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a b s t r a c t

Bio iron oxide was synthesized from natural Sesbania sesban plant and modified by a molybdenum
complex (Fe2O3/MoSB). Fe2O3/MoSB was deposited on polyvinyl alcohol (PVA) using a conventional
single nozzle electrospinning technique (PVA/Fe2O3/MoSB). TEM, SEM, AFM, FT-IR, TGA, EDAX, and
elemental analysis were used to determine fiber compositional information. The catalytic efficiency of
electrospun PVA/Fe2O3/MoSB nanofiber in the oxidation of alcohols was exploited. The green reactions
were conducted at solvent free conditions as a green media in the presence of H2O2 to have the desired
aldehydes and tert-butyl hydrogen peroxide to obtain acid products in high yields and excellent selec-
tivity. The survival of this nanocomposite was investigated and it could be reused and recycled in
consecutive runs.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Todays, development of electrospun nanocomposites rein-
forced polymer fiber materials with intention to stimulate in-
terests in both academia and industry makes them highly
attractive [1]. Electrospun nanofiber have great potential for
synthesis of next-generation polymer nanofibers [2,3]. Continuity,
diverse material choice, controlled diameter/structure, possible
alignment/assembly, and mass production capability are
comprehensive advantages of electrospun nanopolymers [3e5].
Inorganic nanofibers, with smaller pores and higher surface area
than regular fibers, have enormous catalytic applications [6,7].
Despite enormous efforts devoted to explore industrial applica-
tions of electrospun nanofibers, there are limited attempts to
employ these nanofibers for reinforcement in polymer nano-
hybrids [8,9]. Among all polymers, polyvinyl alcohol (PVA) due
to its low cost, high hydrophilicity, and excellent chemical resis-
tance has used in broad application areas. PVA is a synthetic
water-soluble hydrophilic polymer and the degree of polymeri-
zation or the degree of hydrolysis can effect on its properties such
as adhesives, emulsificantes, and paper industry applications
[1,10]. Modified PVAwith metal oxides, with different mechanical,
thermal and chemical stability, has already been proven as an
effective way to produce new materials with specific properties
and high performances [11e13]. In many recent studies, iron
nanoparticles (NPs) for environmental remediation have indi-
cated excellent potentials [14,15]. Microwave assisted synthesis,
ultrasonication assisted synthesis, coprecipitation, chemical
reduction methods, and hydrothermal methods are the methods
for iron oxide synthesis. While, the most commonly used con-
ventional strategy for the synthesis of the nanoparticles are
chemical physical and biological methods [16e18]. However, they
need expensive instruments, high energy, usage of toxic reducing
agents maintaining the cell culture, and recovery steps [19]. The
undesirable features of traditional reagents and methods have
forced chemists to use phyto-mediated synthesis to reduce the
costs of chemical production [20,21]. Hence, the synthesis of
nanoparticles using the plant extract has several advantages
[22e24].

On continuing our work on the green catalytic system
[25e29], bio a-Fe2O3 was synthesized using Sesbania sesban
plant and molybdenum complex was supported on it and
nanofiber of immobilized molybdenum complex on a-Fe2O3 in
the presence of PVA was synthesized through electrospinning
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Scheme 1. The synthesis of electrospun PVA/Fe2O3/MoSB nanofiber.
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(PVA/Fe2O3/MoSB). As our acknowledgment, this work is the
first report of catalytic potential of an electrospun nanofiber
base on one transition metal complex in oxidation reactions.
Here, we describe catalytic properties of PVA/Fe2O3/MoSB in
the presence H2O2 as an ideal oxidant to aldehyde products
and t-BuOOH as a common oxidant to produce the acid
products.

