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Combined Experimental and Theoretical Study
Yang Xiong,†,§ Zhuanzhuan Du,†,§ Haohua Chen,‡,§ Zhao Yang,† Qiuyuan Tan,† Changhui Zhang,† 
Lei Zhu,‡ Yu Lan,*‡# and Min Zhang*†

†Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, 
and ‡School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
#College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

ABSTRACT: A novel chiral phosphine–urea bifunctional ligand has been developed for Cu-catalyzed asymmetric 1,3-
dipolar cycloaddition of iminoesters with methacrylonitrile, a long-standing challenging substrate in asymmetric 
catalysis. Distortion–interaction energy analysis based on density functional theory (DFT) calculations reveals that the 
distortion energy plays an important role in the observed enantioselectivity, which can be attributed to the steric effect 
between the phosphine ligand and the dipole reactant. DFT calculations also indicate that nucleophilic addition is the 
enantioselectivity-determining step and hydrogen bonding between the urea moiety and methacrylonitrile assists in 
control of the diastereo- and enantioselectivity. By a combination of metal–catalysis and organocatalysis, excellent 
diastereo- and enantioselectivities (up to 99:1 diastereomeric ratio, 99% enantiomeric excess) as well as good yields are 
achieved. A wide range of substitution patterns of both iminoester and acrylonitrile are tolerated by this catalyst system, 
providing access to a series of highly substituted chiral cyanopyrrolidines with up to two quaternary stereogenic centers. 
The synthetic utility is demonstrated by enantioselective synthesis of antitumor agent ETP69 with a pivotal nitrile 
pharmacophore and an all-carbon quaternary stereogenic center.

 INTRODUCTION
Despite the great advances in asymmetric synthesis over 

the last few decades, stereochemical control of substrates 
that lack an effective catalyst–substrate interaction or strong 
steric/electronic biases remains a challenge.1 
Methacrylonitrile 1a falls into this category, presumably 
because of the inferior catalyst–substrate spatial orientation 
arising from the linearity of the nitrile group and the low 
level of enantiofacial differentiation because of the steric 
similarity between the methyl and nitrile substituents. The 
poor intrinsic reactivity and challenges associated with 
formation of an all-carbon quaternary stereogenic center to 
form a C–C bond at the α position of methacrylonitrile 
further restrict its synthetic utility (Scheme 1a). 
Consequently, attempts to develop catalytic stereoselective 
reactions using methacrylonitrile have resulted in limited 
success.2 

Catalytic diastereo- and enantioselective 1,3-dipolar 
cycloadditions of iminoesters have been intensively 
investigated in recent years, with many electron-deficient 
alkenes used as capable dipolarophiles.4–8 However, for 
cycloadditions with methacrylonitrile, which can also 
provide an electron-deficient C=C bond, the 
diastereoselectivity rather than the enantioselectivity 
remains a challenge. In 2015, Overman, Houk, and co-

workers9a realized the first highly diastereoselective 1,3-
dipolar cycloaddition with methacrylonitrile using achiral 
phosphine ligand-complexed CuI to activate the iminoester 
(Scheme 1b). Theoretical calculations showed that the 
presence of an electrostatic interaction between the 

Scheme 1. 1,3-Dipolar Cycloaddition of Iminoesters 
with Acrylonitriles

a) Challenges associated with methacrylonitrile 1a in organic synthesis

c) Enantioselective 1,3-dipolar cycloaddition with acrylonitriles (this work)
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phosphine ligand and the reacting methacrylonitrile in the 
transition state leads to high diastereoselectivity, otherwise 
the diastereoselectivity is low. Using the racemic cycloadduct 
3, Overman, Horne, and co-workers9b developed an elegant 
synthesis of natural product analogue ETP69, a very 
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promising clinical candidate for cancer chemotherapy. The 
authors also showed that the preeminent cytotoxicity of this 
compound depends on the nitrile pharmacophore and 
largely resides in the (S,S,S,S)-enantiomer, which is obtained 
by separation of the enantiomers.9b Despite this methodology 
advancement and the synthetic value of chiral 
cyanopyrrolidines,9 highly diastereo- and enantioselective 
1,3-dipolar cycloadditions with methacrylonitrile have not 
been reported.

