This article was downloaded by: [University of Haifa Library] On: 19 August 2013, At: 02:54 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



# Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

# Novel Bioactive Thio- and Semicarbazide Ligands and Their Organosilicon (IV) Complexes

Sonika<sup>a</sup>, Meenakshi<sup>a</sup> & Rajesh Malhotra<sup>a</sup>

<sup>a</sup> Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India Published online: 25 Aug 2010.

To cite this article: Sonika , Meenakshi & Rajesh Malhotra (2010) Novel Bioactive Thio- and Semicarbazide Ligands and Their Organosilicon (IV) Complexes, Phosphorus, Sulfur, and Silicon and the Related Elements, 185:9, 1875-1885, DOI: <u>10.1080/10426500903348021</u>

To link to this article: http://dx.doi.org/10.1080/10426500903348021

## PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <a href="http://www.tandfonline.com/page/terms-and-conditions">http://www.tandfonline.com/page/terms-and-conditions</a>



Phosphorus, Sulfur, and Silicon, 185:1875–1885, 2010 Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online DOI: 10.1080/10426500903348021

### NOVEL BIOACTIVE THIO- AND SEMICARBAZIDE LIGANDS AND THEIR ORGANOSILICON (IV) COMPLEXES

Sonika, Meenakshi, and Rajesh Malhotra

Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India

Ligational behavior of thiosemicarbazones and semicarbazones derived from 1-phenyl-3arylpyrazole-4-carboxaldehydes towards triphenylchlorosilane has been investigated by elemental analysis, molar conductivity measurements, and IR,  $^{1}H$ ,  $^{13}C$ , and  $^{29}Si$  NMR spectroscopic studies. The ligands and their organosilicon complexes have also been evaluated for in vitro antimicrobial activity against some pathogenic bacteria and fungi.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.

**Keywords** Antimicrobial activity; organosilicon (IV) complexes; semicarbazones; spectral studies; thiosemicarbazones

#### INTRODUCTION

Thiosemicarbazones and semicarbazones are among the most widely studied nitrogen and sulfur/oxygen donor ligands.<sup>1–5</sup> They are capable of acting as neutral or charged ligand moieties, as they have interesting coordination properties because only the  $\beta$ -nitrogen coordinates to the metal atom, while the  $\alpha$ -nitrogen atom remains uncoordinated. On the other hand, the remaining sulfur/oxygen atom has a tendency to form a strong covalent bond with metal atom. These compounds have remarkable biological activities ranging from antiprotozoa,<sup>6</sup> antifertility,<sup>7</sup> antibacterial,<sup>8</sup> antifungal,<sup>9</sup> antitumoral,<sup>10</sup> antiviral activities,<sup>11</sup> and especially anti-HIV activity,<sup>12,13</sup> properties which have since been shown to be related to their metal-complexing ability.<sup>14</sup>

The interest in organosilicon (IV) compounds is due to their versatile applicability in pharmaceutical and in chemical industries. In addition, the substituted pyrazole ring also exhibits a broad spectrum of biological activities such as antidiabetic,<sup>15</sup> antimicrobial,<sup>16–19</sup> and herbicidal.<sup>20,21</sup> Moreover, in many cases, by coordination to different transition metal ions that can be found in biological systems, it is possible to obtain complexes that are

Received 2 June 2009; accepted 18 September 2009.

The authors are grateful to the Sophisticated Analytical Instrumentation Facility (SAIF), Panjab University, Chandigarh, India, for providing NMR facility and elemental analysis.

Address correspondence to Sonika, Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar-125001, Haryana, India. E-mail: sc\_ic2001@yahoo.co.in



| Ligand | $HL_{I}$ | $\mathrm{HL}_{\mathrm{II}}$ | $\mathrm{HL}_{\mathrm{III}}$ | $\mathrm{HL}_{\mathrm{IV}}$ | $\mathrm{HL}_{\mathrm{V}}$ | $\mathrm{HL}_{\mathrm{VI}}$ | $\mathrm{HL}_{\mathrm{VII}}$ | $\mathrm{HL}_{\mathrm{VIII}}$ | $\mathrm{HL}_{\mathrm{IX}}$ | $\mathrm{HL}_{\mathrm{X}}$ |
|--------|----------|-----------------------------|------------------------------|-----------------------------|----------------------------|-----------------------------|------------------------------|-------------------------------|-----------------------------|----------------------------|
| R      | Н        | $\mathrm{CH}_3$             | $\operatorname{OCH}_3$       | Br                          | Cl                         | Η                           | $\mathrm{CH}_3$              | $OCH_3$                       | Br                          | Cl                         |
| Х      | S        | S                           | S                            | S                           | S                          | 0                           | 0                            | 0                             | 0                           | 0                          |

Figure 1 Structure of the ligands.

more efficient drugs than the corresponding free ligands. So, the present situation prompted us to produce such work with monofunctional bidentate azomethine moieties in which the combined effect of silicon along with plus role of pyrazole ring and sulfur/oxygen is applicable. The imines used during these studies were derived from thiosemicarbazones and semicarbazones of 1-phenyl-3-arylpyrazole-4-carboxaldehyde derivatives and are shown in Figure 1.

#### **RESULTS AND DISCUSSION**

The reactions of triphenylchlorosilane with the sodium salts of ligands in 1:1 molar ratio in dry methanol proceed smoothly with the precipitation of NaCl, and lead to the formation of triorganosilicon complexes (Scheme 1).



Scheme 1 Synthesis of triphenylsilicon (IV) complexes.

All the newly synthesized complexes have been obtained as solids and are insoluble in common organic solvents. The molar conductivities of these complexes have low values  $(5-15 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1})$ , indicating non-electrolytic nature. The monomeric nature of these complexes is confirmed by the molecular weight determinations. The stereochemistry of these complexes has been determined spectroscopically using IR and NMR (<sup>1</sup>H, <sup>13</sup>C, and <sup>29</sup>Si) spectral data.