2. Material and methods

Sesbania sesban was provided from University of Jiroft. 2-
amino pyridine was purchased from Across Company. 3-
chloropropyltrimethoxysilane and Polyvinyl alcohol were
procured from Alderich and Merk Company, respectively. FT-IR
spectra were recorded by FT-IR spectrophotometer (NICOLET
iS10). Thermo stability of PVA/Fe2O3/MoSB was investigated by
Simultaneous Thermal Analyzer. Synthesis of iron oxide nano-
particles was performed by furnace (FANAZMA GOSTAR). Shape
and morphology of PVA/Fe2O3/MoSB was considered by TEM
microscope (Philips CM30). X-ray energy-dispersive spectroscopy
(EDS) detector (IE 300X,Oxford, UK) attached to the SEM was
analyzed the elemental composition of materials. For AFM im-
ages of PVA/Fe2O3/MoSB, an atomic force microscopy (DME
Model Igloo) was performed. Electrospinning instrument was
used for synthesis of PVA/Fe2O3/MoSB (Nanoazma company,
Iran).



Fig. 1. The FT-IR of PVA, Fe2O3/MoSB, and PVA/Fe2O3/MoSB.
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3. Experimental

3.1. Green synthesis of iron oxide (a-Fe2O3)

4 gr of Sesbania sesban wood powder was added to 200ml of
distilled water at 90 �C for 10min. A KOH solution (0.01M) was
then added drop wise (drop rate¼ 1mL.min-1) at room tempera-
ture to reach the reaction pH to 9. 170ml of the obtained extraction
solution was added to 130ml of distilled water and 200ml of
FeCl3.6H2O solution (0.05M). Themixture of reactionwas heated to
80 �C for 2.5 h. The resulting a-Fe2O3 was separated by an external
magnet, washed with water and dried in oven under vacuum. The
as-synthesized sample was heated by the furnace at 250 �C for 7 h
[30].
3.2. Synthesis of immobilized molybdeum complex on
functionalized a-Fe2O3 (Fe2O3/MoSB)

Amixture of 3-chloropropyltrimethoxysilane (0.5mmol, 0.1mL)
and triethylamine as a catalyst (0.01mL, 0.07mmol) was added to
suspend iron oxide (0.1 g) in dry ethanol (20mL) and was refluxed
for 24 h. Chloro functionalized iron oxide was separated by
centrifuge machine at 3000 rpm for 5min and washed with
toluene and water mixture for three times. The resulting product
was dried under vacuum.

0.94 gr of chloro-functionalized iron oxide was added to 2.5mg
of 2-amino pyridine in ethanol (20ml) and this reaction mixture
was heated to 80 �C for 8 h. The resulting ligand (Fe2O3/SB) was
separated through centrifugation at 300 rpm for 5min and washed
three times by ethanol and dried at room temperature [31,32]. 2.31
gr of ammonium hepta molybdate salt was added to suspension of
supported ligand of iron oxide (0.2 gr) in 4ml of distilled water and
refluxed for 8 h at 80 �C. The F2O3/MoSB washed three times with
distilled water and dried at room temperature.

3.3. Electrospinning procedure of Fe2O3/MoSB (PVA/Fe2O3/MoSB)

4 gr of Fe2O3/MoSB was dispersed to 4mL of water within a half
hour and was added to 1.6 gr of PVA in 12mL of water. The mixture
of reaction was irradiated with ultrasound for 30min. Prepared
solution was placed under magnetic stirrer for 8 h at 80 �C.

The electrospinning of final prepared solution was done at an
electrical voltage of 25 kV at room temperature under atmospheric
pressure. The polymer fibers were injected using a syringe needle
(5ml) with a needle [1.23mm outer diameter (OD) and 0.83mm
internal diameter (ID)] at a flow rate of 0.3ml/h. The grounded
target was placed at 12 cm from the needle tip.

3.4. General procedure for oxidation of alcohols using H2O2

To a mixture of alcohol (1mmol) and electrospun PVA/Fe2O3/
MoSB nanocomposite (0.003 g) under solvent free conditions,
0.6mmol H2O2 (12 mL) was added and the reaction mixture was
stirred at 80 �C for 7 h.

