Tetrahedron Letters 55 (2014) 1475-1478

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Lewis acid mediated highly regioselective intramolecular cyclization for the synthesis of β-lapachone

etrahedro

Jinlei Bian^{a,c}, Bang Deng^{a,c}, Xiaojin Zhang^{a,d,*}, Tianhan Hu^c, Nan Wang^c, Wei Wang^c, Haixiang Pei^c, Yu Xu^c, Hongxi Chu^{a,c}, Xiang Li^a, Haopeng Sun^{a,c}, Qidong You^{a,b,c,*}

^a Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
 ^b State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
 ^c Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
 ^d Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, China

ARTICLE INFO

Article history: Received 25 November 2013 Revised 30 December 2013 Accepted 14 January 2014 Available online 20 January 2014

Keywords: β-Lapachone Lewis acid Intramolecular cyclization Regioselective Quinone

ABSTRACT

A highly regioselective intramolecular cyclization of lapachol mediated by Lewis acids including NbCl₅, AlCl₃, and FeCl₃ was developed for synthesizing β -lapachone in excellent yields without any formation of the isomer α -lapachone. This procedure was efficient, mild, and easily scalable that avoided using highly hazardous concd H₂SO₄. In the case of ZrCl₄ the cyclization was found to give α -lapachone as the main product. A possible mechanism for the Lewis acid mediated cyclization was also discussed. © 2014 Elsevier Ltd. All rights reserved.

β-Lapachone (1) (Fig. 1) is a natural tetrahydropyran-fused ortho-naphthoquinone isolated from the Bignoniaceae family (*Tabebuia* sp.).¹ It has been shown to exhibit a wide range of significant biological activities such as antitumor,² trypanocidal,³ anti-inflammatory,⁴ antibacterial, and antifungal.⁵ Unlike conventional chemotherapeutic agents, β-lapachone (1) has been reported to selectively kill human cancer cells through rapid reactive oxygen species (ROS) generation mediated by NAD(P)H:quinone oxidoreductase-1 (NQO1).^{6,7} In fact, β-lapachone (1) is currently in multiple phase II clinical trials for the treatment of pancreatic cancer.⁸ Therefore, it is not surprising that the total synthesis of this pharmaceutically important natural product has attracted great interest in recent decades.

Three synthetic approaches toward β -lapachone (**1**) have been reported as shown in Figure 1. The first one (route A) involved a relatively tedious multistep sequence starting from α -naphthol and provided β -lapachone (**1**) in poor total yields (23–55%).^{9,10} The second one (route B) involved an epoxide rearrangement protocol in the presence of 15 equiv of concd H₂SO₄ that led straightly to β -lapachone (**1**) in 90% yield.¹¹ One disadvantage of this protocol was the limited availability of the key epoxide intermediate, which

could be prepared from 1,4-naphthoquinone in two steps with only 29% combined yield.¹² The third and the shortest approach toward β -lapachone (1) (route C), involved a protonic acid mediated intramolecular cyclization of lapachol (2) through a stable tertiary carbocation intermediate, which was formed by the protonation of the carbon-carbon double bond of the isopentenyl group.^{13,14} Lapachol (2) could be obtained efficiently from 2-hydroxy-1,4naphthoquinone in 78% yield.¹⁵ Treatment of lapachol (2) with excessive concd H₂SO₄ in water was reported to directly provide 39% yield of β -lapachone (1), but together with 34% yield of the isomeric α -lapachone (3).¹³ While using large amounts of concd H₂SO₄ as both the catalyst and solvent, the cyclization disclosed by ArQule Inc. was shown to provide β -lapachone (1) in a multigram scale with over 90% yield.¹⁶ However, the significant excess of concd H₂SO₄ used in these methods was highly hazardous and hard to handle, making them not suitable for industrial-scale production.