Most of the previous strategies for catalytic stereoselective 
1,3-dipolar cycloadditions of iminoesters use a single model 
for organocatalysis or metal catalysis by acting on one of the 
reaction partners (dipole or dipolarophile).3–9 From our 
previous research of dipolar cycloadditions,10 we speculate 
that a bifunctional catalysis,11,12 which integrates the unique 
activation modes of organocatalysis with the well-established 
chemistry of metal catalysis, could activate both the dipole 
and dipolarophile and thus address the aforementioned 
challenges associated with methacrylonitrile. With this idea 
in mind, we designed a novel type of bifunctional ligands 
based on privileged chiral 1,2-ethylenediamine scaffolds 
(Figure 1a).13 Theoretical studies have previously been 
performed to validate the feasibility. The preliminary 
computational results revealed that both the phosphine 
moiety and benzoyl group of the phosphinoamide unit could 
coordinate with copper to activate iminoesters,14 while the 
two NH groups in the (thio)urea unit could form hydrogen 
bonds with the nitrile group of the acrylonitriles (Figure 1b).15 
Through synergistic activation and spatial orientation of the 
dipole and dipolarophile, high diastereo- and 
enantioselectivity could be achieved for 1,3-dipolar 
cycloaddition of iminoesters with acrylonitriles particularly 
methacrylonitrile. If this strategy could be successfully 
implemented, a series of chiral cyanopyrrolidines with up to 
two quaternary stereogenic centers could be generated 
(Scheme 1c). This would be a significant advance in the field 
of quaternary stereogenic center generation, because 
catalytic enantioselective methods to generate quaternary 
stereocenters by incorporating reaction partners in an 
intermolecular manner are currently very limited.16 
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Figure 1. a) Ligand design; b) theoretical catalytic model.

 RESULTS AND DISCUSSION

Reaction Optimization. We first evaluated ligand L1, 
which was prepared by coupling three inexpensive 
components: (R,R)-1,2-diaminocyclohexane, 2-
diphenylphosphino-benzoic acid, and 3,5-
bis(trifluromethyl)-phenyl isocyanate. For the catalytic 
system of L1/Cu(CH3CN)4BF4, 1,3-dipolar cycloaddition of 1a 
and 2a occurred with promising enantioselectivity (76% ee), 
albeit in low yield (Table 1, entry 1). Taking into account the 
fact that both squaramide and thiourea are widely used as 
effective hydrogen donors,15 and 

Table 1. Optimization of 1,3-Dipolar Cycloaddition of 
Methacrylonitrilea

conditions

O NC N
H

NC

OMe

O

OMe
N

2a 1a

Me
Me

3a (endo)

+

entry ligand metal yield 
(%)b d.r.c ee

(%)d

1 L1 Cu(MeCN)4BF4 10 — 76
2 L2–L5 Cu(MeCN)4BF4 <5 — —
3 L6 Cu(MeCN)4BF4 45 98:2 98
4 L6 Cu(MeCN)4PF6 18 98:2 98
5 L6 Cu(MeCN)4ClO4 16 98:2 98
6 L6 AgF 46 98:2 88
7e L6 Cu(MeCN)4BF4 95 98:2 99
8e ent-L6 Cu(MeCN)4BF4 94 98:2 -99
9e none Cu(MeCN)4BF4 <5 — —
10e L7–L9 Cu(MeCN)4BF4 <5 — —
11e L10 Cu(MeCN)4BF4 35 10:90 97
12e L11 Cu(MeCN)4BF4 30 40:60 87
13e L12 Cu(MeCN)4BF4 25 60:40 20
14e L13 Cu(MeCN)4BF4 32 45:55 88
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L3: X1=O, X2=S; L4: X1=S, X2=S
aConditions unless otherwise stated: 1a (0.4 mmol), 2a (0.2 
mmol), ligand (5.5 mol%), metal (5 mol%), Et3N (50 mol%), 4 
Å MS (200 mg), THF (4 mL), room temperature, 72 h. 
bIsolated yield of the major isomer. cRatio of endo/exo 
isomers, determined by HPLC analysis of the crude reaction 
mixture. dDetermined by chiral HPLC analysis of the major 
isomer. eUsing K2CO3 as the base and tBuOMe as the solvent. 
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Figure 2. Known chiral ligands screened in 1,3-dipolar 
cycloaddition of methacrylonitrile.

considering that incorporation of a sulfur atom into the 
ligand could provide more diverse metal coordination 
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modes,17 we synthesized ligands L2–L4 with one or two sulfur 
atoms incorporated and ligand L5 with a squaramide group 
to take advantage of the previous observations. However, 
none of these ligands gave the desired cycloaddition product 
in acceptable yield (entry 2). Upon switching the chiral 
scaffold to diphenylethylenediamine, ligand L6 resulted in 
significantly improved yield and degree of stereoselectivity 
(entry 3). Copper salts with different counter anions gave 
lower yield of 3a (entries 4 and 5), while silver salt AgF 
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Figure 3. Free energy profiles for catalytic asymmetric 1,3-dipolar cycloaddition of methacrylonitrile. The energy values are 
given in kcal/mol and represent the relative free energies calculated by the DFT/M11 method in Et2O. The bond lengths are given 
in angstroms.