3.5. General procedure for oxidation of alcohols using t-BuOOH

To a mixture of alcohol (1mmol) and electrospun PVA/Fe2O3/
MoSB nanocomposite (0.005 g), 0.6mmol t-BuOOH (57 mL) was
added under solvent free conditions and the reaction mixture was
stirred at 80 �C for 6 h.

3.6. Reusability of catalyst

To a mixture of benzyl alcohol (1mmol, 0.1mL) and PVA/Fe2O3/
MoSB nanofiber (0.003 g) under solvent free conditions was added
H2O2 (0.6mmol, 12 mL) and the reaction mixture was stirred at
80 �C for 7 h. After completion of the reaction, 1mL ethyl acetate
was add and catalyst was separated by centrifugation. PVA/Fe2O3/
MoSB nanocomposite as the isolated solid phase was dried under
air and reused for next runs. According to the above-mentioned
procedure, catalyst recovery was also considered in the oxidation
of benzyl alcohol under solvent free conditions using t-BuOOH as
an oxidant.

4. Result and discussion

Bio iron oxide nanoparticles was synthesized by Sesbania ses-
ban and these green a-Fe2O3 nanoparticles were then allowed to
react with an appropriate concentration of 3-



Fig. 2. The analysis spectrum of the PVA/Fe2O3/MoSB.

Table 1
The weight percentage of each element in the PVA/Fe2O3/MoSB.

Element Series Wt% At%

Carbon K series 46.06 54.83
Nitrogen K series 3.51 3.59
Oxygen K series 41.72 37.28
Aluminum K series 7.80 4.14
Chlorine K series 0.01 0.0
Iron K series 0.08 0.02
Molybdenum L series 0.69 0.1

Fig. 3. TGA curves of PVA/Fe2O3/MoSB composite nanofibrous (dash line) and PVA.
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chloropropyltrimethoxysilane to give chloro-functionalized a-
Fe2O3. The obtained chloro-functionalized iron oxide was reacted
with 2-amino pyridine to produce immobilized 2-amino pyridine
on bio chloro-functionalized iron oxide (Fe2O3/SB). To this end, the
reaction of Fe2O3/SB with ammonium heptamolybdate in water led
to the formation of F2O3/MoSB. Nanofiber of PVA/Fe2O3/MoSB was
synthesized by electrospinning of F2O3/MoSB base on polyvinyl
alcohol as a polymer (Scheme 1).

FT-IR spectra of PVA, Fe2O3/MoSB, and PVA/Fe2O3/MoSB were
shown in Fig. 1. In the case of PVA, the most intensive band that
appeared at 3900 cm�1 corresponds to the asymmetric stretching
vibrations of an alcoholic O-H. The bands observed at 1440 and 640
cm�1 are corresponded to the CH2 bending and stretching modes
[8,10,33]. In the case of Fe2O3/MoSB, the C-O stretching vibration
appeared at 1130 cm�1 [2,5,8]. The band observed at around
627e648 cm�1was assigned to the stretching vibrations of Metal-
Oxygen (Fe-O) bond in this bio iron oxide nanoparticles [34]. The
peaks observed at 2910, 2930 and 1475 cm�1 in the FT-IR spectrum
of Fe2O3/MoSBwas related to the stretching and bending of the CH2
bonds, respectively [35]. Si-O stretching bond was detected in the
region 1000e1110 cm�1. A stretching vibrational about 3434 cm�1

are attached to the O-H surface. Observed peak at 1629 cm�1 is
confirmed a stretch for the vibrational mode of water. It is the V2
bending mode of the water molecules adsorbing on the surface. In
the FT-IR spectrum of PVA/Fe2O3/MoSB, additional stretches at
2957 and 2834 cm�1 are related to aryl CeH stretches. The amine
group stretch is found at 1292 cm�1 (C-N). The peaks at 1610, 1496,
and 763 cm�1for the 2-amino pyridine, and 462 cm�1 for MoeN
bond were indicated a minor amount of complex in the structure
of PVA/Fe2O3/MoSB [36]. Therefore, FT-IR of PVA/Fe2O3/MoSB
confirmed the presence of the supported molybdenum complex on
bio-iron oxide nanoparticles in this nanocomposite.

