

Mendeleev Communications

Synthesis, characterization and catalytic activity of a heterometallic Ni/Zn compound in the H/D exchange of salicylaldehyde

Nittaya Thuyweang,^a Lip Lin Koh,^b T. S. Andy Hor^{b,c} and Somying Leelasubcharoen^{*a}

^a Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science,

Khon Kaen University, Khon Kaen 40002, Thailand. Fax: +66 043 202373; e-mail: somying@kku.ac.th

^b Department of Chemistry, Faculty of Science, National University of Singapore, 117543 Singapore

^c Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 117602 Singapore

DOI: 10.1016/j.mencom.2014.06.011

The heterometallic Ni/Zn compound $[Ni(bpy)_3][Zn(NCO)_4] \cdot H_2O$ was synthesized and crystallographically characterized. This complex is an efficient catalyst in the H/D exchange reaction of salicylaldehyde, as confirmed by ¹H NMR spectroscopy and GC-MS analysis.

The self-assemblies of organic and inorganic molecules are of interest in crystal engineering.¹⁻³ Hydrogen bond interactions play an important role in structural organization by producing a wide range of dimensional networks.⁴⁻⁶ Many coordination polymers constructed from transition metals and pseudohalide ligands such as azide and thiocyanate have been reported.^{7–11} The cyanate complexes are known but less developed among the bridging pseudohalide compounds.¹² The coordination modes of cyanate vary from terminal to bridging and from end-to-end to end-to-on modes.¹³ This coordinative flexibility is ideal in selfassembly syntheses. Stabilized by hydrogen bonds, these compounds possess high dimensional structures. The heterometallic compounds are applicable in the production of magnetic¹⁴ and photoluminescence materials,15 electrochemistry and catalysis.16,17 Various coordination compounds were used as catalysts in H/D exchange reactions.18,19

Here, we examined the self- and competitive selectivity of Ni^{II} and Zn^{II} towards bpy and cyanate with the formation of an ion-pair complex between the metals and the catalytic activity of the complex in the H/D exchange of salicylaldehyde.

Complex 1 was obtained from the reaction of Ni(NO₃)₂·6H₂O, Zn(OAc)₂·2H₂O, 2,2'-bipyridine and NaOCN in a molar ratio of 1:1:3:2. The crystal structure of compound 1 was determined by a single-crystal X-ray diffraction study (Figure 1).[†] The complex consists of a [Ni(bpy)₃]²⁺ cation, a [Zn(NCO)₄]²⁻ anion and a disordered water hydrate. The nickel(II) center is six-coordinated and slightly distorted from ideal octahedral. The [Zn(NCO)₄]²⁻ anion is tetrahedral. In addition, each water molecule is involved in two hydrogen bonds formed by the hydrogen atoms of water

Figure 1 Molecular structure of 1. Selected bond lengths (Å) and angles (°): Ni(1)–N(1) 2.079(2), Ni(1)–N(2) 2.083(2), Ni(1)–N(3) 2.090(2), Ni(1)–N(4) 2.093(2), Ni(1)–N(5) 2.100(2), Ni(1)–N(6) 2.075(2), Zn(1)–N(7) 1.973(3), Zn(1)–N(8) 1.962(4), Zn(1)–N(9) 1.954(4), Zn(1)–N(10) 1.951(3); N(1)–Ni(1)–N(2) 78.56(9), N(1)–Ni(1)–N(3) 95.44(9), N(1)–Ni(1)–N(4) 171.30(9), N(6)–N(1)–N(3) 169.51(9), N(2)–N(1)–N(5) 172.31(9), N(1)–Ni(1)–N(5) 98.27(9), N(1)–Ni(1)–N(6) 92.90(9), N(7)–Zn(1)–N(8) 107.94(14), N(7)–Zn(1)–N(9) 110.46(16), N(8)–Zn(1)–N(10) 110.57(15), N(6)–C(30)–C(29) 123.3(3), N(7)–C(31)–O(1) 177.1(4), N(8)–C(32)–O(2) 179.4(5), N(9)–C(33)–O(3) 177.4(6), N(10)–C(34)–O(4) 178.9(4).

and the oxygen atoms of cyanate ligands. These H-bonding interactions stabilize the structure by linking the dianions together and extending into a one-dimensional chain along the *c* axis (Figure S1, Online Supplementary Materials). As shown in the crystal packing, the $[Ni(bpy)_3]^{2+}$ cation units reside in the vacancy between anion chains (Figure S2).

