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Abstract L-Proline catalyzed condensation of salicylalde-

hydes and ethyl nitroacetate afforded 3-nitrocoumarins in

good to high yields under mild conditions. This organocat-

alyzed process offers a much improved yield of

3-nitrocoumarins and well tolerates both electron-donating

and electron-withdrawing substituents on the phenyl ring.
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Introduction

Coumarin is a well-known structural motif found in a

variety of natural products and synthetic molecules. Cou-

marin compounds exhibit a broad range of biological

activities [1–3] and are also widely employed as materials

because of their remarkable optical properties [4, 5].

Therefore, the development of synthetic protocols that

enable the synthesis of these compounds has attracted a

great deal of interest; especially over the past decade. The

Pechmann, Perkin, Knoevenagel, and Wittig reactions

involving condensation of phenols with carbonyl com-

pounds are some of the well established classic methods [6,

7] for their synthesis. Recently, a number of transition

metal-catalyzed routes have also been developed for the

obtention of functionalized coumarins [8]. It is well

established that the properties of coumarin compounds

depend largely on the nature and position of substituents [1,

2]. In particular it has been shown that the presence of

nitrogen-containing substituent at 3-position of coumarin

moiety induces specific properties [9–11]. For instance,

coumarins bearing 3-nitro substituent are important scaf-

folds having pharmaceutical and synthetic utility. They

have been reported as an efficient inhibitor of phospholi-

pase C enzyme and as promising antifungal and

antimicrobial agents [10–15]. Moreover, they are also used

as precursors of aminocoumarins and other important

molecules [16–22]. The methods reported in the literature

for the synthesis of 3-nitrocoumarins are commonly based

on direct nitration of unsubstituted coumarin with nitric

acid and condensation reaction of salicylaldehydes with

active methylenes [12, 23–27]. However, these methods

suffer from several drawbacks such as use of strong acids

or bases, long reaction times, complicated purification

process, low functional group tolerance, and low yield

(Scheme 1a). Therefore, it is strongly desirable to

develop improved methodologies for the synthesis of

3-nitrocoumarins.

L-Proline has been reported as a promising catalyst in

various chemical transformations such as Knoevenagel,

Aldol, and Michael reactions. L-Proline is a bifunctional
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catalyst and its catalytic action mainly involves the easy

and rapid formation of iminium ion and enamine inter-

mediates with carbonyl compounds [28, 29]. To the best of

our knowledge, no example of L-proline catalyzed syn-

thesis of 3-nitrocoumarins has been reported so far. Herein

we wish to report a simple and efficient protocol for the

synthesis of 3-nitrocoumarins via L-proline catalyzed con-

densation of salicylaldehydes and ethyl nitroacetate

(Scheme 1b).

Results and discussion

The commercially available ethyl nitroacetate (2) is very

expensive; we have therefore synthesized it economically

and in much improved yield by modification of earlier

reported method [30]. In an initial investigation, we con-

ducted a model reaction between salicylaldehyde (1) and 2

in the presence of 30 mol % of L-proline in acetonitrile at rt

(40–42 �C) for 6 h to afford desired product 3 in 30 %

yield (Table 1, entry 1). To further improve the reaction

yield, a series of solvents were examined. When the reac-

tion was performed in DCM, 68 % conversion was

observed (6 h; Table 1, entry 2). To our delight, the reac-

tion proceeded well in ethanol in a much shorter reaction

time of 4 h, affording the desired product 3 in 85 % yield

(Table 1, entry 3). Notably, the reaction did not occur

satisfactorily in toluene, THF, and DMF and no product

formation was detected in case of water (Table 1, entries

4–7). Further, the yield of the product 3 remained almost

the same with an increased catalyst loading of 40 mol %

(Table 1, entry 8) and declined remarkably when the

reaction was performed at lower catalyst loadings of 20,

10, and 5 mol % (Table 1, entries 9–11). In addition,

increase in the reaction temperature resulted in the for-

mation of some unidentified side products and low yields

of coumarin 3 (Table 1, entries 12–15).12

With the optimized reaction conditions in hand, the

substrate scope of this methodology was explored by

varying salicylaldehyde 4 (Table 2). A variety of salicyl-

aldehydes 4a–4h were compatible with the reaction

conditions and the corresponding coumarin products were

obtained in good to excellent yields (68–92 %, 1.5–6 h,

entries 1–8). Electron-donating substitutents such as 6-hy-

droxy (5a), 6-methyl (5b), 8-methoxy (5c), 8-ethoxy (5d)

on the aryl moiety were effectively converted to the cor-

responding 3-nitrocoumarins in good yields. Electron-

withdrawing groups including 6-chloro (5e), 6-bromo (5f),

and 6-nitro (5g) were also well tolerated to afford the

desired coumarins. However, in case of 5c–5g heating was

needed to accelerate the reaction rate. Further, the scope of

this reaction could be expanded from the phenyl to
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Table 1 Optimization of reaction conditions for the synthesis of 3