Also, EDAX measurements (see Fig. 2) provided the direct evi-
dence for chemical analysis. The presence of Fe Mo, Si, Cl, C, and O
were confirmed as elements in PVA/Fe2O3/MoSB. The strong signal
was due to the alumina from the Al substrate on which the fibers
were collected [2]. Theweight percentage of each element shows in
Table 1. The high percentage of oxygen suggests the presence of
PVA polymer with high number of OH groups in the sample.

The thermal behavior of PVA and PVA/Fe2O3/MoSB composite
nanofiber was analyzed through thermal gravimetric analysis
(Fig. 3, dash line) [37]. The thermal stability and content of organic
functional groups on the surface were considered. The PVA nano-
fiber had three main weight loss stages: the first one, up to 210 �C
was related to the evaporation of water and volatile compounds.
From 230 to 380 �C, we have second stage corresponding to the
polymer chain. At higher than 400 �C, the breakage the main chain
of PVA was happened [38]. By comparison, the PVA nanofiber un-
dergoes total thermal oxidation between 460 and 700 �C, the
presence of Fe2O3/MoSBwas confirmed. In fact, the remainingmass
after the polymer decomposition in PVA/Fe2O3/MoSB is due to the
molybdenum complex [39]. According to the TGA curves, the



Fig. 4. TEM image (a), SEM image (b), two-dimensional (4c) and three-dimensional
(4 d) AFM topography images of electrospun PVA/Fe2O3/MoSB nanofiber.

Scheme 2. Oxidation of alcohols catalyzed by PVA/Fe2O3/MoSB under solvent free
condition using H2O2 and t-BuOOH to obtain corresponding aldehyde or ketones and
acid products.
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amount of transition metal complex in PVA/Fe2O3/MoSB is esti-
mated to be 5%.

In continuing our characterization of PVA/Fe2O3/MoSB com-
posite nanofibrous, the TEM images of the pure nanofibers with
different diameters showed the uniform structures (Fig. 4a). When
this nanocomposite nucleate and grow during the electrospinning
process, the Fe2O3/MoSB move to the surfaces of the nanofibers
PVA because of the internal radial orientation of the electrostatic
field and the rapid evaporation of the solvents. In fact, Fig. 4a shows
the high-resolution TEM image of the PVA/Fe2O3/MoSB nanofiber
and the short distances of straight chain separated each other [40].
The PVA chains are elongated and self-oriented side by side along
the fiber axis and the straight molecular segments in these chains
are at least 40e70 nm long. Also, the SEM of PVA/Fe2O3/MoSB
confirmed the irregular white and gray dots on the straight chain of
PVA, which are Fe2O3/MoSB (Fig. 4b). The aggregation of the Fe2O3/
MoSB was observed and the average size of them was estimated
about 30 nm.

Two-dimensional (Fig. 4c) and three-dimensional (Fig. 4d) AFM
topography images of PVA/Fe2O3/MoSB were used to determine
fiber compositional information. Representative AFM-phase was
gave good information about surface morphology this nanofiber.
AFM images were derived from 5.1 m m * 5.1m m scans part of the
samples. The AFM-phase image (Fig. 4a) shows the aggregation of
the hydrophobic parts of the immobilized molybdenum complex
on iron oxide nanoparticles in the PVA/Fe2O3/MoSB [41,42]. Three-
dimensional AFM topography image, 5.1 m m2 *1.1 mm framework,
showed that nanofibers with high porosity was formed [43].