Compound 1 was used as a catalyst in the H/D exchange reaction of salicylaldehyde and DMSO- d_6 . The reaction was monitored using ¹H NMR spectroscopy.[‡] Immediately, the hydroxyl proton signal at 10.67 ppm diminishes and shows a broad peak.

 $Zn(OAc)_2 \cdot 2H_2O$ (0.0008 g, 0.0038 mmol, 3 mol%) and Ni(NO₃)₂ $\cdot 6H_2O$ (0.0011 g, 0.0038 mmol 3 mol%) were tested as a catalyst in the reaction.

[†] For detailed procedure and characteristics of complex **1**, see Online Supplementary Materials.

Crystallographic data for **1**: at 223(2) K crystals of $C_{34}H_{26}N_{10}NiO_5Zn$ are orthorhombic, space group *Pbcn*, *a* = 14.4246(6), *b* = 20.1323(9) and *c* = 23.6131(11) Å, *V* = 6857.3(5) Å³, *Z* = 8, *M* = 778.73, *d*_{calc} = 1.509 g cm⁻³, μ (MoK α) = 1.306 mm⁻¹, *F*(000) = 3184. Diffraction data were collected on a Bruker AXS APEX diffractometer equipped with a CCD detector using graphite-monochromated MoK α radiation [λ (MoK α) = 0.71073 Å]. The refinement converged to *wR*₂ = 0.1253, GOF = 1.035 for all independent reflections [*R*₁ = 0.0506 was calculated against *F* for 7876 observed reflections with *I* > 2*σ*(*I*)].

CCDC 936775 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* http://www.ccdc.cam.ac.uk. For details, see 'Notice to Authors', *Mendeleev Commun.*, Issue 1, 2014.

[‡] *Catalytic activity*. [Ni(bpy)₃][Zn(NCO)₄]·H₂O 1 (0.0030 g, 0.0038 mmol, 3 mol%) was dissolved in DMSO- d_6 (*ca.* 0.4 ml) and transferred into an NMR tube. Salicylaldehyde (13.40 µl, 0.1260 mmol) was injected into the tube. The progress of the reaction was monitored by ¹H NMR spectroscopy. The organic product was identified by NMR spectroscopy and GC-MS analysis. ¹H NMR (DMSO- d_6) δ : 10.23 (1H, CH), 7.65 (1H, H_{Ar}), 7.49 (1H, H_{Ar}), 6.98 (2H, H_{Ar}). ¹³C NMR (DMSO- d_6) δ : 192 (CH), 161 (C), 136 (CH), 129, 124 (C), 122 (CH), 119 (CH), 117 (CH). EI-MS (70 eV), *m*/*z* (%): 123 (23), 121 (100), 65 (15).

Figure 2 ¹H NMR spectrum of salicylaldehyde- d_1 .

Figure 3 The HSQC spectrum and proposed structure of salicylal dehyde- d_1 .

After 5.5 h, the hydroxyl proton peak completely disappears and other peaks remain unchanged (Figure 2). From HSQC spectrum, all positions of C and H are the same as those of salicylaldehyde except no proton at hydroxyl group (Figure 3). The peak assignment indicated in the spectrum tentatively suggests the structure of salicylaldehyde- d_1 . To confirm the H/D exchange reaction of the salicylaldehyde, the organic product was analyzed by GC-MS (Figure S3). The product ion of m/z 123 at a retention time of 22.20 min produces fragment ions with m/z 121 and 65. They resulted from the loss of a deuterium atom from the ion at m/z 123 and the formation of the $[M-C_5H_5]^+$ ion, respectively. Since the molecular weight of salicylaldehyde is 122, only one active H in its structure was exchanged for a deuterium atom. The similar reaction was also performed using DMSO. The product ion mass spectrum of m/z 122 at a retention time of 20.92 min shows fragment ions at m/z 121 and 65 (Figure S4). However, the molecular ion of m/z 123 was found in this reaction. The intensity of this ion in DMSO- d_6 is higher than that in DMSO. The molecular weight of salicylaldehyde- d_1 causes a slow mobility of the substance and results in an increase of the retention time.²⁰ The GC-MS analysis and ¹H NMR spectroscopy confirmed the H/D exchange reaction. Ni(NO3)2·6H2O or Zn(OAc)2·2H2O was tested as a catalyst under identical conditions (Figure 4). The hydroxyl proton immediately manifests itself as a broad peak at 10.67 ppm in the presence of Zn(OAc)₂·2H₂O and this peak remained unchanged after 6 h. When using Ni(NO₃)₂·6H₂O as a catalyst, there is no reaction after 6 h. Thus, the heterometallic ion pair compound is an efficient catalyst in the H/D exchange of salicylaldehyde. Zn(OAc)₂·2H₂O can also catalyze the H/D exchange reaction, however, the reaction is not complete within 6 h. The Lewis acidity of the zinc salt may be the source for promoting the catalytic activity. Other alcohol substrates, namely, tert-butanol, diphenylmethanol and phenylethanol were tested under analogous conditions with complex 1 as a catalyst, but no reaction was observed within 6 h.