#### **IR Spectra**

The infrared spectra of the complexes were compared with those of the free ligands  $(HL_I-HL_X)$  to ascertain the coordination sites on the basis of shifting in the frequency of various groups and/or from the lowering in the intensities of the absorptions. The broad and medium intensity bands attributable to v(NH) modes in the region 3200–3100 cm<sup>-1</sup> disappear in the silicon complexes, indicating the loss of a proton on the  $\alpha$ -nitrogen due to tautomerization after complexation of the silicon atom to sulfur/oxygen atom. The bands observed at about 3446 and 3334  $\rm cm^{-1}$  due to the symmetric and asymmetric modes of the NH<sub>2</sub> group are at virtually the same frequencies in the spectra of silicon complexes, suggesting the non-involvement of this amino group in chelation.<sup>7</sup> In the IR spectra of the ligands, a sharp band in the region  $1605 \pm 15$  cm<sup>-1</sup> can be attributed to the C=N group.<sup>22</sup> This band shifts slightly toward lower frequency in the silicon complexes, indicating the coordination of the azomethine nitrogen to the silicon atom. The  $\nu$  (C=S) band in thiosemicarbazones and  $\nu$  (C=O) band in semicarbazones appear at 1040 and 1685  $cm^{-1}$ , respectively. These bands disappear upon complexation, which is due to the covalent bond formation of the ligand with the silicon atom through the sulfur or oxygen atoms. The formation of the resulting complexes has also been supported by the presence of new bands due to v(Si-O), <sup>23</sup> v(Si-S), and v(Si-N) at 740 ± 10, 540 ± 10, and 580 ± 5 cm<sup>-1</sup>. respectively.<sup>9</sup> The appearance of medium to strong intensity bands around 1450–1400, 1130–1085, 800–685, and 690–620 cm<sup>-1</sup> have been assigned to (Si–C<sub>6</sub>H<sub>5</sub>) modes.

#### <sup>1</sup>H NMR Spectra

The <sup>1</sup>H NMR spectra of the ligands and their corresponding organosilicon (IV) complexes were recorded in CDCl<sub>3</sub> with a few drops of DMSO-d<sub>6</sub> using TMS as the internal standard and are presented in Tables I and II, respectively. In the <sup>1</sup>H NMR spectra of the free thio- and semicarbazide ligands, a broad signal due to the NH proton was observed at  $\delta$  11.14–11.33 and  $\delta$  9.98–10.13, respectively, which was absent in the spectra of complexes, showing the bonding of thiolic sulfur/enolic oxygen to silicon after the deprotonation of the functional group. The appearance of a signal due to the NH<sub>2</sub> group at about the same position in the ligand and its metal complexes shows the non-involvement of this group in coordination. The azomethine proton signal shifts downfield in the spectra of complexes due to the formation of a coordinate linkage between nitrogen and silicon atom. In the spectra of Ph<sub>3</sub>SiL<sub>I</sub>, the new complex multiplet centered at about  $\delta$  7.59–7.63 (m, 6H) was due to the *ortho*- protons, and at about  $\delta$  7.31–7.49 (m, 9H) was due to the *meta*- and *para*- protons of the triphenylsilane group.

#### <sup>13</sup>C NMR Spectra

The <sup>13</sup>C NMR spectra of the ligands and their corresponding organosilicon (IV) complexes are presented in Tables III and IV, respectively. In the <sup>13</sup>C NMR spectra of free ligands, the thiolo, amido, and azomethine carbons showed signals at  $\delta$  177.0, 155.0, and 133.0–136.0, respectively. These peaks were slightly altered upon complexation with triphenylsilicon (IV) chloride, indicating the bonding of thiolic sulfur/enolic oxygen and

|                                    |       |      | Table I <sup>1</sup> H NN | $\Lambda R$ data ( $\delta$ ) of thiosemicarbazide ligands and their triphenylsilicon (IV) $\epsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | complexes                               |                                                                 |
|------------------------------------|-------|------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|
| Ligand/<br>complex                 | HN-   | -NH2 | H-C=N                     | Aromatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Si-Ph                                   | Z                                                               |