OOH

CHO
O2N

OEt

O

O

NO2L-Proline
+

Solvent,
temperature

2 31

Entry Proline/mol % Solvent Temp./�C Time/h Yield/%a

1 30 CH3CN rt 6 30

2 30 DCM rt 6 68

3 30 C2H5OH rt 4 85b

4 30 Toluene rt 8 Trace

5 30 THF rt 8 18

6 30 DMF rt 8 Trace

7 30 Water rt 8 0

8 40 C2H5OH rt 4 83

9 20 C2H5OH rt 8 69

10 10 C2H5OH rt 12 57

11 5 C2H5OH rt 20 35

12 30 C2H5OH 80 3 75

13 20 C2H5OH 80 6 58

14 10 C2H5OH 80 5 48

15 5 C2H5OH 80 8 32

Reaction conditions: 1 (1 mmol), 2 (1 mmol), L-proline (30 mol %), 3 cm3 ethanol, rt, 4 h
a Isolated yields
b M.p.: 141–142 oC (Ref. [12] M.p.: 141–142 oC)

Table 2 Synthesis of 3-nitrocoumarin derivatives

OOH

CHO
O2N

OEt

O

O

NO230 mol% L-Proline
+ EtOH, rt or 80 oC

4a-4h 2 5a-5h

Rn Rn

Entry Substrate Rn= Time/h Prod. Yield/%a M.p./�C (obs) M.p./�C (lit)

1 5-OH 4 5a 75 208–209 215–218 [12]

2 5-CH3 5 5b 82 Sticky solid –

3 3-CH3O 4 5cb 81 179–180 187.5–188.5 [24]

4 3-CH3CH2O 5 5db 76 180–181 –

5 5-Cl 6 5eb 82 136–137 176–177 [24]

6 5-Br 6 5fb 78 182–183 200 [25], 207–208 [24]

7 5-NO2 6 5gb 68 174–175 179.5–180.5 [24]

8 5,6-Benzo 1.5 5h 92 225–226 –

Reaction conditions: 4 (1 mmol), 2 (1 mmol), L-proline (30 mol %) in 3 cm3 ethanol at rt for given hours
a Isolated yield
b Reaction was conducted at 80 �C
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naphthyl system, leading to the formation of benzo-

coumarin 5h in excellent yield (92 %, Table 2, entry 8)

with significantly shorter reaction time than the others.

Notably, benzocoumarins are an important class of com-

pounds found in a variety of naturally occurring molecules

such as arnottin and gilvocarcin [31].

Furthermore, to demonstrate the synthetic utility of the

present protocol, a gram scale synthesis was performed

reacting 1 and 2 under the standard reaction conditions to

afford the desired product 3 in high yield as shown in

Scheme 2.

Finally, recycling experiments carried out during the

synthesis of 3 showed that the catalyst can be reused in up

to three runs without any appreciable loss of activity.

A plausible mechanism of the reaction is shown in

Scheme 3. We assume that the initial interaction of L-

proline with 2 generates an enamine intermediate B, which

undergoes nucleophilic addition to the aldehyde 1 to pro-

duce intermediate C. Subsequent dehydration provides an

intermediate D, which undergoes cyclization via interme-

diate E to afford the desired product 3 [32].

Conclusion

In conclusion, we have developed an efficient, mild, and

environmentally benign method for the preparation of

3-nitrocoumarins from salicylaldehydes and ethyl nitroac-

etate using a catalytic amount of L-proline. The method

yielded 3-nitrocoumarins in good to high yields under mild

conditions. Most importantly, both electron rich and elec-

tron deficient salicyaldehydes were well tolerated under the

reaction conditions. The resulting substituted coumarins

can be subjected to different functional group transforma-

tions to produce other compounds of chemical and

biological importance. The biological evaluation of syn-

thesized compounds and the extension of this methodology

to the synthesis of some new bioactive molecules are

currently in progress in our laboratory.