Lewis acid catalysis has been of great interest in organic synthesis for efficient carbon–heteroatom bond formation.¹⁷ Recently, in many cases Lewis acid catalysts were found to be effective for the intramolecular cyclization of unsaturated alcohols to give the monocyclic tetrahydropyrans, owing to their ability for the electrophilic activation of the carbon–carbon double bond toward the subsequent attack of a nucleophile.^{18,19} Hence, we set out to test the suitability of various readily accessible Lewis acids for the

^{*} Corresponding authors. Tel.: +86 25 83271216 (X.Z.); tel./fax: +86 25 83271351 (Q.Y.).

E-mail addresses: zhangxiaojin@outlook.com (X. Zhang), youqidong@gmail.com (Q. You).

^{0040-4039/\$ -} see front matter @ 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2014.01.059

Figure 1. Synthetic approaches to the natural product β-lapachone.

intramolecular cyclization of lapachol (2), and to develop a high yielding, regioselective, and scalable procedure for the synthesis of β -lapachone (1).

In an initial study we screened various Lewis acids for their effects on the cyclization of lapachol (**2**) to β -lapachone (**1**). The reactions were carried out at room temperature using dichloromethane (DCM) as solvent, which was reported to be the optimal reaction system for the Lewis acid mediated cyclization to tetrahydropyrans.¹⁸ The reaction mixtures were analyzed by high performance liquid chromatography (HPLC) to determine the ratios between the potential products β -lapachone (**1**) and α -lapachone (**3**) as well as their combined yields. As shown in Table 1, many Lewis acids such as AlCl₃, FeCl₃, BF₃, BiCl₃, NbCl₅, and ZrCl₄ used in 1.5 equiv (Table 1, entries 1–6), were found to be effective to catalyze the cyclization of lapachol (**2**) in 4 h with good to excellent combined yields. But no reaction occurred in the absence of these

Table 1

Intramolecular cyclization of lapachol (3) to β -lapachone (1) mediated by different Lewis acids in 1.5 equiv²¹

Entry ^a	Lewis acid	Reaction time (h)	Selectivity ^b (β:α)	Yield ^b (β+α) (%)
1	AlCl ₃	4	1:0.41	97
2	FeCl ₃	4	1:0.20	Quant.
3	BF ₃	4	1:0.36	Quant.
4	BiCl ₃	4	0.79:1	Quant.
5	NbCl ₅	4	0.86:1	93
6	ZrCl ₄	4	0.18:1	93
7	ZnCl ₂	4	0.67:1	80
8	CdCl ₂	12	1:0.24	79
9	Cu_2Cl_2	12	-	No reaction
10	CuCl ₂	12	-	No reaction
11	MnCl ₂	12	-	No reaction
12	$HgCl_2$	12	-	No reaction
13	NiCl ₂ .6H ₂ O	12	-	No reaction
14	CoCl ₂ ·6H ₂ O	12	-	No reaction

^a Reaction conditions: lapachol (0.2 mmol), Lewis acid (1.5 equiv), solvent (DCM, 5 mL), at room temperature.

^b The selectivity and combined yield were obtained by HPLC analysis of the reaction mixture.

Lewis acids (data not shown). The reaction provided moderate combined yield when ZnCl₂ or CdCl₂ was employed (Table 1, entries 7 and 8). Moreover, the reaction rate decreased when treated with CdCl₂ (Table 1, entry 7), since a prolonged reaction time was needed to complete this conversion. Some other relatively weak Lewis acids classified by Kobayashi²⁰ (Table 1, entries 9–14) were shown to be incapable of catalyzing this reaction. These results indicated that the activities of the Lewis acids to promote the cyclization were in remarkable agreement with their acid strength. In addition, it must be emphasized that different regioselectivities were observed in this cyclization by employing different Lewis acids. For instance, when AlCl₃, FeCl₃, BF₃, and CdCl₂ were employed, the reaction was prone to give β -lapachone (1) with the β : α ratios ranging from 1:0.20 to 1:0.41 (Table 1, entry 1/2/3/8). While in the presence of NbCl₅ or BiCl₃, a mixture of the β and α isomers in nearly equal proportions was obtained (Table 1, entry 4/5). Furthermore, in the case of ZrCl₄, interestingly, the reaction