Figure 4 The ¹H NMR spectra of the H/D exchange of salicylaldehyde in the presence of 1, $Zn(OAc)_2 \cdot 2H_2O$ or $Ni(NO_3)_2 \cdot 6H_2O$.

Innovation in Chemistry (PERCH-CIC). We are grateful to Miss Tan Geok Kheng and Hong Yimian (National University of Singapore) for the solution of the crystal structure.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.mencom.2014.06.011.

References

- 1 S. P. Neo, Z.-Y. Zhou, T. C. W. Mak and T. S. A. Hor, *Inorg. Chem.*, 1995, **34**, 520.
- 2 P. Teo and T. S. A. Hor, Coord. Chem. Rev., 2011, 255, 273.
- 3 S. Q. Bai, A. M. Yong, J. J. Hu, D. J. Young, X. Zhang, Y. Zong, J. Xu, J. -L. Zuo and T. S. A. Hor, *Cryst. Eng. Comm.*, 2012, 14, 961.
- 4 O. V. Nesterova, S. R. Petrusenko, V. N. Kokozay, B. W. Skelton, J. K. Bjernemose and P. R. Raithby, *Inorg. Chim. Acta*, 2005, 358, 2725.
- 5 S. R. Breeze and S. Wang, *Inorg. Chem.*, 1993, **32**, 5981.
- 6 J.-S. Hu, C.-L. Zhu, X.-M. Song and J. He, *Mendeleev Commun.*, 2012, 22, 220.
- 7 L. Li, D. Liao, Z. Jiang and S. Yan, Polyhedron, 2000, 19, 1575.
- 8 S. Saha, D. Biswas, P. P. Chakrabarty, A. D. Jana, A. K. Boudalis, S. K. Seth and T. Kar, *Polyhedron*, 2010, **29**, 3342.
- 9 O. V. Nesterova, A. V. Lipetskaya, S. R. Petrusenko, V. N. Kokozay, B. W. Skelton and J. Jezierska, *Polyhedron*, 2005, 24, 1425.
- 10 S. Nakashima, A. Yamamoto, Y. Asada, N. Koga and T. Okuda, *Inorg. Chim. Acta*, 2005, 358, 257.
- 11 D. Bose, S. H. Rahaman, R. Ghosh, G. Mostafa, J. Ribas, C.-H. Hung and B. K. Ghosh, *Polyhedron*, 2006, 25, 645.
- 12 Z. Mahendrasinh, S. Ankita, S. B. Kumar, A. Escuer and E. Suresh, *Inorg. Chim. Acta.*, 2011, 375, 333.
- 13 A. Escuer, M. Font-Bardía, E. Peñalba, X. Solans and R. Vicente, *Inorg. Chim. Acta*, 1999, 286, 189.
- 14 Z.-H. Ni, L.-F. Zhang, V. Tangoulis, W. Wernsdorfer, A.-L. Cui, O. Sato and H.-Z. Kou, *Inorg. Chem.*, 2007, 46, 6029.
- 15 K.-L. Cheung, S.-K. Yip and V. W.-W. Yam, J. Organomet. Chem., 2004, 689, 4451.
- 16 P.-G. Lassahn, V. Lozan, G. A. Timco, P. Christian, C. Janiak and R. E. P. Winpenny, J. Catal., 2004, 222, 260.
- 17 R. Srivastava, D. Srinivas and P. Ratnasamy, J. Catal., 2006, 241, 34.
- 18 C. Balzarek, T. J. R. Weakley and D. R. Tyler, J. Am. Chem. Soc., 2000, 122, 9427.
- 19 X. Ribas, R. Xifra, T. Parella, A. Poater, M. Solà and A. Llobet, *Angew. Chem. Int. Ed.*, 2006, **45**, 2941.
- 20 D. A. Oyugi, F. O. Ayorinde, A. Gugssa, A. Allen, E. B. Izevbigie, B. Eribo and W. A. Anderson, J. Biosci. Tech., 2011, 2, 287.

This work was supported by Khon Kaen University under Incubation Researcher Project and the Center of Excellence for

Received: 12th August 2013; Com. 13/4177