Experimental

Unless otherwise stated, all common reagents and solvents

were obtained from commercial suppliers (Sigma-Aldrich

and Spectrochem Pvt. Ltd.) and were used without further

purification. Melting points were determined on a Büchi

510 apparatus. Column chromatography was carried on

silica gel (60–120 mesh). Reactions were monitored by

thin-layer chromatography (TLC) using pre-coated, glass-

backed silica gel plates and visualization of the developed

chromatogram was performed by UV absorbance (254 nm)

and by iodine vapors. ESI mass spectra were recorded

using Quattro II (Micromass). IR spectra were recorded on

a JASCO FTIR 5300 in KBr from 400 to 4000 cm-1. NMR

spectra were recorded on JEOL FT-NMR spectrometer

using tetramethylsilane (TMS) as internal standard. The

chemical shift values are on d scale and the coupling

constant (J) are in Hertz (Hz). The data of 1H NMR was

reported in the order: chemical shift, multiplicity
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(s = singlet, d = doublet, t = triplet, m = multiplet and

br = broad), coupling constant, and integration.

General procedure for the synthesis of 3-nitrocoumarins

3 and 5

To the solution of salicylaldehyde (1 mmol) and ethyl

nitroacetate (1 mmol) in 3 cm3 ethanol, L-proline

(30 mol %) was added. The reaction mixture was stirred

for an appropriate time. After completion of the reaction

(as monitored by TLC), the solvent was evaporated and the

product so obtained was dissolved in 12 cm3 CHCl3 and

washed with water (3 9 10 cm3). The organic layer was

washed with 10 cm3 brine, dried over anhydrous NaSO4,

and evaporated under reduced pressure. The residue was

recrystallized from ethanol (3, 5a, 5b, and 5h) or purified

by silica gel column using chloroform/methanol (9:1) as

eluent (5c–5g). The combined aqueous layers, containing

L-proline, were evaporated, washed with ether, dried at

45 �C, and reused for next run.

6-Methyl-3-nitrocoumarin (5b, C10H7NO4)

Light yellow sticky solid; Rf = 0.36 (20 % ethyl acetate/

hexane); IR (KBr): V = 3083, 2929, 1742, 1620, 1345,

851 cm-1; ESI MS: m/z = 206 ([M ? H]?); 1H NMR

(300 MHz, CDCl3): d = 8.54 (s, 1H), 7.34 (m, 3H), 2.47

(s, 3H) ppm; 13C NMR (75 MHz, CDCl3): d = 154.0,

145.3, 140.6, 136.1, 129.6, 129.3, 123.1, 120.1, 118.6,

19.2 ppm.

8-Ethoxy-3-nitrocoumarin (5d, C11H9NO5)

Light yellow solid; Rf = 0.32 (20 % ethyl acetate/hexane);

IR (KBr): V = 3081, 2940, 1746, 1567, 1456, 1341,

863 cm-1; ESI MS: m/z = 236 ([M ? H]?); 1H NMR

(300 MHz, CDCl3): d = 8.63 (s, 1H), 7.72 (m, 2H), 7.41

(d, J = 9.6 Hz, 1H), 4.16 (q, J = 6.8 Hz, 2H), 1.51 (s, 3H)

ppm; 13C NMR (75 MHz, CDCl3): d = 154.4, 150.9,

144.3, 138.9, 137.1, 128.6, 121.2, 117.5, 115.0, 64.9,

14.8 ppm.

2-Nitro-3H-benzo[f]chromen-3-one (5h, C13H7NO4)

Yellow solid; Rf = 0.41 (20 % ethyl acetate/hexane); IR

(KBr): V = 3065, 1757, 1598, 1560, 1511, 1345,

822 cm-1; ESI MS: m/z = 242 ([M ? H]?); 1H NMR

(300 MHz, CDCl3): d = 9.58 (s, 1H), 8.31 (d, J = 8.4 Hz,

1H), 8.24 (d, J = 9.3 Hz, 1H), 7.99 (d, J = 7.8 Hz, 1H),

7.84 (t, J = 7.5 Hz, 1H), 7.69 (m, 1H), 7.53 (d,

J = 9.0 Hz, 1H) ppm; 13C NMR (125 MHz, CDCl3): d =

155.3, 151.4, 138.7, 137.9, 137.6, 129.5, 129.1, 126.4,

121.5, 115.5, 107.1 ppm.
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