4.1. Green oxidation of alcohols catalyzed by PVA/Fe2O3/MoSB

Catalytic potential of PVA/Fe2O3/MoSB was evaluated in the
oxidation of alcohols as green chemistry point of view (Scheme 2).
Different factors such as various temperatures, solvents, catalyst
amounts, and oxidants were optimized in the oxidation of alcohols
catalyzed by PVA/Fe2O3/MoSB nanofiber (Fig. 5). This nano-
composite was initially evaluated for the oxidation of benzyl
alcohol with H2O2 as ideal oxidant under solvent free conditions as
a green media. This reaction did not proceed in the absence of the
catalyst under any conditions [44]. While, PVA/Fe2O3/MoSB
(0.003 g) was used into the reaction mixture, the conversion rate
was enhanced significantly and benzaldehyde was obtained in 65%



Fig. 5. The effect of solvents (a), catalyst amount (b), temperature (c), time (d), and oxidant (e) on the oxidation of alcohols catalyzed by electrospun PVA/Fe2O3/MoSB nanofiber.
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and 100% yield after 5 and 7 h at 80 �C, respectively. When the same
amount of PVA, Fe2O3, and Fe2O3/MoSB was applied as heteroge-
neous catalysts in this green system. Trace, 20, 44% of related
products were achieved, respectively. Virtually, no catalytic activity
was observed in commonly used organic solvents. The examination
of six solvents, such as dichloromethane (DCM), dichloroethane
(DCE), acetonitrile (MeCN), methanol (MeOH), ethanol (EtOH),
water (H2O) and solvent free conditions, showed that solventless
and acetonitrile promoted the yield of the aldehyde products
(Fig. 5a). Solvent free conditions were selected due to easy sepa-
ration of the products and catalyst. On the other hand, the yields of
reactions were crucially affected by the catalyst amounts. Best yield
of aldehyde product was achieved by using 0.003 g of the electro-
spun nanofiber (Fig. 5b). It seems that higher temperatures up to
80 �C was required to furnish favored yields of the benzaldehyde
under the catalytic influence of PVA/Fe2O3/MoSB (Fig. 5c). Under
these optimum conditions, benzyl alcohol converted completely to
the related aldehyde product within 7 h (Fig. 5d). To consider the
oxidizing potential of other common oxidants, benzyl alcohol was
subjected to the oxidation protocol using O2, H2O2, t-butylhy-
droperoxide (t-BuOOH), NaIO4, and Oxone®, TB (Fig. 5e). The
interesting results were observed at the presence of PVA/Fe2O3/
MoSB nanocomposite. At the same condition, benzyl alcohol was
oxidized to benzaldehyde completely using H2O2, while, t-BuOOH
was produced the benzoic acid as sole product. It seem that t-
BuOOH is a strong oxidant, even more effective than hydrogen
peroxide, therefore, it was used in the agrochemical and pharma-
ceutical industries instead of other organic peroxides [40]. Oxida-
tion of benzyl alcohol under the optimized conditions (0.005 g of
PVA/Fe2O3/MoSB under solvent free conditions at 80 �C within 6 h)
using 0.06mmol of t-BuOOH, gave solely benzoic acid in 100% yield
(Support information, S1-S4).

PVA/Fe2O3/MoSB was shown high efficiency and selectivity to-
ward oxidation of a wide range of primary and secondary alcohols
under optimized conditions using H2O2 and t-BuOOH (Table 2). The
secondary alcohols were subjected in this green system and high
conversion and excellent selectivity were achieved. Generally, the
secondary alcohols were oxidized more difficult than of primary
alcohols. Ester products were not observed in this clean strategy
(Table 2, entries 1e4). A number of primary substituted benzylic
alcohols, like benzyl alcohol, were oxidized smoothly to their cor-
responding aldehydes using H2O2 and acid products in the pres-
ence of t-BuOOH (Table 2, entries 5e12). It should be noted the
electronic and steric demands of the substrate could effect on the
yield of products. In fact, by changing the oxidant, the formation of
acid or aldehyde products was controlled completely. Desired
aldehyde and acid products were obtained in yields ranging from
85% to quantitative in the presence of both oxidants.