| HLI                                | 11.28 | 3.15 | 8.13                      | 8.72 (s, 11H, C <sub>5</sub> -H), 7.83–7.85 (m, 2H, C <sub>2</sub> -H & C <sub>6</sub> -H), 7.67–7.70 (m, 2H, $C_2^{*}$ -H & C <sub>6</sub> '-H), 7.31–7.54 (m, 6H, C <sub>8</sub> '-H, C <sub>4</sub> '-H, C_4'-H,                                                                                                                                                                                                                                                                                                                                                                                      | 1                                       | 1                                                               |
| Ph <sub>3</sub> SiL <sub>1</sub>   | I     | 3.34 | 8.25                      | 8.57 (s, 1H, C <sub>5</sub> -H), 7.32 (d, 2H, C <sub>2</sub> -H & C <sub>6</sub> -H), 7.71 (d, 2H, C <sub>2</sub> -H & C <sub>6</sub> -H), 7.31-7.49 (m, 6H, C <sub>3</sub> '-H, C <sub>4</sub> '-H, C <sub>5</sub> '-H, C <sub>5</sub> '-H, C <sub>6</sub> '-H, C <sub>7</sub> '-H, | 7.59–7.63 (m, 6H),<br>7.31–7.49 (m, 9H) | I                                                               |
| HL <sub>II</sub>                   | 11.14 | 2.80 | 8.20                      | 8.50 (s, 1H, C <sub>5</sub> -H), 7.78–7.80 (m, 2H, C' <sub>2</sub> -H & C' <sub>6</sub> -H), 7.57 (d, 2H, C' <sub>2</sub> -H & C'' <sub>6</sub> -H), 7.45–7.49 (m, 2H, C' <sub>3</sub> -H & C' <sub>5</sub> -H), 7.45–7.49 (m, 2H, C'' <sub>3</sub> -H & C'' <sub>2</sub> -H), 7.75 (d, 2H, C'' <sub>2</sub> -H & C''_{2}-H), 7.75 (d, 2H, C'' <sub>2</sub> -H & C''_{2}-H), 7.75 (d, 2H, C''_{2}-H & C''_{2}-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                       | 2.40 (s, 3H,<br>C <sub>4</sub> <sup>-</sup> CH <sub>3</sub> )   |
| Ph <sub>3</sub> SiL <sub>II</sub>  |       | 2.90 | 8.33                      | 8.40 (s, 1H, Cs-H), 7.79 (d, 2H, C' <sub>2</sub> -H & C' <sub>6</sub> -H), 7.65 (d, 2H, C' <sub>2</sub> -H & C' <sub>6</sub> -H), 7.29–7.48 (m, 5H, C' <sub>3</sub> -H, C' <sub>8</sub> -H, C' <sub>8</sub> -H, C' <sub>4</sub> -H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.55–7.61 (m, 6H),<br>7.29–7.48 (m, 9H) | 2.39 (s, 3H,<br>C <sub>4</sub> <sup>-</sup> CH <sub>3</sub> )   |
| HL <sub>III</sub>                  | 11.31 | 3.33 | 8.23                      | 9.14 (s, 1H, C <sub>5</sub> -H), 7.88 (d, 2H, $C'_2$ -H & $C'_6$ -H), 7.53–7.62 (m, 4H, $C'_2$ -H, $C'_6$ -H, $C'_3$ -H & $C'_5$ -H), 7.34–7.38 (m, 1H, $C'_4$ -H), 7.61 (d) 2H (C'_4 - H), $C''_4$ -H), $C''_4$ -H), $C''_4$ -H & $C''_4$ -H), $C''_4$ -H (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                       | 3.82 (s, 3H,<br>C <sup>4</sup> <sub>4</sub> -OCH <sub>3</sub> ) |
| Ph <sub>3</sub> SiL <sub>III</sub> |       | 3.30 | 8.35                      | $2.00$ (i, 11, C <sub>5</sub> -H), $7.86$ (G, 2H, $C'_2$ -H & $C'_6$ -H), $7.35$ - $7.73$ (m, $100$ (i, 1H, $C_5$ -H), $7.36$ (m, $110$ $M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.35–7.73 (m, 15H)                      | 3.80 (s, 3H,<br>C"_OCH,)                                        |
| HL <sub>IV</sub>                   | 11.18 | 3.30 | 8.21                      | 9.15 (s, 1H, C <sub>2</sub> -H), 7.90–7.93 (m, 2H, C <sub>2</sub> -H, C <sub>2</sub> -H), 7.62–7.72 (m, 4H, C <sub>2</sub> <sup>-</sup> H), 7.90–7.93 (m, 2H, C <sub>2</sub> -H), 7.62–7.72 (m, 4H, C <sub>2</sub> <sup>-</sup> H, C <sub>2</sub> -H, C <sub>3</sub> -H, & C <sub>3</sub> -H), 7.54–7.60 (m, 2H, C <sub>3</sub> <sup>-</sup> H) $e^{-e^{-E_{1}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ι                                       | -                                                               |
| Ph <sub>3</sub> SiL <sub>IV</sub>  |       | 3.35 | 8.39                      | 8.80 (s, 1H, Cs-H), 7.90 (un, 1H, C4-H)<br>8.80 (s, 1H, Cs-H), 7.90 (d, 2H, C2-H & C6-H), 7.32–7.70 (m,<br>7.10 C/H d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.32–7.70 (m, 15H)                      | I                                                               |
| HLv                                | 11.33 | 3.37 | 8.28                      | 9.19 (s, 1H, C <sub>5</sub> -H), $r_{5}$ , $r_{1}$ , $r_{2}$ , $r_{2}$ , $r_{1}$ , $r_{2}$ , $r_{2}$ , $r_{1}$ , $r_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I                                       |                                                                 |
| Ph <sub>3</sub> SiL <sub>V</sub>   |       | 3.33 | 8.40                      | 9.00 (s, 11H, C <sub>5</sub> -H), 8.11–8.20 (m, 2H, C' <sub>2</sub> -H & C' <sub>6</sub> -H), 7.84–7.89 (m, 2H, C' <sub>3</sub> -H & C' <sub>6</sub> -H), 7.32–7.76 (m, 5H, C'' <sub>2</sub> -H, C'' <sub>6</sub> -H, C'' <sub>3</sub> -H, C'' <sub>2</sub> -H, & C'' <sub>5</sub> -H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.32–7.76 (m, 15H)                      | I                                                               |