produced comparable yield and d.r. with slightly lower 
enantioselectivity (entry 6).  Considering copper is a more 
abundant metal compared to silver, Cu(CH3CN)4BF4 was 
used as the metal precatalyst for further reaction 
optimization, which led us to identify the optimal conditions 
(Cu(CH3CN)4BF4/L6/K2CO3/tBuOMe/rt), giving 3a in 95% 
yield with excellent stereoselectivities (entry 7, 98:2 d.r., 99% 
ee). Performing 1,3-dipolar cycloaddition with a series of 
privileged chiral ligands (Figure 2, L7–L13) under the optimal 
conditions or the typical conditions found in the literatures 
gave either low yields (0–35%) or poor stereoselectivities 
(entries 10–14), 18 further highlighting the uniqueness of this 
novel type of bifunctional ligand.

Mechanistic Study. All the density functional thery (DFT) 
calculations were performed with Gaussian 09 series of 
programs.19 The B3-LYP20 functional with the standard 6–
31G(d) basis set (SDD21 basis set for Cu atoms) was used for 
the geometry optimizations. Harmonic vibrational frequency 
calculations were performed for all of the stationary points to 
confirm whether they are a local minima or transition 
structures, and to derive the thermochemical corrections for 

the enthalpies and free energies. The M1122 functional with 
the 6–311+G(d,p) basis set (SDD basis set for Cu atoms) was 
used to calculate the solvation single-point and give more 
accurate energy information. The solvent effects were 
considered by single-point calculations of the gas-phase 
stationary points with the SMD23 solvation model in 
diethylether (Et2O) solvent.
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Figure 4. Distortion–interaction energy analysis of the 
optimized structures of transition state 9-ts-SSS, 9-ts-RSS, 9-
ts-RRR, and 9-ts-SRR in the nucleophilic addition step. 

The free energy profiles for asymmetric 1,3-dipolar 
cycloaddition of azomethine ylides using the synthesized 
phosphine–urea bifunctional ligand L6 are shown in Figure 3. 
The calculated results suggest that nucleophilic addition is 
the enantioselectivity-determining step. Coordination and 
deprotonation of the iminoester with the CuI catalyst gives 
complex 7 and its isomer 8. The relative free energy of 8 is 1.7 
kcal/mol higher than that of 7, which can be attributed to 
strain repulsion between the amide group of the iminoester 
and the phenyl group of the phosphine ligand. Nucleophilic 
addition of the α-carbon atom of iminoester 2a to the 
terminal carbon of 1a via transition state 9-ts-SSS gives 
intermediate 10-SSS. The calculated activation free energy of 
the first nucleophilic addition step is 10.2 kcal/mol. 
Subsequent cycloaddition rapidly generates the (S,S,S)-
product-coordinated intermediate 12-SSS via transition state 
11-ts-SSS with a free energy barrier of only 1.7 kcal/mol. The 
geometry information of 9-ts-SSS shows that the distances 
between the nitrogen atom of the cyano group and the two 
hydrogen atoms of the urea moiety is 2.10 and 2.01 Å. These 
two hydrogen bonds significantly stabilize the negative 
charge in the formed intermediate, which leads to this 
process having a low activation free energy. In another 
possible case, 1,3-cycloaddition of methacrylonitrile 1a and 
complex 7 via transition state 9-ts-RSS gives (R,S,S)-product-
coordinated intermediate 12-RSS with an activation free 
energy of 15.2 kcal/mol. The relative free energy of 9-ts-RSS 
is 5.0 kcal/mol higher than that of 9-ts-SSS because of the 
absence of hydrogen bonding in 9-ts-RSS. The 
computational results reveal high stereoselectivity, which 
agrees with the experimental observations. Alternatively, the 

(R,R,R)-enantiomer could form by 1,3-cycloaddition of 
methacrylonitrile 1a and intermediate 8 via concerted 
transition state 9-ts-RRR, which has been confirmed by an 
intrinsic reaction coordinate calculation. The relative free 
energy of 9-ts-RRR is 4.3 kcal/mol higher than that of 9-ts-
SSS, which suggests up to 99% ee with the major product in 
the (S,S,S)-configuration, although intermolecular hydrogen 
bonding also exists for 9-ts-RRR.

