, crystal
structures of 16 b and 33 a, and copies of spectra for all new com-
pounds.
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