| August 2013   |
|---------------|
| 19            |
| at 02:54      |
| uifa Library] |
| of Ha         |
| [University   |
| aded by       |
| wnlo          |

| Ligand/<br>complex                  | HN-   | $-NH_2$ | H-C=N | Aromatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Si-Ph                                   | R                                                              |
|-------------------------------------|-------|---------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|
| HLvi                                | 10.04 | 3.07    | 7.96  | 8.47 (s, 1H, C <sub>5</sub> -H), 7.80 (d, 2H, C' <sub>2</sub> -H & C' <sub>6</sub> -H), 7.67–7.69 (m, 2H, $C'_{2}$ -H & C''_{6}-H), 7.30–7.52 (m, 6H, C'_{3}-H, C''_{4}-H, C''_{5}-H, C''_{4}-H, C''_{5}-H, C''_{4}-H, C''_{6}-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                |
| Ph <sub>3</sub> SiL <sub>VI</sub>   | Ι     | 3.15    | 8.26  | 2.5 <sup>-1</sup> , 1H, C <sub>5</sub> -H), 7.82 (d, 2H, C' <sub>2</sub> -H & C' <sub>6</sub> -H), 7.63–7.66 (m,<br>2.H, C' <sub>2</sub> -H & C' <sub>6</sub> -H), 7.30–7.50 (m, 6H, C' <sub>3</sub> -H, C' <sub>4</sub> -H, C'' <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.55–7.60 (m, 6H),<br>7.30–7.50 (m, 9H) | I                                                              |
| HLvII                               | 9.98  | 2.91    | 7.94  | 8.45 (s, 1H, C <sub>5</sub> -H), 7.78 (d, 2H, C' <sub>2</sub> -H & C' <sub>6</sub> -H), 7.57 (d, 2H, C' <sub>2</sub> -H & C' <sub>6</sub> -H), 7.45-7.49 (m, 2H, C' <sub>3</sub> -H & C' <sub>5</sub> -H), 7.29-7.33 C' <sub>2</sub> -H & C' <sub>5</sub> -H), 7.29-7.33 (m, 1H C'_6H), 7.25 (d, 2H C''_2-H & C''_2-H), 7.29-7.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                       | 2.39 (s, 3H,<br>C <sub>4</sub> <sup>-</sup> CH <sub>3</sub> )  |
| Ph <sub>3</sub> SiL <sub>VII</sub>  | I     | 3.10    | 8.15  | 8.32 (s, IH, C <sub>5</sub> -H), 7.80 (d, 2H, C <sub>2</sub> -H & C <sub>6</sub> -H), 7.55 (d, 2H, C <sub>7</sub> -H & C <sub>6</sub> -H), 7.55 (d, 2H, C <sub>7</sub> -H & C <sub>6</sub> -H), 7.55 (d, 2H, C <sub>7</sub> -H & C <sub>6</sub> -H), 7.30–7.48 (m, 5H, C <sub>8</sub> -H, C <sub>7</sub> -H, C                                                                    | 7.59–7.64 (m, 6H),<br>7.30–7.48 (m, 9H) | 2.40 (s, 3H,<br>C <sub>4</sub> <sup>-</sup> CH <sub>3</sub> )  |
| HLvIII                              | 10.09 | 3.35    | 7.95  | 9.04 C <sub>5</sub> H), 7.90 (d, 2H, C' <sub>2</sub> -H & C' <sub>6</sub> -H), 7.52–7.61 (m,<br>4H, C'' <sub>2</sub> -H, C'' <sub>6</sub> -H, C' <sub>3</sub> -H & C' <sub>5</sub> -H), 7.34–7.38 (m, 1H, C' <sub>4</sub> -H),<br>7.06 (d, 2H, C'' <sub>8</sub> -H, A'' <sub>6</sub> -H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                       | 3.81 (s, 3H,<br>C <sub>4</sub> <sup>-</sup> OCH <sub>3</sub> ) |
| Ph <sub>3</sub> SiL <sub>VIII</sub> | I     | 3.25    | 8.20  | 8.82 (s, 1H, C5-H), 7.92 (s, 2H, C <sup>2</sup> -H & C <sup>6</sup> -H), 7.36-7.74 (m, TH, C <sup>4</sup> -H C <sup>4</sup> -H, C <sup></sup> | 7.36–7.74 (m, 15H)                      | 3.79 (s, 3H,<br>C''-OCH2)                                      |
| HL <sub>IX</sub>                    | 10.13 | 3.38    | 7.98  | 9.11(s, 1H, C <sub>5</sub> -H), 7.91–7.94 (m, 2H, C <sub>2</sub> -H, C <sub>6</sub> -H), 7.63–7.73 (m, 4H, C <sub>7</sub> '-H, C <sub>6</sub> 'H, C <sub>3</sub> -H & C <sub>5</sub> -H), 7.63–7.73 (m, 4H, C <sub>7</sub> '-H, C <sub>6</sub> 'H, C <sub>3</sub> -H & C <sub>5</sub> -H), 7.53–7.59 (m, 2H, C <sub>8</sub> '-H & C <sub>7</sub> -H), 7.53–7.59 (m, 2H, C <sub>8</sub> '-H), $7.53-7.53$ (m, 1H, C', H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                       | 4                                                              |
| $Ph_3SiL_{IX}$                      |       | 3.45    | 8.22  | 8.85 (s, 1H, C, 2H), 7.89–7.93 (m, 2H, C, 2H & C, -H), 7.30–7.70<br>8.85 (s, 1H, C, 2H), 7.89–7.93 (m, 2H, C, 2H & C, -H), 7.30–7.70<br>(m, 7H $-C''_{m}$ H $-C''_{m}$ H $-C''_{m}$ H $-C''_{m}$ H $-C'_{m}$ H $-C'_{m}$ H $-C'_{m}$ H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.30–7.70 (m, 15H)                      | I                                                              |
| $\mathrm{HL}_{\mathrm{X}}$          | 10.12 | 3.38    | 8.00  | 9.12 (s, 1H, C <sub>5</sub> -H), 7.39, 7.59 (s, 14, C <sub>6</sub> -H), 7.70–7.76 (m, 2H, C <sub>7</sub> -H), 7.70–7.76 (m, 2H, C <sub>7</sub> -H, C <sub>7</sub> '-H, C <sub>7</sub> '-H), 7.53–7.63 (m, 4H, C <sub>7</sub> '-H, C <sub>7</sub> '-H, C <sub>7</sub> '-H), 7.53–7.63 (m, 4H, C <sub>7</sub> '-H, C <sub>7</sub> '-H), 7.53–7.63 (m, 2H, C <sub>7</sub> '-H), $7.53-7.64$ (m, 1H, C <sub>7</sub> '-H), $7.53-7.64$ (m, 1H, C <sub>7</sub> '-H), $7.53-7.64$ (m, 1H, C <sub>7</sub> '-H), $7.53-7.64$ (m, 2H, C_7'-H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                                       |                                                                |
| Ph <sub>3</sub> SiL <sub>X</sub>    |       | 3.48    | 8.17  | 8.99 (s, 1H, C <sub>5</sub> -H), 7.88–7.92 (m, 2H, C <sub>2</sub> -H & C' <sub>6</sub> -H), 7.71–7.75<br>(m, 2H, C' <sub>3</sub> -H & C'' <sub>3</sub> -H), 7.35–7.73 (m, 5H, C'' <sub>2</sub> -H, C'' <sub>6</sub> -H, C'' <sub>6</sub> -H, C'' <sub>5</sub> -H, C'' <sub>6</sub> -H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.35–7.73 (m, 15H)                      | I                                                              |

Table II <sup>1</sup>H NMR data ( $\delta$ ) of semicarbazide ligands and their triphenylsilicon (IV) complexes

