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New and practical synthetic route of N-(3-cyano-7-ethoxy-4-oxo-1,4-dihydroquinolin-6-yl)acetamide (1) is
described, through the cyclization of 2-aminophenyl-ethanone (12) withN,N-dimethylformamide dimethylacetal.
The overall yield of 1 obtained from this process is 46% (five steps) with a purity of >99% (HPLC).
J. Heterocyclic Chem., 51, 866 (2014).
INTRODUCTION

4-Hydroxyquinolines (equal to 4-oxo-1,4-dihydroquino-
lines) are the key synthetic precursors for anticancer [1],
antimalarial [2], antidiabetic [3], antiviral [4] agents, and
reversible (H+/K+) ATPase inhibitors [5]. N-(3-Cyano-7-
ethoxy-4-oxo-1,4-dihydroquinolin-6-yl)acetamide (1) (Fig. 1)
was developed as an important intermediate for the prepara-
tion of EKB-569 (2) and neratinib (3), which were developed
as irreversible inhibitors of epidermal growth factor receptor
(EGFR) and human epidermal growth factor receptor-2
(HER-2) kinases [6–8].
The earlier work to prepare 1 (Scheme 1) [9] was based on

Gould–Jacobs methodology [10] and involved the reaction
of 4-acetamido-3-ethoxyaniline (5) with ethyl 2-cyano-3-
ethoxyacrylate to afford ethyl cyanopropenoate (6). Thermal
cyclization of 6 at 260�C in Dowtherm A for 15–20 h then
yielded N-(3-cyano-7-ethoxy-4-oxo-1,4-dihydroquinolin-6-
yl)acetamide (1).
This route was straightforward, but the high temperature

required for cyclization of 6 to 1 on a kilogram scale
proved to be a disadvantage. The main problem was
that prolonged exposure of 6 to high temperature led to
extensive decomposition with significant tar formation.
This led to difficulties in purification, which dramatically
reduced the yield to 35–45%.

RESULTS AND DISCUSSION

When searching for a new synthetic route to produce 1
[11], we noted that Atkins [12] and Tois [13] had prepared
© 2013 HeteroC
3-butyryl-8-methoxy-4-hydroxyquinoline and 6,7-substituted-
4-hydroxyquinolines, respectively, via formation of the
nitroenamine intermediates by condensation of N,N-
dimethylformamide dimethylacetal (DMF-DMA) with the
corresponding starting materials o-nitrophenylethanones.

Such approaches enlightened our direction, and we
designed a new route to obtain 3-cyano-4-hydroxyquinoline
(1) (Scheme 2). Starting from 4-hydroxy-3-nitrophenyl-
ethanone (7), phenylethanone (8) was prepared by using
the method described by Wissner [14]. Nitration of 8 to 9
was conducted in good yield by using fuming nitric
acid–nitromethane system [15]. Other conditions, such as
KNO3-H2SO4 [16], or 65% HNO3 [17] gave inferior yields
for this transformation. Compound 9 was then treated with
1 equiv of bromine in dichloromethane to give 10 [18],
and followed by 1.1 equiv of sodium cyanide in DMSO at
RT to afford 11 in 81% yield over two steps [19]. The nitro
compound 11 was reduced by using Fe-HCl or Zn-AcOH
system to give the aniline (12), which was then condensed
with DMF-DMA in DME to provide the final product 1
(70% from 11) [20]. DMF-DMA could be replaced by
trimethyl orthoformate or triethyl orthoformate, but this
required the reaction to be performed at 90–100�C for 4–6 h.

In conclusion, a new route of making N-(3-cyano-7-
ethoxy-4-oxo-1,4-dihydroquinolin-6-yl)acetamide (1) was
developed to simplify the process, improve the yield,
and make it cost-effective. The key step is the cyclization
reaction of the 2-aminophenyl-ethanone (12) withDMF-DMA.
The overall yield of 1 obtained from this process was 46%
(five steps) with HPLC purity >99%.
orporation



Figure 1. Chemical structures of 1, EKB-569 (2), and HKI-272 (3).
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EXPERIMENTAL

All commercially available materials and solvents were used as
received without any further purification. 1H-NMR and 13C-NMR
spectra were recorded with a Gemini-300 spectrometer (EquipNet,
Inc., Hong Kong, China) using TMS as an internal standard. The
mass spectra were obtained from a Finnigan MAT-95/711 spec-
trometer (Thermo Fisher Scientific Inc. Barrington, IL). Melting
points were measured on a Buchi-510 melting point apparatus
and were uncorrected. The HPLC results were generated using a
Waters 2487 UV/Visible Detector and Waters 515 Binary HPLC
Pump Waters Corporation (Shanghai), China.