Table 2

The effects of amounts of Lewis acids on regioselectivity of the intramolecular cyclization $^{21}\,$

Entry ^a	Lewis acid	Loading (Equiv.)	Selectivity ^b (β : α)	Yield ^b (β + α) (%)
1	AlCl ₃	3	1:0.001	Quant.
2	AlCl ₃	5	1:0	97
3	FeCl ₃	3	1:0.002	98
4	FeCl ₃	5	1:0	98
5	BF ₃	3	1:0.46	Quant.
6	BF ₃	5	1:0.42	98
7	NbCl ₅	3	1:0.04	98
8	NbCl ₅	5	1:0	Quant.
9	BiCl ₃	3	0.52:1	Quant.
10	BiCl ₃	5	0.40:1	98
11	ZrCl ₄	3	0.13:1	Quant.
12	ZrCl ₄	5	0.14:1	Quant.
13	BiCl ₃	10	0.33:1	98
14	ZrCl ₄	10	0.12:1	Quant.
15	NbCl ₅	4	1:0.002	98
16	NbCl ₅	2	1:0.74	98
17	NbCl ₅	0.1	-	No reaction
18 ^c	NbCl ₅	5	1:0	97 ^d

^a Reaction conditions: lapachol (0.2 mmol), Lewis acid (different equiv), solvent (DCM, 5 mL), at room temperature, for 4 h.

 $^{\rm b}$ The selectivity and combined yield were obtained by HPLC analysis of the reaction mixture.

^c Reaction conditions: lapachol (4.13 mmol, 1 g), NbCl₅ (20.66 mmol, 5 equiv), solvent (DCM, 50 mL), at room temperature, for 4 h.

Isolated yield.

preferred to produce α -lapachone (**3**) as the main product with a β : α ratio of 0.18:1 (Table 1, entry 6).

Next, to improve the regioselectivity for β -lapachone (1), the Lewis acids with high catalytic activities were further tested at different loading amounts (Table 2). An increasing amount of Lewis acid loading from 1.5 to 3 and 5 equiv was initially evaluated (Table 2, entries 1-12). Encouragingly, in the cases of AlCl₃, FeCl₃, and NbCl₅, the β : α ratios of the products were found to be greatly elevated by increasing the amount to 3 and 5 equiv (Table 2, entries 1-4/7-8). Notably, treatment of lapachol (2) with these three Lewis acids in 5 equiv led to highly regioselective formation of β -lapachone (1) as a single isomer in excellent yields (Table 2, entry 2/4/8). None of the α -lapachone (**3**) was detected by the HPLC analysis of the reaction mixtures. Whereas in the case of BF₃ (Table 2, entries 5 and 6), the amount of Lewis acid loading showed less effect on the regioselectivity and a considerable proportion of the isomer α -lapachone (3) was always accompanied with β -lapachone (1). For BiCl₃, a slight increase in the selectivity for α -lapachone (3) was observed as the Lewis acid loading raised from 1.5 to 3 and 5 equiv (Table 2, entries 9 and 10). Further increasing the amount of BiCl₃ to 10 equiv made little improvement in the selectivity for α -lapachone (**3**), and the β : α ratio was 0.33:1

(Table 2, entry 13). In a manner similar to BiCl₃, when ZrCl₄ was employed, the reaction provided a mixture of β and α isomers and

the β : α ratio was retained at about 0.1:1 whenever the ZrCl₄ loading was changed from 1.5 to 3, 5, and 10 equiv (Table 2, entry 11/ 12/14). Among these Lewis acids tested, NbCl₅ showed the best ability to promote the conversion of lapachol (**2**) to β -lapachone (**1**) with high regioselectivity and quantitative yield (Table 2, entry 8). In order to fully understand the effects of the loading of NbCl₅ on the regioselectivity, we carefully decreased its amount from 5 to 4 equiv and a trace of α -lapachone (**3**) was detected with a β : α ratio of 1:0.002 (Table 2, entry 15). Moreover, according to the data (Table 2, entry 8/15/7/16; Table 1, entry 5), there was obviously a downward trend in selectivity for β -lapachone (**1**) as the amount of NbCl₅ decreased. Besides, no reaction occurred at low Lewis acid loading in 0.1 equiv (Table 2, entry 17).