Table 2
The oxidation of different alcohols catalyzed by electrospun PVA/Fe2O3/MoSB nanocomposite under solvent free condition using H2O2 and t-BuOOH.

Entry Alcohol Product Conversion%(selectivity of aldehyde)a Conversion% (selectivity of acid)b

1 100 90

2 90 95

3 85 100

4 70 90

5 90 (100) 100 (100)

6 100 (100) 100 (100)

7 100 (100) 90 (100)

8 100 (98) 90 (100)

9 100 (100) 100 (100)

10 85 (100) 85 (85)

11 95 (100) 100 (90)

12 90 (100) 90 (95)

a The reactions were run under air for 7 h at 80 �C under solvent free condition using H2O2 as a green oxidant.
b The reactions were run under air for 6 h at 80 �C under solvent free condition using t-BuOOH.
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Encouraged by the impressive results obtained for indicating its
relative stability of PVA/Fe2O3/MoSB biopolymer in the heteroge-
neous oxidation system, the recycling of the catalyst was investi-
gated (Fig. 6). After performing the oxidation reaction of benzyl
alcohol with this biopolymer nanofiber under the present condi-
tions, EtOAc was added to work-up. The catalyst was separated by
the centrifuge from the reaction mixture, washed with EtOAc, dried
at room temperature, and reused for a consecutive run under the
same reaction conditions. The average yield of benzaldehyde for
five consecutive runs was 95%, which clearly demonstrates the
practical reusability of this catalyst. These benefits along with
excellent conversion and selectivity of wide range of alcohols using
the present green systemwere addressed one novel environmental
and industrial strategy.

Ultimately, we compared the result and conditions used in this
work for oxidation of benzyl alcohol (Table 3) with some reports



Table 3
Comparison of the results and conditions used for oxidation of benzyl alcohol
catalyzed by PVA/Fe2O3/MoSB with some other catalysts reported in the literature.

Entry Catalyst Conditions Time
(h)

Conversion
%

Ref

1 (DODA)4PMo11VO40 Solvent-free/H2O2/90 �C 6 53 [45]
2 PVA/Fe2O3/MoSB Solvent-free/H2O2/80 �C 7 100 This

work
3 PVA/Fe2O3/MoSB Solvent-free/t-BuOOH/

80 �C
6 100 This

work
4 Cetyl-HoWlO/H Solvent- free/H2O2/

60 �C/under N2

6 94 [46]

5 PW-NH
2
-IL-SBA-15

Solvent-free/H2O2/
100 �C

6 86 (16a) [48]

6 CueDAPyPTS
eMCM-41-W

Solvent-free/t-BuOOH/
100 �C

4 h 62 (68a) [49]

7 MnO2 Water/t-BuOOH/40 �C 7 38 (66a) [50]
8 MnO2 Water/H2O2/40 �C 5 1 [50]
9 Ceric ammonium

nitrate
EtOAc/t-BuOOH 20 85 51

a Yield of benzoic acid.

Fig. 6. The reusability of PVA/Fe2O3/MoSB in the oxidation of benzyl alcohol under
solvent free condition using H2O2 and t-BuOOH.
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using catalysts. The superiority of biocatalyst is established with
respect to solvent nature, temperature, oxidant, and reaction time.
5. Conclusion

In conclusion, Iron oxide nanoparticles was prepared from
Sesbania sesban plant and an electrospun nanofiber was synthesis
from one novel molybdenum complex base on natural bio-iron
oxide nanoparticles for the first time. This bio nanofiber was
applied as a heterogeneous catalyst for selective oxidation of pri-
mary and secondary alcohols. High and excellent aldehyde and acid
products was gained under solvent free conditions using H2O2 and
t-BuOOH oxidants, respectively. A long-term stability, using ideal
oxidant, easy work-up, and solventless show the great potential in
scalability with relatively low catalyst loading. These features as
concepts in economical and sustainable modern oxidation systems
along with good reusability of the bio-catalyst render a practical
strategy to address the environmental and industrial applications.
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