To obtain additional insight, distortion–interaction energy 
analysis was performed to explain the reactivity of the 
bimolecular system (ΔEact

‡=ΔEint
‡+ΔEdist

‡) (Figure 4).24 The 
computational results show that the difference in the 
interaction-energy terms (ΔEint

‡) for 9-ts-SSS and 9-ts-RRR 
is only 1.0 kcal/mol. However, the difference in the 
distortion-energy terms (ΔEdist

‡) for the two transition states 
is 4.4 kcal/mol. Comparing the geometries of 9-ts-SSS and 9-
ts-RRR, the oxygen atom of the amide moiety of the ligand is 
close to the Cu atom in 9-ts-SSS (BCu-O1=2.32 Å), indicating 
significant coordination. However, the corresponding bond 
length is 3.00 Å in 9-ts-RRR, meaning that the distortion 
energy in this transition state is much higher. Thus, these 
results suggest that the distortion energy plays an important 
role in the observed enantioselectivity. In our theoretical 
calculations, we found that another diastereomer could be 
generated via transition state 9-ts-RSS. We also calculated 
the distortion and interaction energies for this transition 
state. The results show that the interaction energy in 9-ts-
RSS is much lower than that in 9-ts-SSS because of the 
absence of hydrogen bonding between the urea moiety and 
methacrylonitrile, which lead to the higher relative energy of 
9-ts-RSS.

Mechanism Verification. Based on the aforementioned 
theoretical results, we hypothesized that both metal catalysis 
and organocatalysis (hydrogen bonding) are crucial 
components in the cycloaddition. To confirm our hypothesis, 
a few N-methylated phosphine–urea ligands were designed 
and calculations were performed for 1,3-dipolar cycloaddition. 
As shown in Figure 5, L14 and L15 have only one of the two 
nitrogen atoms containing a methyl group, while L16 has 
both nitrogen atoms of the urea moiety masked by methyl 
groups. The corresponding free energy profiles are shown in 
Figure 6. The differences in the free energy of activation 
values for the two enantiomeric transition states of L14 and 
L15 are 5.2 and 6.1 kcal/mol, respectively (Figures 6a and 6b). 
These free energy differences suggest that up to 99% ee could 
be experimentally obtained in any cycloaddition product. 
The calculated difference of the free energy of activation 
values for 9-ts-RRR-L16 and 9-ts-SSS-L16 is only 0.6 
kcal/mol, which suggests that poor enantioselectivity would 
be experimentally observed, largely because of the absence of 
hydrogen bonding in 9-ts-RRR-L16 and 9-ts-SSS-L16 (Figure 
6c). 

 

NNH
N
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PPh2
R1

R2

CF3

CF3

L14: R1= H, R2= Me
not synthesized

L15: R1= Me, R2= H
3a: 80% yield, 92:8 d.r., 98% ee

L16: R1= Me, R2= Me
3a: 5% yield, 40:60 d.r., 7% ee

Figure 5. Structures of the N-methylated ligands and 1,3-
dipolar cycloaddition of 1a and 2a using L15 and L16 under 
the optimal conditions.
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Distortion-interaction energy analysis was also performed 
to explain the origin of the enantioselectivity for asymmetric 
1,3-dipolar cycloaddition using the designed phosphine–urea 
ligands L14, L15, and L16 (Figure 7). When the N-methyl-
monosubstituted ligands L14 and L15 with a single hydrogen 
bond interaction are used, the interaction-energy terms 
(ΔEint

‡) in the four transition states (9-ts-RRR-L14, 9-ts-SSS-
L14, 9-ts-RRR-L15 and 9-ts-SSS-L15) are relatively low. 
However, the corresponding distortion energy terms (ΔEdist

‡) 
are slightly enhanced owing to weaker activation of the 
methacrylonitrile reactant compared with the L6 case. 
Analogously, the calculated results suggest that the 
distortion energy mainly controls the reactivity because of 
the same trend of the activation free energy. Thus the large 
discrepancy in the distortion energy results in high predicted 
ee when L14 and L15 are used. Furthermore, when both of the 
nitrogen atoms of the urea moiety are masked by methyl 
groups in L16, the activation free energies of 9-ts-RRR-L16 
and 9-ts-SSS-L16 in the cycloaddition step are significantly 
enhanced, which can be attributed to two reasons. First, the 
interaction-energy term (ΔEint