Subsequently, with the optimal reaction conditions in hand (Table 2, entry 8), we intended to apply this strategy to the gram-scale synthesis of β -lapachone (**1**). It was shown that a 20-fold scale-up of the reaction still afforded the product in a high 97% isolated yield mediated by 5 equiv of NbCl₅ (Table 2, entry 18).²¹ This procedure benefits the advantages of high regioselectivity, excellent yield, mild reaction conditions that avoided using highly hazardous concd H₂SO₄, and a convenient post-treatment just by extraction.²² Therefore, this Lewis acid mediated intramolecular cyclization has great potential for the industrial-scale production of the important *ortho*-quinone natural product β -lapachone (**1**).

Scheme 1. The proposed mechanism for the regioselective formation of β-lapachone (1) mediated by Lewis acid NbCl₅.

Combining all the results above, we have proposed a possible mechanism for the Lewis acid mediated regioselective intramolecular cyclization by taking NbCl₅ as an example (Scheme 1). Firstly, the substrate lapachol (2) was likely to form reversibly two possible intermediates 4 and 5, as it has been reported that some strong Lewis acids could bind bidentately to the adjacent carbonyl and hydroxyl groups²³ and activate the carbon–carbon double bond of the isopentenyl moiety.^{18,19} Consequently, the presence of excessive NbCl₅ resulted in the formation of the intermediate 6, which was stabilized by the coordinate interactions with two moles of NbCl₅. In view of this, when adequate Lewis acid was employed (5 equiv or more), lapachol (2) could be fully converted into the stable intermediate **6**. Then, it underwent the intramolecular proton migration to form the carbocation **7** as shown in path A. The two oxygens at C1 and C2 in the structure of 7 were chelated to one molecule of NbCl₅. As a result, the exposed carbonyl group at C4 of **7** was more nucleophilic than the oxygen at C2 and was prior to attack the alkyl cation, leading to the selective formation of the *ortho*-product β -lapachone (1) as a single isomer. However, while inadequate Lewis acid was employed (from 1.5 to 4 equiv in our experiments), certain amounts of the intermediates 4 and 5 were probably co-existent with the intermediate 6. In this case, besides the intramolecular path A, the NbCl₅-activated proton of the intermediate **4** could migrate to the NbCl₅-activated isopentenyl moiety of the resulting intermediate 5 via an intermolecular pathway as shown in path B. This path led to the activated carbocation 9 without any chelated NbCl₅, being different from the carbocation **7**. As previously reported,^{11,24} the carbocation **9** could undergo two possible routes involving the intermediates 10 and 11, which led to the formation of a mixture of β and α isomers. The product **12** generated from intermediate **4** after losing the proton was supposed to serve as the driving force for the intermediates 10 and 11 to lose the proton. This could reasonably explain the observed high selectivity for β -lapachone (1) when 5 equiv of Lewis acids such as NbCl₅, AlCl₃, and FeCl₃ were employed, and also explain the observed decreased selectivity while reducing the Lewis acid loading to 4 equiv or less. Besides, in the case of Lewis acid ZrCl₄. it mediated the cyclization in an opposite regioselectivity favoring the formation of α -lapachone (3). We speculated that $ZrCl_4$ was not strong enough to break the intramolecular hydrogen binding between the carbonyl at C1 and hydroxyl at C2 of lapachol (2), but it was capable to interact with the carbonyl at C4, resulting in the selective formation of α -lapachone (3). Additionally, we found that the β -lapachone (1) and α -lapachone (3) failed to convert into each other in the presence of excessive Lewis acids such as NbCl₅ and ZrCl₄ in our reaction conditions. It suggested that the regioselectivity observed in this Lewis acid mediated cyclization was kinetically controlled, being different from the thermodynamically controlled process mediated by concd H₂SO₄.²⁴