|                                    |        | Table  | III $^{13}$ C NMR data ( $\delta$ ) of thiosemicarbazide ligands and their triphenylsilicon (IV) c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | complexes                         |                                                            |
|------------------------------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|
| Ligand/<br>complex                 | C=S    | C=N    | Aromatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Si—Ph                             | м                                                          |
| HL <sub>1</sub>                    | 177.44 | 135.91 | 151.64 (C <sub>3</sub> ), 138.86 (C <sub>1</sub> '), 131.97 (C <sub>1</sub> '), 128.98 (C <sub>3</sub> ' & C <sub>5</sub> '), 128.02 (C <sub>3</sub> ' & C <sub>5</sub> '), 127.97 (C <sub>7</sub> ' & C <sub>6</sub> '), 127.90 (C <sub>5</sub> ), 126.61 (C <sub>4</sub> '), 126.46 (C <sub>4</sub> ), 118.40 (C <sub>5</sub> ' & C <sub>1</sub> '), 116.55 (C <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                 |                                                            |
| $Ph_3SiL_I$                        | 168.34 | 127.43 | 155.25 (C3) 138.80 (C1), 132.28 (C7), 128.48 (C3 & C5), 128.51 (C3 & C5), 127.26 (C2 & C6), 128.90 (C5), 128.90 (C5), 126.36 (C4), 118.44 (C3), $62$ , $62$ , $1116.15$ (C3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 136.13, 134.48,<br>128.99, 127.43 | l                                                          |
| HL <sub>II</sub>                   | 177.36 | 136.63 | 15.02 (C) 15.04 (C) 13.03 (C) (C) 137.92 (C) 129.02 (C) 129.01 (C) $\approx C_{3}^{\circ}$ , $\approx C_{3}^{\circ}$ , 128.75 (C) $\approx C_{3}^{\circ}$ , $\approx C_{3}^{\circ}$ , 127.94 (C) $\approx C_{6}^{\circ}$ , 126.52 (C), 126.37 (C), 118.57 (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                                 | 20.86 (C <sub>4</sub> -CH <sub>3</sub> )                   |
| Ph <sub>3</sub> SiL <sub>II</sub>  | 169.21 | 129.23 | 15.25 (C3) 15.82 (C7), 137.63 (C4), 129.32 (C7), 128.97 (C3, & C5), 128.95 (C5, & C5), 128.28 (C7), 127.95 (C5, & C5), 127.57 (C5), 126.05 (C4), 118.62 (C5, & C5), 116.00 (C3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 136.25, 135.03,<br>129.12, 127.12 | 20.65 (C <sub>4</sub> -CH <sub>3</sub> )                   |
| HL <sub>III</sub>                  | 177.53 | 135.14 | $159.56 (C_{4}^{0}), 151.21 (C_{3}), 139.05 (C_{4}^{0}), 129.61 (C_{3}^{0} & C_{3}^{0}), 121.21 (C_{3}), 139.05 (C_{4}^{0}), 124.49 (C_{1}^{0}), 118.38 (C_{2}^{0} & C_{6}^{0}), 116.93 (C_{3}^{0}), 115.21 (C_{3}), 126.80 (C_{4}^{0}), 124.49 (C_{1}^{0}), 118.38 (C_{2}^{0} & C_{6}^{0}), 116.93 (C_{3}), 114.51 (C_{3} & C_{3}), 126.50 (C_{3}), 114.51 (C_{3} & C_{3}), 126.50 (C_{3}), 114.51 (C_{3} & C_{3}), 126.50 (C_{3}), 126.50 ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 55.24<br>(C <sup>//</sup> _4-OCH <sub>3</sub> )            |
| Ph <sub>3</sub> SiL <sub>III</sub> | 168.31 | 129.24 | 159.37 (C <sup>4</sup> <sub>1</sub> ), 152.09 (C <sub>3</sub> ), 139.00 (C <sub>1</sub> ), 129.69 (C' <sub>3</sub> & C' <sub>3</sub> ), 129.27 (C'' <sub>2</sub> & C'' <sub>5</sub> ), 128.21 (C <sub>3</sub> ), 126.51 (C' <sub>4</sub> ), 124.29 (C' <sub>1</sub> ), 116.99 (C' <sub>2</sub> & C' <sub>6</sub> ), 116.62 (C' <sub>1</sub> ), 116.09 (C' <sub>1</sub> & C'' <sub>5</sub> ), 116.62 (C' <sub>1</sub> ), 116.99 (C' <sub>1</sub> & C'' <sub>5</sub> ), 116.62 (C' <sub>1</sub> ), 116.62 (C' <sub>1</sub> ), 116.69 (C' <sub>1</sub> ), 11 | 136.15, 134.78,<br>128.96, 127.36 | 55.02<br>(C <sup>//</sup> <sub>4</sub> -OCH <sub>3</sub> ) |
| HL <sub>IV</sub>                   | 177.38 | 134.60 | 150.97 (C2) $(C_{3}^{(1)}, C_{3}^{(2)}, C_{3}^{(2)})$ (C3) $(C_{3}^{(1)}, C_{3}^{(2)})$ (C3) $(C_{3}^{(2)}, C_{3}^{(2)})$ (C3) $(C_{3}^{(1)}, C_{3}^{(2)})$ (C3) $(C_{3}^{(1)}, C_{3}^{(2)})$ (C4), 122.05 (C4), 118.53 (C4), $(C_{3}^{(1)}, C_{3}^{(2)})$ (C4), 117.76 (C3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                 | I                                                          |
| Ph <sub>3</sub> SiL <sub>IV</sub>  | 169.00 | 128.55 | $151.52 (C_{3}, 139.56 (C_{1}), 131.67 (C_{3}, \& C_{3}), 131.67 (C_{3}, \& C_{3}), 130.13 (C_{2}', \& C_{3}), 129.67 (C_{3}, \& C_{5}), 129.67 (C_{3}, \& C_{5}), 129.69 (C_{1}), 129.00 (C_{5}), 126.94 (C_{4}), 121.85 (C_{1}, N, C_{2}), 117.47 (C_{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 136.26, 134.63,<br>129.00, 127.48 | l                                                          |
| HLv                                | 177.59 | 134.69 | 150.10 (C <sub>3</sub> ), 138.95 (C <sub>1</sub> ), 133.39 (C <sub>1</sub> ), 130.98 (C <sub>1</sub> '), 129.83 (C <sub>3</sub> & C <sub>5</sub> ), 129.71 (C <sub>3</sub> & C <sub>5</sub> ), 128.81 (C <sub>2</sub> & C <sub>6</sub> '), 127.93 (C <sub>5</sub> ), 127.12 (C <sub>4</sub> ), 118.56 (C <sub>5</sub> & C <sub>5</sub> ), 117.34 (C <sub>1</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                 | l                                                          |
| $Ph_3SiL_V$                        | 168.50 | 129.00 | 151.21 (C <sub>3</sub> ) 139.01 (C <sub>7</sub> ), 133.03 (C <sub>4</sub> ), 131.23 (C <sub>7</sub> ), 128.73 (C <sub>3</sub> & C <sub>5</sub> ), 129.75 (C <sub>3</sub> & C <sub>5</sub> ), 128.84 (C <sub>7</sub> & C <sub>6</sub> ), 128.59 (C <sub>5</sub> ), 126.82 (C <sub>4</sub> ), 118.62 (C <sub>2</sub> & C <sub>6</sub> ), 117.04 (C <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135.92, 134.50,<br>128.96, 126.94 | I                                                          |

NU) vleilio. d their trinhen ę zide lias ţ of this (8) Table III <sup>13</sup>C NMR da