‡) is significantly lower in the 
absence of hydrogen bonding. Second, acrylonitrile further 
distorts to react with the dipole owing to the omitted 
hydrogen bond activation, which leads to increase in the 
distortion energy term (ΔEdist

‡) in the late-coming transition 
state. Therefore, the reaction center is far from the chiral 
center of the ligand owing to the lack of hydrogen bonding, 
which results in the poorly regulatory effect of the ligand and 
thus the low ee of the product. Based on the aforementioned 
hypothesis, N-methyl-substituted phosphine–urea ligands of 
L15 and L16 were synthesized and used in 1,3-dipolar 
cycloaddition of 1a and 2a under the optimal conditions 
(Cu(CH3CN)4BF4/L6/K2CO3/tBuOMe/rt). Ee values of 98% 
and 7% are obtained for L15 and L16, respectively (Figure 5), 
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Figure 6. Free energy profiles for catalytic asymmetric 1,3-dipolar cycloaddition of methacrylonitrile using N-methylated ligands 
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a) L14, b) L15, and c) L16. The values are in kcal/mol and represent the relative free energies calculated by the DFT/M11 method 
in Et2O.
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Figure 7. Distortion–interaction energy analysis of the optimized structures in the nucleophilic addition step using N-
methylated phosphine–urea ligands L14, L15, and L16. 

which is in agreement with the computational predictions. 
Notably, for L16, the yield significantly decreases to 5%, 
which can be explained by the higher activation free energy 
for the cycloaddition step with ligand L16. From high-
resolution mass spectrometry (HRMS) analysis, the 
azomethine ylide–Cu–L6 complex (m/z=995.2246) is present 
in the crude reaction mixture, suggesting that iminoester 
could be preactivated by the coordination with L6–Cu 
complex.18 Therefore, the combination of experimental 
observations and theoretical calculations shows that both the 
reactivity and stereoselectivity arise from the synergistic 
activation and spatial orientation of the dipole and 
dipolarophile by the amidophosphine–urea bifunctional 
ligand L6–Cu complex.

Substrate Scope. Having established the optimal catalytic 
system and elucidated the reaction mechanism, we next 
explored the scope of iminoester 2 in 1,3-dipolar 
cycloaddition with methacrylonitrile (Table 2). Iminoesters 
possessing both electron-deficient and electron-rich groups 
on the phenyl ring gave the cycloaddition products in good 
to excellent yields and with excellent stereoselectivities 
(96:4–98:2 d.r., 97–99% ee) (entries 1–7). The substitution 
pattern of the 

Table 2. Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Various Iminoesters with Methacrylonitrilea

Cu(MeCN)4BF4/L6

O NC N
H

NC

OMe

O

OMe
NR1

2 1a 3 (endo)

+
R1

Me
Me

entry 3 R1 yield (%)b d.r.c ee (%)d

1 3a Ph 95 98:2 99
2 3b 4-FC6H4 95 98:2 99
3 3c 4-ClC6H4 86 97:3 97
4 3d 4-BrC6H4 85 97:3 98
5 3e 4-MeOC6H4 91 98:2 97
6 3f 4-COOMeC6H4 86 96:4 98
7 3g 4-CF3C6H4 75 96:4 98
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8 3h 2-BrC6H4 83 99:1 99
9 3i 3-BrC6H4 76 99:1 99
10 3j 1-naphthyl 90 99:1 97
11 3k 2-naphthyl 95 98:2 99
12 3l N-Bn-2-pyrryl 51 97:3 98
13 3m 2-thienyl 92 98:2 99
14 3n 2-furyl 51 99:1 99
15 3o N-Bs-2-indolyl 75 98:2 97
aConditions: 1a (0.4 mmol), 2 (0.2 mmol), L6 (5.5 mol%), Cu(MeCN)4BF4 (5 mol%), K2CO3 (50 mol%), 4 Å MS (200 mg), tBuOMe 
(4 mL), room temperature, 16–48 h. bIsolated yield. cDetermined by HPLC analysis of the crude reaction mixture. dDetermined 
by chiral HPLC analysis of the endo isomer. Bs=benzenesulfonyl.

phenyl ring has a negligible effect on the reactivity and 
stereoselectivity, and bromo groups at ortho- meta-, and 
para-positions of the phenyl ring are all tolerated in this 
cycloaddition (entries 4, 8, and 9), thus providing handles on 
the phenyl ring for further elaboration of the cycloaddition 
products. Fused aromatic substrates, including 1- and 2-
naphthyl-substituted iminoesters also proved to be viable 
azomethine ylide precursors (entries 10 and 11). Notably, 
iminoesters substituted with an array of heteroaryl groups, 
including pyrryl, thienyl, furyl, and indolyl groups, all worked 
well (entries 12–15). However, alkyl iminoesters do not work 
well under the current reaction conditions as a contrast of 
aryl iminoesters.