In summary, we have presented a highly regioselective cyclization of lapachol (2) to β -lapachone (1) mediated by Lewis acids including NbCl₅, AlCl₃, and FeCl₃ in excellent yields without any formation of the isomer α -lapachone (3). This procedure was efficient, mild, and scalable that avoided using highly hazardous concd H₂SO₄. Thus it has great potential for the industrial-scale production of the important *ortho*-quinone natural product β -lapachone (1) and related quinones. In addition, we have found that the regioselectivity was greatly related to the Lewis acid loading. It has also been observed that the cyclization was prior to give α -lapachone (3) as the main product when $ZrCl_4$ was employed. We have proposed that Lewis acids promoted the cyclization by activating both the isopentenyl and hydroxyl groups of lapachol (2) and the regioselectivity arose from a Lewis acid mediated intramolecular proton migration.

Acknowledgments

We are thankful for the financial support of the National Natural Science Foundation of China (No. 81302636), the National Natural Science Foundation of Jiangsu Province of China (No. BK20130656), the Project Program of State Key Laboratory of Natural Medicines, China Pharmaceutical University (No. SKLN MZZ201202), and the National Found for Fostering Talents of Basic Science (NFFTBS) of China (No. J0630858).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.01.059.

References and notes

- 1. De Castro, S. L.; Emery, F. S.; Da Silva junior, E. N. Eur. J. Med. Chem. 2013, 69, 678
- 2 Colucci, M. A.; Moddy, C. J.; Couch, G. D. Org. Biomol. Chem. 2008, 6, 637.
- Salas, C. H.; Faundez, M.; Morello, A.; Maya, J. D.; Tapia, R. A. Curr. Med. Chem. 3.
- 2011. 18. 144. Tseng, C.-H.; Cheng, C.-M.; Tzeng, C.-C.; Peng, S.-I.; Yang, C.-L. Bioorg. Med. 4. Chem. 2013, 21, 523.
- Medeiros, C. S.; Pontes-Filho, N. T.; Camara, C. A.; Lima-Fiho, J. V.; Oliveira, P. C.; Lemos, S. A.; Leal, A. F. G.; Brandao, J. O. C.; Neves, R. P. Braz. J. Med. Biol. Res. 2010, 43, 345.
- Bev, E. A.; Bentle, M. S.; Relnlcke, K. E.; Dong, Y.; Yang, C.-R.; Girard, L.; Minna, J. 6. D.; Bornmann, W. G.; Gao, J.; Boothman, D. A. Proc. Natl. Acad. Sci. U.S.A. 2007, 104. 11832.
- 7. Huang, X.; Dong, Y.; Bey, E. A.; Kilgore, J. A.; Bair, J. S.; Li, L.-S.; Patel, M.; Parkinson, E. L.; Wang, Y.; Williams, N. S.; Gao, J.; Hergenrother, P. J.; Boothman, D. A. *Cancer Res.* **2012**, *72*, 3038.
- Cheng, X.; Liu, F.; Yan, T.; Zhou, X.; Wu, L.; Liao, K.; Wang, G.; Hao, H. Mol. 8. Pharm. 2012, 9, 3476.
- 9 Amaral A C F Barnes R A I Heterocycl Chem 1992 29 1457
- 10. Alves, G. B. C.; Lopes, R. S. C.; Lopes, C. C.; Snieckus, V. Synthesis 1999, 11, 1875.
- Claessens, S.; Habonimana, P.; De Kimpe, N. Org. Biomol. Chem. 2010, 8, 3790.
 Claessens, S.; Kesteleyn, B.; Van, T. N.; De Kimpe, N. Tetrahedron 2006, 62, 8419.