Downloaded by [University of Haifa Library] at 02:54 19 August 2013

|                                     |        | Tau    | <b>IC IV</b> CIVININ UND $(0)$ OF SCHIFCH DAZING INSHIPS WIN THEIR HIPHEN DISTRICT (IV) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | compress                          |                                                        |
|-------------------------------------|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------|
| Ligand/<br>complex                  | C=0    | C=N    | Aromatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Si-Ph                             | R                                                      |
| HL <sub>VI</sub>                    | 157.20 | 133.44 | 151.32 (C <sub>3</sub> ), 138.97 (C' <sub>1</sub> ), 132.17 (C' <sub>1</sub> ), 129.01 (C' <sub>5</sub> & C' <sub>5</sub> ), 128.08 (C'' <sub>5</sub> & C'' <sub>5</sub> ), 128.05 (C'' <sub>2</sub> & C'' <sub>6</sub> ), 127.95 (C <sub>5</sub> ), 126.43 (C'' <sub>1</sub> ), 125.95 (C' <sub>4</sub> ), 118.51 (C'' <sub>2</sub> & C' <sub>1</sub> ), 116.87 (C' <sub>1</sub> ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                 |                                                        |
| Ph <sub>3</sub> SiL <sub>VI</sub>   | 149.80 | 129.16 | $r_{C_2} = r_{C_3} = r_{C_3} = r_{C_4} = r_{C_4} = r_{C_1} = r_{C_3} = r_{C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 136.05, 134.28,<br>128.85, 127.06 | I                                                      |
| HLvII                               | 157.15 | 133.63 | 151.40 (C3), 115.56 (C1), 137.70 (C4), 129.17 (C7), 128.94 (C3 & C5), 118.46 (C3), 138.69 (C5 & C5), 127.89 (C2 & C6), 126.32 (C3), 125.72 (C4), 118.46 (C2 & C5), 116.66 (C1 & C7) (116.66 (C2 & C6)), 126.32 (C3), 125.72 (C4), 118.46 (C3) (C4) (C4) (C4) (C4) (C4) (C4) (C4) (C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                 | 20.79 (C <sub>4</sub> -CH <sub>3</sub> )               |
| Ph <sub>3</sub> SiL <sub>VII</sub>  | 150.00 | 128.11 | $15.32 (C_3) (S_1) (S_2) (S_1) (S_1) (S_2) (S_1) (S_2) (S_1) (S_2) (S_2) (S_3) (S_2) (S_2) (S_1) (S_2) (S_2) (S_2) (S_1) (S_2) (S_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 136.43, 134.36,<br>128.94, 127.33 | 20.57 (C <sub>4</sub> -CH <sub>3</sub> )               |
| HLvIII                              | 159.46 | 131.18 | $15(7_{2}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I                                 | 55.24 (C <sup>"</sup> <sub>4</sub> -OCH <sub>3</sub> ) |
| Ph <sub>3</sub> SiL <sub>VIII</sub> | 151.24 | 127.45 | 15.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(54) + 17.(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 135.88, 134.08,<br>129.06, 127.13 | 55.23 (C <sup>"</sup> <sub>4</sub> -OCH <sub>3</sub> ) |
| HL <sub>IX</sub>                    | 156.70 | 131.62 | 149-46 (C3), 13905 (C <sup>1</sup> <sub>1</sub> ), 131.67 (C <sup>4</sup> <sub>3</sub> & C <sup>4</sup> <sub>5</sub> ), 130.13 (C <sup>4</sup> <sub>2</sub> & C <sup>4</sup> <sub>6</sub> ), 129.67 (C <sup>4</sup> <sub>3</sub> & C <sup>4</sup> <sub>5</sub> ), 129.60 (C <sup>1</sup> <sub>1</sub> ), 127.48 (C <sub>5</sub> ), 126.94 (C <sub>4</sub> ), 121.85 (C <sup>4</sup> <sub>4</sub> ), 118.48 (C <sup>4</sup> <sub>5</sub> & C <sup>4</sup> <sub>5</sub> ), 117.87 (C <sup>4</sup> <sub>2</sub> ), 1 | I                                 | I                                                      |
| Ph <sub>3</sub> SiL <sub>IX</sub>   | 148.78 | 128.23 | $151.73 (C_3) (C_4) (C_4) (C_4) (C_4) (C_5) (C_5) (C_5) (C_7) (C_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 136.02, 134.17,<br>128.83, 127.31 | I                                                      |
| $\mathrm{HL}_{\mathrm{X}}$          | 156.70 | 131.46 | 149-42 (C3), 131-157 (C4), 133-22 (C4), 131-27 (C7), 129-86 (C5, & C5), 139-42 (C3), 139-67 (C5, & C5), 128-76 (C2, & C6), 127-45 (C5), 126-93 (C4), 118-48 (C5, & C5), 117-87 (C5) & C6), 127-45 (C5) (C4), 117-87 (C5) (C4) (C5) (C4) (C5) (C4) (C4) (C4) (C4) (C4) (C4) (C4) (C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                 | I                                                      |
| Ph <sub>3</sub> SiL <sub>X</sub>    | 149.23 | 128.50 | $152.27 (C_3), 138.70 (C_1'), 132.93 (C_3'), 131.53 (C_1'), 129.23 (C_3' & C_5'), 129.11 (C_3' & C_5'), 128.80 (C_2' & C_6'), 128.27 (C_5), 126.62 (C_4), 118.53 (C_2' & C_5), 117.20 (C_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 136.10, 134.23,<br>128.75, 127.22 | I                                                      |

**Table IV** <sup>13</sup>C NMR data (*b*) of semicarbazide ligands and their triphenylsilicon (IV) complexes

Downloaded by [University of Haifa Library] at 02:54 19 August 2013



Figure 2 Suggested structure for the complexes, X = S or O, and  $\widehat{N X}$  donor sites for the ligand molecules.

azomethine nitrogen to the silicon atom. The signals due to ring carbons of phenyl group attached to silicon appeared at  $\delta$  124.5, 128.2, 134.1, and 140.2.

#### <sup>29</sup>Si NMR Spectra

The <sup>29</sup>Si NMR of complexes gives sharp signals at  $\delta$  –80 to –110, which clearly indicates the pentacoordinated environment around the silicon atom and is well in agreement with the reported values.<sup>24</sup> Thus on the basis of the foregoing spectral features, the pentacoordinated structure of the complexes shown in Figure 2 has been proposed.

#### ANTIMICROBIAL ACTIVITY

The ligands and their silicon complexes were evaluated for *in vitro* antibacterial activity against Gram-positive bacteria *Bacillus subtilis* and *Staphylococcus aureus* and Gram-negative bacteria *Escherichia coli*, and *in vitro* antifungal activity against *Candida albicans* and *Aspergillus niger* fungi. Minimum inhibitory concentrations (MICs) were determined by means of twofold serial dilution technique<sup>25,26</sup> and are presented in Table S1 (available online in the Supplementary Materials).

#### CONCLUSION

Isolated organosilicon (IV) complexes of thiosemicarbazones and semicarbazones derived from 1-phenyl-3-arylpyrazole-4-carboxaldehydes were tested against pathogenic bacteria and fungi. The activity of the ligands were due to the presence of toxophorically important -CON= or -CSN= groups. Upon complexation, the activity was further enhanced against the most of the microorganisms under identical experimental conditions.