Chloro-bearing stereogenic carbon centers are found in a 
large number of natural products and bioactive compounds.25 
Although recent years have witnessed great advances in the 
development of catalytic enantioselective addition of carbon-
halogen bonds to organic molecules, enantioselective 
construction of halogen-bearing quaternary stereogenic 
centers remains a challenge in organic synthesis.26 As our 
interest in construction of quaternary stereogenic centers,27 
we tested whether commercially available α-
chloroacrylnitrile is a suitable dipolarophile for 1,3-dipolar 
cycloaddition of iminoesters (Table 3). α-Chloroacrylnitrile 
reacted smoothly with iminoester 2a under slightly modified 
conditions to give the corresponding product 4a in high yield 
(89%) with excellent diastereo- and enantioselectivity (>96:4 
d.r., 96% ee). We then briefly explored the iminoester scope. 
We found that iminoesters substituted with aryl  (p-Br-
phenyl and naphthyl) and heteroaryl (furyl, thienyl, and 
indolyl) groups all reacted smoothly with α-chloroacrylnitrile, 
giving a series of pyrrolidines with a chloro-bearing 
quaternary stereogenic center in good yields with excellent 
diastereo- and enantioselectivities (4b–4g). It is noteworthy 
that this study represents the first example of catalytic 
enantioselective 1,3-dipolar cycloaddition of iminoesters with 
α-chloroacrylnitrile. To further expand the substrate scope of 
the substituted acrylonitriles, α-phenyl- and β-ethyl-
acrylonitriles were subjected to the optimal conditions. In 
these two cases, good yields and stereoselectivities were 
achieved (4h and 4i). 
Table 3. Catalytic Asymmetric 1,3-Dipolar Cycloaddition 
of Various Iminoesters with Substituted Acrylonitrilesa

Cu(MeCN)4BF4/L6

O
NC N

H

NC
OMe

O

OMe
NR1

2 1 4

R1

R3
R3

R4+

R4

N
H

NC
OMe

OBr

Cl

N
H

NC
OMe

O

Cl

N
H

NC
OMe

O

Ph

N
H

NC
OMe

O

Cl

S

N
H

NC

OMe

O

Cl

N
H

NC
OMe

O

Cl

N
H

NC
OMe

O

Cl

O

N
H

NC
OMe

O

Cl

NBs

4e: 76% yield
98:2 d.r., 92% ee

4h: 95% yield
96:4 d.r., 96% ee

4a: 89% yield
>96:4 d.r., 96% ee

4b: 85% yield
>96:4 d.r., 96% ee

4c: 99% yield
99:1 d.r., 94% ee

4d: 96% yield
>96:4 d.r., 95% ee

4f: 98% yield
>96:4 d.r., 96% ee

4g: 91% yield
99:1 d.r., 94% ee

N
H

NC

OMe

O

Et

4i: 97% yield
98:2 d.r., 99% ee

aConditions unless otherwise stated: 1 (0.4 mmol), 2 (0.2 
mmol), L6 (5.5 mol%), Cu(MeCN)4BF4 (5 mol%), Et3N (50 
mol%), 4 Å MS (200 mg), CH2Cl2 (4 mL), 0 °C or room 
temperature, 16–48 h; the d.r. is the ratio of endo/exo isomers, 
determined by HPLC or 1H NMR analysis of the crude reaction 
mixture; the ee was determined by chiral HPLC analysis of the 
endo isomer; 4i was prepared under the conditions given in 
Table 2.  

Table 4. Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Various Iminoesters with Unsubstituted Acrylonitrilea

Page 7 of 13

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://www.baidu.com/link?url=lJvhfx7tkGp3BZ5eSSlCxm1DANAouPb9tsKI8icB_RTe_A75KsIiJVZ9mOggTv5B3JP5DImseLIkOXR30hvIf9Rqx-Fpf7HMq7rj_9VUj0_
http://www.baidu.com/link?url=lJvhfx7tkGp3BZ5eSSlCxm1DANAouPb9tsKI8icB_RTe_A75KsIiJVZ9mOggTv5B3JP5DImseLIkOXR30hvIf9Rqx-Fpf7HMq7rj_9VUj0_
http://www.baidu.com/link?url=lJvhfx7tkGp3BZ5eSSlCxm1DANAouPb9tsKI8icB_RTe_A75KsIiJVZ9mOggTv5B3JP5DImseLIkOXR30hvIf9Rqx-Fpf7HMq7rj_9VUj0_