- Sacau, E. P.; Estevez-Braun, A.; Ravelo, A. G.; Ferro, E. A.; Tokuda, H.; 13. Mukainaka, T.; Nishino, H. Bioorg. Med. Chem. 2003, 11, 483.
- 14. Salas, C.; Tapia, R. A.; Ciudad, K.; Armstrong, V.; Orellana, M.; Kemmerling, U.; Ferreira, J.; Maya, J. D.; Morello, A. Bioorg. Med. Chem. 2008, 16, 668.
- 15 Ferreira, S. B.; da Rocha, D. R.; Carneiro, J. W. M.; Santos, W. C.; Ferreira, V. F. Synlett 2011, 1551.
- 16. Jiang, Z.; Hopkinton, M.; Hogeland, J.; Woburn, M. E. P. Patent 1, 363, 896, 2004.
- 17. Vece, V.; Hassen, K. B. H.; Antoniotti, S.; Dunach, E. Tetrahedron Lett. 2012, 53, 5102
- 18 Diba, A. K.; Begouin, J.-M.; Niggemann, M. Tetrahedron Lett. 2012, 53, 6629.
- 19 Coulombel, L.; Favier, I.; Dunach, E. Chem. Commun. 2005, 2286.
- 20. Kobyashi, S.; Busujima, T.; Nagayama, S. Chem. Eur. J. 2000, 6, 3491.
- 21. General procedure for the intramolecular cyclization mediated by Lewis acids. To a solution of lapachol (2) (50 mg, 0.2 mmol) in DCM (5 mL) was added the appropriate amounts of different Lewis acids. The mixture was stirred at room temperature for 4 h or 12 h and then the reaction solution was directly assessed by the HPLC analysis using a mixture of solvent methanol/water (1:3) as the mobile phase. β -Lapachone (1): mp 159–160 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.07 (dd, J = 1.8 Hz, 1H), 7.82 (dd, J = 1.8 Hz, 1H), 7.64 (dt, J = 1.8 Hz, 1H), 7.53 (dt, J = 1.8 Hz, 1H), 2.58 (t, J = 6.6 Hz, 2H), 1.86 (t, J = 6.5 Hz, 2H), 1.47 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ : 179.3, 178.1, 161.5, 134.2, 132.1, 130.1 129.7, 128.0, 123.5, 112.2, 78.7, 31.1, 26.2, 15.7. HRMS-ESI m/z [M+H]⁺ calculated for C15H15O3: 243.1016, found: 243.1019. α-lapachone (3): mp 116-118 °C; ¹H NMR (300 MHz, CDCl₃) δ : 8.06 (m, 2H), 7.68 (m, 2H), 2.62 (t, J = 6.6 Hz, 2H), 1.82 (t, J = 6.5 Hz, 2H), 1.44 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ : 183.9, 179.5, 154.1, 133.3, 132.4, 131.6, 130.7, 125.8, 125.5, 119.6, 77.6, 30.9, 26.0, 16.2. HRMS-ESI *m*/*z* [M+H]⁺ calcd for C₁₅H₁₅O₃: 243.1016, found: 243.1013. The spectroscopic data were identical to those reported in the literature 14.
- 22. Procedure for the gram-scale synthesis of β -lapachone (1): To a solution of lapachol (2) (1 g, 4.13 mmol) in DCM (50 mL) was added the Lewis acid NbCl₅ (5.58 g, 20.66 mmol). The mixture was stirred at room temperature for 4 h. Then the reaction mixture was poured into cooled water (100 mL), extracted with ethyl acetate (3 \times 100 mL), and washed with brine (100 mL). The organic layer was combined, dried over sodium sulfate, and concentrated under reduced pressure to give the pure product β -lapachone (1) (0.973 g, 97%) without any need for further purification.
- 23. Liu, G.-Q.; Li, W.; Wang, Y.-M.; Ding, Z.-Y.; Li, Y.-M. Tetrahedron Lett. 2012, 53, 4393.
- 24. Rio-Luci, C.; Bonifazi, E. L.; Leon, L. G.; Montero, J. C.; Burton, G.; Pandiella, A.; Misico, R. I.; Padron, J. M. Eur. J. Med. Chem. 2012, 53, 264.