5-Acetamido-4-ethoxy-2-nitrophenylethanone (9). 3-Acetamido-
4-ethoxyphenyl-ethanone (8) was prepared from 4-hydroxy-3-
nitrophenyl-ethanone (7) using Wissner’s method [14] to give a
Scheme 2. Reagents and conditions: (a) fuming HNO3, CH3NO2, 82%; (b) Br
70–80�C, 79%; and (e) DMF-DMA, RT, DME, 88%.

Scheme 1. Reagents and conditions: (a) AcOH, Ac2O, 60�C; (b) C2H5Br, K2C
3-ethoxyacrylate, toluene, 90�C, 16 h, 90%; and (e) Dowtherm A, 260�C, 20 h
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light orange solid in 78% (three steps), purity 99.08% (HPLC),
mp 96–97�C. 1H-NMR (CDCl3, d): 1.48 (t, 3H, J=7.2Hz), 2.23
(s, 3H), 2.57 (s, 3H), 4.18 (q, 2H, J=7.2Hz), 6.90 (d, 1H,
J= 8.7Hz), 7.72 (dd, 1H, J=8.7Hz, 1.8Hz), 7.75 (br s, 1H), 8.99
(d, 1H, J=1.8Hz). 13C-NMR (CDCl3, d): 14.63, 24.94, 26.53,
64.51, 110.19, 120.38, 124.36, 127.25, 130.13, 150.53, 168.33,
197.26. ESI–MS (m/z) 222.0 (M+H), 244.1 (M+Na), 260.0
(M+K). Anal. Calcd for C12H15NO3: C, 65.14; H, 6.83; N, 6.33.
Found: C, 65.15; H, 6.86; N, 6.16.

Fuming HNO3 (23.0mL, 0.5mol) was added to a stirred solu-
tion of 8 (45.0 g, 0.2mol) in CH3NO2 (900mL). The reaction
mixture was stirred at 25–35�C for 4 h. The resulting solution
was washed with H2O, saturated NaHCO3, respectively, dried
(Na2SO4), and concentrated to give a dark brown solid. Recrystal-
lization from EtOAc to petroleum ether yielded 9 (44.2 g, 82%) as
a sand-like solid, purity 97.04% (HPLC), mp 78–80�C. 1H-NMR
(CDCl3, d): 1.52 (t, 3H, J= 7.2Hz), 2.25 (s, 3H), 2.52 (s, 3H),
4.23 (q, 2H, J = 7.2Hz), 7.53 (s, 1H), 7.96 (br s, 1H), 8.52
(s, 1H). 13C-NMR (CDCl3, d): 14.42, 25.04, 30.28, 65.44, 106.25,
116.26, 132.07, 133.09, 139.90, 146.79, 168.66, 199.83. ESI–MS
(m/z) 265.1 (M–H), 267.0 (M+H).

1-(5-Acetamido-4-ethoxy-2-nitrophenyl)-2-bromoethanone
(10). Br2 (5.0 mL, 0.1mol) was added to a stirred solution
of 9 (26.6 g, 0.1mol) in CH2Cl2 (500mL). The reaction
mixture was stirred at 15–30�C for 4 h. The resulting solution
was washed with saturated NaHCO3, dried (Na2SO4), and
concentrated to give 10 (33.1 g, 96%) as a pale yellow solid,
mp 104–106�C. 1H-NMR (CDCl3, d): 1.55 (t, 3H, J = 7.2Hz),
2.26 (s, 3H), 4.27 (q, 2H, J = 7.2 Hz), 4.30 (s, 3H), 7.64
(s, 1H), 7.88 (br s, 1H), 8.59 (s, 1H). 13C-NMR (CDCl3, d):
14.42, 25.07, 34.53, 65.60, 106.15, 117.36, 128.80, 133.59,
139.74, 147.26, 168.65, 193.79. ESI–MS (m/z) 344.9 (M+H),
368.9 (M+Na).