O
NC N

H

NC
OR

O

OR
NR1

2 1b

+
R1

Cu(MeCN)4BF4/L6

5

entry 5 R1/R yield (%)b d.r.c ee (%)d

1 5a Ph/Me 95 99:1 99

2 5b 4-F-C6H4/Me 90 99:1 99

3 5c 4-Cl-C6H4/Me 85 99:1 99

4 5d 4-Br-C6H4/Me 86 99:1 99

5 5e 4-Me-C6H4/Me 82 96:4 99

6 5f 4-MeO-C6H4/Me 87 99:1 99

7 5g 4-Me2N-C6H4/Me 77 99:1 98

8 5h 4-CN-C6H4/Me 90 98:2 98
9 5i 4-COOMe-C6H4/Me 87 98:2 98
10 5j 4-CF3-C6H4/Me 95 98:2 99

11 5k 4-NO2-C6H4/Me 82 99:1 98

12 5l 2-Br-C6H4/Me 88 99:1 99

13 5m 3-Br-C6H4/Me 84 97:3 99

14 5n 2-F-C6H4/Me 89 99:1 97

15 5o 3-F-C6H4/Me 97 95:5 97

16 5p 1-naphthyl/Me 82 98:2 99

17 5q 2-naphthyl/Me 86 97:3 99

18 5r 2-thienyl/Me 87 97:3 99

19 5s 2-furyl/Me 86 96:4 97

20 5t N-Bn-2-pyrryl/Me 75 97:3 97

21 5u 3-pyridyl/Me 87 99:1 98
22 5v N-Bs-2-indolyl/Me 80 98:2 95
23 5w Ph/Et 98 98:2 98

24 5x Ph/iPr 91 99:1 98

25 5y Ph/tBu 91 99:1 98

26 5z Ph/Bn 90 98:2 99

aConditions: 1b (0.4 mmol), 2 (0.2 mmol), L6 (5.5 mol%), Cu(MeCN)4BF4 (5 mol%), Et3N (50 mol%), 4 Å MS (200 mg), 
CH2Cl2 (4 mL), 0 °C, 16–48 h. bYield of the isolated endo isomer. cRatio of the endo/exo isomers, determined by HPLC 
analysis of the crude reaction mixture. dDetermined by chiral HPLC analysis of the endo isomer.  

We also expanded this methodology to 1,3-dipolar 
cycloaddition of unsubstituted acrylonitrile (Table 4). In 
theory, 1,3-dipolar cycloaddition of unsubstituted 
acrylonitrile should be less challenging than 
methacrylonitrile, because it is more reactive and good 
stereocontrol is easier to access in the absence of an α methyl 
group. Indeed, there are a few highly enantioselective 
catalytic systems that tolerate unsubstituted acrylonitrile as 
the dipolarophile.8 However, a systematic investigation of the 
scope of iminoesters has not been reported. A wide range of 
iminoester 2 were examined using the bifunctional catalyst. 
Iminoesters with electron-deficient groups or electron-rich 
groups on the phenyl ring gave the cycloaddition products in 
good yields (77–95%) with excellent stereoselectivities (98:2–
99:1 d.r., 98–99% ee) (entries 1–11). The substitution pattern 
on the phenyl ring has no obvious effect on the reactivity and 
stereoselectivity, and ortho-, meta-, and para-substituted 
substrates are all tolerated in this cycloaddition (entries 2, 4, 

and 12–15). Fused aromatic 1- and 2-naphthyl-substituted 
glycine imines are also suitable azomethine ylide precursors 
(entries 16 and 17). Remarkably, iminoesters substituted with 
a variety of heteroaryl groups, including thienyl, 
pyrryl, pyridyl, and indolyl groups, all worked well in this 
transformation (entries 18–22). When iminoesters with 
different ester groups are used, excellent yields and 
stereoselectivities are achieved (entries 23–26). 

The substrate scope was further expanded to include α-
substituted iminoesters (Scheme 2). We did not observe any 
obvious difference between iminoesters derived from L- and 
D-amino acid esters in terms of the reaction rate, yield, or 
stereoselectivity (6a–6c). Remarkably, the catalytic system 
could tolerate the co-presence of α-substituents on the 
iminoester and acrylonitrile, providing direct access to chiral 
pyrrolidine 6d with two quaternary stereogenic centers, 
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therefore, highlighting the generality of this 1,3-dipolar 
cycloaddition protocol. 