#### **EXPERIMENTAL**

All the operations were carried out under nitrogen atmosphere using vacuum line. All the solvents used were dried by conventional methods. Triphenylchlorosilane was obtained through Aldrich and was used as such without any further purification. IR spectra were obtained as KBr pellets using a Perkin Elmer Spectrum RX1 instrument. <sup>1</sup>H, <sup>13</sup>C NMR, and <sup>29</sup>Si spectra were determined on a Bruker Avance II 400 MHz NMR Spectrometer in CDCl<sub>3</sub>

and two drops of DMSO-d<sub>6</sub> using TMS as an internal standard. Elemental analyses were carried out on Perkin Elmer 2400. Molecular weights of the complexes were determined by cryoscopic method in dry nitrobenzene. Molar conductance measurements were carried out using a Model-306 Systronics conductivity bridge in DMSO solvent. Silicon was determined gravimetrically as  $SiO_2$ .

#### **Preparation of Ligands**

The 1-phenyl-3-arylpyrazole-4-carboxaldehydes were prepared in two steps. The first one was the reaction between acetophenone derivatives (20.0 mmol) and phenylhydrazine (2.16 g, 20.0 mmol) in ethanol (50 mL). The hydrazone derivatives (4.00 mmol) were treated with the Vilsmeier–Haack reagent, i.e., a cold solution of dimethylformamide (10 mL) and phosphorus oxychloride (0.5 mL, 6 mmol), leading to the corresponding 4-carboxaldehyde functionalized pyrazole heterocyclic ring in mild operating conditions. Three equivalents of this reagent, instead of two as described by Kira et al.,<sup>27</sup> were necessary to obtain the aldehydes in good yields. The condensation of 1-phenyl-3-arylpyrazole-4-carboxaldehydes (10.0 mmol) with thiosemicarbazide (0.91 g, 10.0 mmol) and semicarbazide hydrochloride (1.11 g, 10.0 mmol) in the presence of sodium acetate (0.86 g, 10.5 mmol) in ethanol (30 mL) resulted in the formation of thiosemicarbazone and semicarbazone derivatives, respectively. These were characterized by elemental analyses, IR and NMR spectra studies.

#### **Preparation of Complexes**

To a weighed quantity of triphenylchlorosilane (1.18 g, 4.0 mmol) in dry methanol (20 mL), sodium salt of the ligands (4.0 mmol) was added. Sodium salt of the ligands was prepared by adding sodium (0.10 g, 4.50 mmol) to the ligands (4.0 mmol) in dry methanol (10 mL). The mixture was refluxed for 12–16 h. After the completion of the reaction, the precipitated sodium chloride was filtered off, and the excess solvent was removed under vacuum. The residues were dried under vacuum for 3–4 h. The compound was washed with n-hexane or a mixture of methanol and n-hexane (50:50 v/v) to ensure the purity of the product and finally dried over a vacuum pump. The elemental analyses and physical properties of these silicon complexes are given in Table V.

#### **Biological Assays: Antimicrobial Activity**

The *in vitro* antibacterial and antifungal activity of ligands and their organosilicon (IV) complexes were carried out against the bacteria *Bacillus subtilis*, *Staphylococcus aureus*, and *Escherichia coli* and fungi *Candida albicans* and *Aspergillus niger* using serial dilution technique in double strength nutrient broth-I.P. and Sabouraud dextrose broth-I.P. as a medium. The conventional bactericides tetracycline, chloramphenicol, kanamycin, cefazoline sodium, and cefotaxime and fungicides cycloheximide, carbendazim, and fluconazole were used as standards for comparing the activity of compounds. Experimental details for the antibacterial and antifungal assays are presented in the Supplemental Materials.

|                                    |                                                                  |           |                   | Ana         | Jysis (%) Found (Calcd | (.          |             |
|------------------------------------|------------------------------------------------------------------|-----------|-------------------|-------------|------------------------|-------------|-------------|
| Ligand/complexes                   | Molecular formula                                                | Yield (%) | C                 | Н           | Z                      | S           | Si          |
| HL <sub>I</sub>                    | C <sub>17</sub> H <sub>15</sub> N <sub>5</sub> S                 | 80        | 63.35 (63.53)     | 4.32 (4.70) | 21.80 (21.79)          | 9.89 (9.98) |             |
| HL <sub>II</sub>                   | $C_{18}H_{17}N_5S$                                               | 74        | 64.32 (64.45)     | 5.09 (5.11) | 20.90 (20.88)          | 9.51 (9.56) |             |
| HL <sub>III</sub>                  | C <sub>18</sub> H <sub>17</sub> N <sub>5</sub> OS                | 85        | 61.34 (61.52)     | 4.84 (4.88) | 19.95 (19.93)          | 9.11 (9.12) |             |
| HL <sub>IV</sub>                   | C <sub>17</sub> H <sub>15</sub> BrN <sub>5</sub> S               | 83        | 51.06 (51.01)     | 3.50(3.53)  | 17.47 (17.50)          | 8.04(8.01)  |             |
| HLv                                | $C_{17}H_{15}CIN_5S$                                             | 82        | 57.34 (57.38)     | 3.99(3.97)  | 19.62 (19.68)          | 9.04(9.01)  |             |
| HLvI                               | $C_{17}H_{15}N_{5}O$                                             | 67        | 66.89 (66.87)     | 4.99 (4.95) | 22.91 (22.94)          |             |             |
| HLVII                              | $C_{18}H_{17}N_5O$                                               | 73        | 67.71 (67.70)     | 5.31 (5.37) | 21.90 (21.93)          | I           |             |
| HLVIII                             | $C_{18}H_{17}N_5O_2$                                             | 06        | 64.44 (64.47)     | 5.09 (5.11) | 20.83 (20.88)          | I           |             |
| HL <sub>IX</sub>                   | $C_{17}H_{15}BrN_5O$                                             | 84        | 53.16 (53.14)     | 3.63 (3.67) | 18.25 (18.23)          | I           |             |
| HL <sub>X</sub>                    | $C_{17}H_{15}CIN_5O$                                             | 78        | 60.11 ( $60.09$ ) | 4.13 (4.15) | 20.65 (20.61)          | Ι           |             |
| Ph <sub>3</sub> SiL <sub>I</sub>   | C <sub>35</sub> H <sub>29</sub> N <sub>5</sub> SSi               | 64        | 72.49 (72.50)     | 5.02 (5.04) | 12.04 (12.08)          | 5.50 (5.53) | 4.82 (4.84) |
| $Ph_3SiL_{II}$                     | C <sub>36</sub> H <sub>31</sub> N <sub>5</sub> SSi               | 69        | 72.85 (72.81)     | 5.23 (5.26) | 11.70 (11.79)          | 5.38(5.40)  | 4.70 (4.73) |
| $Ph_3SiL_{III}$                    | C <sub>36</sub> H <sub>31</sub> N <sub>5</sub> OSSi              | 71        | 70.88 (70.90)     | 5.10 (5.12) | 11.45 (11.48)          | 5.23 (5.26) | 4.60(4.61)  |
| $Ph_3SiL_{IV}$                     | C <sub>35</sub> H <sub>28</sub> BrN <sub>5</sub> SSi             | 78        | 63.80 (63.82)     | 4.23 (4.28) | 10.60(10.63)           | 4.85 (4.87) | 4.22 (4.26) |
| $Ph_3SiL_V$                        | C <sub>35</sub> H <sub>28</sub> CIN <sub>5</sub> SSi             | 72        | 68.40 (68.44)     | 4.55 (4.59) | 11.38 (11.40)          | 5.20 (5.22) | 4.55 (4.57) |
| $Ph_3SiL_{VI}$                     | $C_{35}H_{29}N_5OSi$                                             | 63        | 74.50 (74.57)     | 5.20 (5.19) | 12.40 (12.42)          |             | 4.99 (4.98) |
| $Ph_3SiL_{VII}$                    | C <sub>36</sub> H <sub>31</sub> N <sub>5</sub> OSi               | 61        | 74.84 (74.87)     | 5.45 (5.41) | 12.15 (12.12)          | I           | 4.90 (4.86) |
| Ph <sub>3</sub> SiL <sub>VII</sub> | C <sub>36</sub> H <sub>31</sub> N <sub>5</sub> O <sub>2</sub> Si | 69        | 72.86 (72.82)     | 5.29 (5.26) | 11.78 (11.80)          | Ι           | 4.70 (4.73) |
| Ph <sub>3</sub> SiL <sub>IX</sub>  | C <sub>35</sub> H <sub>28</sub> BrN <sub>5</sub> OSi             | 73        | 65.40 (65.42)     | 4.36 (4.39) | 10.88(10.90)           |             | 4.39 (4.37) |
| $Ph_3SiL_X$                        | C <sub>35</sub> H <sub>28</sub> CIN <sub>5</sub> OSi             | 65        | 70.25 (70.28)     | 4.70 (4.72) | 11.74 (11.71)          |             | 4.68 (4.70) |