5-Acetamido-4-ethoxy-2-nitrobenzoylacetonitrile (11). A
solution of 10 (10.4 g, 0.03mol) in DMSO (30mL) and EtOH
2, CH2Cl2, 96%; (c) NaCN, DMSO-H2O, 85%; (d) Fe, HCl, DME-EtOH,

O3, DMF, 60�C; (c) H2, Pd-C, THF, 71% (three steps); (d) ethyl 2-cyano-
, 35–45%.
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(30mL) was cooled in an ice-water bath, then treated dropwise
with NaCN (1.6 g, 0.033mol) in H2O (20mL) over 1 h. The
mixture was stirred for another 4 h at 20–30�C. The resulting
solution was diluted with H2O (200mL) and filtered, and the
filtrate was acidified with 2MHCl to pH = 2–3. The resulting
solid was collected via suction filtration, washed with H2O,
and dried under reduced pressure to give 11 (7.4 g, 85%) as a
pale yellow solid, purity 96.23% (HPLC), mp 171–175�C
(dec.). 1H-NMR (CDCl3, d): 1.56 (t, 3H, J = 5.4Hz), 2.28
(s, 3H), 3.86 (s, 2H), 4.28 (q, 2H, J = 5.4 Hz), 7.88 (s, 1H), 8.01
(br s, 1H), 8.58 (s, 1H). 13C-NMR (DMSO-d6, d): 14.10, 24.20,
32.28, 65.40, 107.41, 115.26, 118.47, 126.94, 133.35, 140.49,
149.24, 169.69, 191.32. ESI–MS (m/z) 290 (M�H), 292.0
(M+H), 314.0 (M+Na).

5-Acetamido-2-amino-4-ethoxybenzoylacetonitrile (12). To
a mixture of 11 (29.0 g, 0.1mol) and iron powder (28.0 g, 0.5mol)
in DME (600mL) and EtOH (100mL) was added 2MHCl (50mL,
0.1mol). The resulting suspension was stirred at 70–80�C for 5h.
The hot reaction mixture was filtered through celite pad; the filtrate
was concentrated to ~100mL and diluted with H2O (500mL). The
resulting product was filtered, washed with H2O, and dried under
reduced pressure to afford 12 (20.6 g, 79%) as a brown solid, purity
96.62% (HPLC), mp 213–216�C (dec.). 1H-NMR (DMSO-d6, d):
1.35 (t, 3H, J=6.6Hz), 2.00 (s, 3H), 4.04 (q, 2H, J=6.6Hz), 4.43
(s, 2H), 6.35 (s, 1H), 7.32 (br s, 2H), 7.78 (s, 1H), 8.85 (s, 1H).
13C-NMR (DMSO-d6, d): 14.27, 23.29, 29.89, 63.76, 97.89,
107.41, 116.36, 126.69, 151.54, 157.02, 168.35, 187.57. EIMS
(m/z) 261 (M�H).

N-(3-Cyano-7-ethoxy-4-oxo-1,4-dihydroquinolin-6-yl)
acetamide (1). To a stirred suspension of 12 (13.0 g, 0.05mol)
in DME (250mL) was added DMF-DMA (8.0mL, 0.06mol), and
the mixture was stirred at 15–30�C for 1 h. The resulting solid
was collected via suction filtration, washed with EtOAc, and
dried under reduced pressure to give the product 1 (11.9 g,
88%) as a pale brown solid, purity 99.07% (HPLC) via slurring
in EtOH-EtOAc, mp >300�C. 1H-NMR (DMSO-d6, d): 1.45
(t, 3H, J = 6.6Hz), 2.14 (s, 3H), 4.20 (q, 2H, J = 6.6Hz), 7.05
(s, 1H), 8.59 (d, 1H, J = 6.3Hz), 8.70 (s, 1H), 9.18 (s, 1H),
12.52 (d, 1H, J = 6.3 Hz). 13C-NMR (DMSO-d6, d): 14.13,
23.98, 64.62, 92.97, 99.75, 116.32, 117.04, 118.67, 126.54,
136.55, 145.42, 152.86, 168.68, 173.49. ESI–MS (m/z)
270.2 (M�H), 272.2 (M+H). HPLC Conditions: Column:
Phenomenex Prodigy ODS3, 150mm� 4.6mm� 5mm; Detection:
230 nm; Flow rate: 1.0 mL/min; Temperature: 30�C; Injection
load: 5 mL; Concentration: 0.5 mg/mL; Run time: 60min;
Mobile phase A: H2O (0.1% H3PO4); Mobile phase B:
MeCN; Gradient program: time (min): 0, 5, 45, 50; % of
mobile phase A: 95, 95, 5, 5; % of mobile phase B: 5, 5,
95, 95, tR: 18.0min.
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