Scheme 2. Catalytic Asymmetric 1,3-Dipolar 
Cycloaddition of α-Substituted Iminoesters
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6a: 99% yield
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6b: 40% yield
95:5 d.r., 93% ee

6c: 50% yield
98:2 d.r., 94% ee

6d: 90% yield
94:6 d.r., 98% ee
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+
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The relative and absolute configurations for all of the five 
different types of cycloaddition products were determined by 
single-crystal X-ray crystallographic analysis (Figure 8, 3d, N-
(P-Br)Bz-4a, 5d, N-Ts-6a, and 6d),18,28 and the same 
configuration were analogously assigned to the other 
products. 

5d

6d

N-(p-Br)Bz-4a

N-Ts-6a

3d

N

NC

OMe

OBr

Me

N
H
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OMe

OBr

Me
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O
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O
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N
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OBr

N
H
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O

Me
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Ts

X-ray of 3d

X-ray of N-Ts-6a

X-ray of 5d

X-ray of 6d

X-ray of N-(p-Br)Bz-4a

Figure 8. X-ray structures of the representative 
cycloadducts. 

Synthetic Applications. The synthetic utility of this 
protocol was further investigated (Scheme 3). The reaction 
between 2p and 1a was performed on the gram-scale to test 
the scalability of this cycloaddition reaction. Compound 3p 
was obtained in 65% yield with 95:5 d.r. and 97% ee. 
According to Overman’s report on preparation of (±)-
ETP69,9b reaction of

Scheme 3. Gram-Scale 1,3-Dipolar Cycloaddition and 
Enantioselective Synthesis of ETP69
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Me
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13 (S,S,S,S)-ETP69

S8, NaHMDSH

d.r.= 7:1
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O

OMe
N
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O

O N
H

NC Me
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O

K2CO3, tBuOMe

3p

65% yield, 95:5 d.r.
97% ee

1 g scale

Et3N, CH2Cl2
then, MeNH2

81% yield

toluene/THF
38% yield
>99% ee

 

enantioenriched product 3p with 2-chloropropinyl chloride 
and then with MeNH2 results in formation of dioxopiperazine 
13, which transforms to ETP69 in 38% yield by treatment 
with NaHMDS/S8. Using our 1,3-dipolar cycloaddition 
protocol and the following two-step reaction sequence, 
almost enantiopure (>99% ee) (S,S,S,S)-ETP69 was 
conveniently synthesized.
 CONCLUSIONS

We have developed a novel simple type of chiral 
amidophosphine–urea bifunctional ligands. By combining 
metal-catalysis and organocatalysis, the first catalytic 
enantioselective 1,3-dipolar cycloaddition of iminoesters with 
methacrylonitrile has been realized in high yields with 
excellent diastereo- and enantioslectivities (up to 99:1 d.r., 
99% ee). A wide substrate scope of both iminoesters and 
acrylonitriles can be tolerated by the catalyst system of 
L6/Cu, producing a series of chiral pyrrolidine derivatives 
with up to two quaternary stereogenic centers. Using this 
protocol, enantioselective synthesis of the nitrile 
pharmacophore-bearing antitumor agent ETP69 has been 
successfully achieved. DFT with the M11 functional was used 
to investigate the origin of the enantio- and 
diastereoselectivity of asymmetric 1,3-dipolar cycloaddition. 
The DFT calculations indicate that nucleophilic addition is 
the enantioselectivity-determining step and the hydrogen 
bonding between the urea moiety and methacrylonitrile 
assists in controlling the diastereo- and enantioselectivity. 
Distortion–interaction energy analysis based on DFT 
calculations reveals that the distortion energy plays an 
important role in the observed enantioselectivity, which can 
be attributed to the steric effect between the phosphine 
ligand and the dipole reactant. Furthermore, N-methylated 
phosphine–urea ligands were designed, synthesized, and 
tested for asymmetric 1,3-dipolar cycloaddition, 
demonstrating that hydrogen bonding (organocatalysis) is 
crucial for the high reactivity and stereoselectivity. This 
combined theoretical and experimental study shows that 
synergistic activation and spatial orientation of the dipole 
and dipolarophile by effective integration of metal-catalysis 
and organocatalysis are responsible for the high reaction 
efficiency and excellent stereoselectivity for 1,3-dipolar 
cycloaddition of iminoesters with acrylonitriles. 
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