Table V Analysis and percent yield of ligands and their triphenylsilicon (IV) complexes

#### REFERENCES

- 1. M. J. Campbell, Coord. Chem. Rev., 15, 279 (1975).
- 2. S. Padhye and G. B. Kauffman, Coord. Chem. Rev., 63, 127 (1985).
- D. X. West, A. Liberta, S. B. Padhye, R. C. Chikate, P. B. Sonawane, A. S. Kumbhar, and R. G. Yerande, *Coord. Chem. Rev.*, **123**, 49 (1993).
- D. X. West, S. B. Padhye, and P. B. Sonawane, *Structure and Bonding*, Vol. 76 (Springer-Verlag, New York, 1991), pp. 1–49.
- 5. J. S. Casas, M. S. Garcia-Tasende, and J. Sordo, Coord. Chem. Rev., 209, 197 (2000).
- 6. H. Cerecetto and M. Gonzalez, Curr. Topics Med. Chem., 2, 1187 (2002).
- 7. R. V. Singh, S. C. Joshi, A. Gajraj, and P. Nagpal, Appl. Organomet. Chem., 16, 713 (2002).
- 8. T. Rosu, A. Gulea, A. Nicolae, and R. Georgescu, *Molecules*, 12, 782 (2007).
- 9. S. Belwal, N. Fahmi, and R. V. Singh, Appl. Organomet. Chem., 22, 615 (2008).
- 10. D. K. Sau, R. J. Butcher, S. Chaudhuri, and N. Saha, Mol. Cell Biochem., 253, 21 (2003).
- T. Vardinova, D. K. Demertzi, M. Rupelieva, M. Demertzis, and P. Genova, Acta Virol., 45, 87 (2001).
- V. Mishra, S. N. Pandeya, C. Pannecouque, M. Witvrouw, and E. D. Clercq, Arch Pharm., 335, 183 (2002).
- 13. T. R. Bal, B. Anand, P. Yogeeswari, and D. Sriram, Bioorg. Med. Chem. Lett., 15, 4451 (2005).
- 14. H. Beraldo and D. Gambinob, Mini Rev. Med. Chem., 4, 31 (2004).
- K. L. Kees, J. J. Fitzgerald Jr., K. E. Steiner, J. F. Mattes, B. Mihan, T. Tosi, D. Mondero, and M. L. McCaled, *J. Med. Chem.*, **39**, 3920 (1996).
- 16. R. Aggarwal, V. Kumar, P. Tyagi, and S. P. Singh, Bioorg. Med. Chem., 14, 1785 (2006).
- 17. V. Kumar, R. Aggarwal, P. Tyagi, and S. P. Singh, Eur. J. Med. Chem., 40, 922 (2005).
- 18. O. Prakash, R. Kumar, and V. Parkash, Eur. J. Med. Chem., 43, 435 (2008).
- 19. O. Prakash, R. Kumar, and R. Sehrawat, Eur. J. Med. Chem., 44, 1763 (2009).
- 20. G. Meazz, F. Bettarini, P. La Porta, and P. Piccardi, Pest Manag. Sci., 60, 1178 (2004).
- 21. J. C. Jung, E. B. Walkins, and M. A. Avery, Tetrahedron, 58, 3639 (2002).
- 22. R. Malhotra, J. Mehta, and J. K. Puri, Cent. Eur. J. Chem., 5, 858 (2007).
- 23. S. P. Narula, N. Kapur, C. R. Rana, and R. Malhotra, Inorg. Chim. Acta, 159, 87 (1989).
- 24. J. Wagler, U. Bohme, E. Brendler, B. Thomas, S. Goutal, H. Mayr, B. Kempf, G. Y. Remennikov, and G. Roewer, *Inorg. Chim. Acta*, **358**, 4270 (2005).
- 25. R. Malhotra, J. Mehta, K. Bala, and A. K. Sharma, Indian J. Chem., 47A, 58 (2008).
- 26. B. G. Tweedy, Phytopathology, 55, 910 (1964).
- 27. M. A. Kira, M. O. Abdel-Raeman, and K. Z. Gadalla, Tetrahedron Lett., 2, 109 (1969).