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Hua LittP*

Graphical Abstract

Five novel gold(l) complexes with distinct diver@acolor or tricolor) switching
mechanochromic and prominent AIE properties hawenbeported in present work.
Abnormally, thee- and a-conformers coexisted in the same crystal unit &l
mono-substituted cyclohexyl Au(l) complewhich is quite rare in the similar gold
systems.The five newly-developed(l) complexes are anti@dato be used as

fluorescent detector and mechanosensors.
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ABSTRACT

Five novel gold(l) complexes with various isocyanidjands have been synthesized and

characterized in present work. The introductionddferent terminal ligands endows

distinct diverse properties to complexes: i) alkyl modified complexesl-3 exhibit

tricolor or bicolor mechanochromic behaviors dué¢h® loosing packing formed through
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weak intermolecular C-H- - - F interactions, whild &ridged complexed and5 are not

mechano-responsive with tight-t stackings; ii) all the target complexes present
prominent but different aggregation-induced emis@E) characteristics caused by the
inherent difference in their structures. Therefottege above gold(l) complexes are

anticipated to be used as fluorescent detectorsreathanosensors.

Key words: Gold(l)-isocyanide complexes; Mechanochromism; Aggation-induced

emission(AIE); Crystal structures

1. Introduction

Smart materials refer to the materials that canenmmakponse upon external (optical,
electrical, thermal, solvent, anions, mechanicaltc.)e stimulation [1-6].
Mechanical-responsive luminescent materials, asobrgiintessential representatives of
smart materials, have attracted increasing attentieecause of their extensive
applications in optoelectronic devices [7], storagel memories fields [8], mechanical
sensors [6], and chemical detectors [9]. The sstide luminance of mechanochromic
materials usually exhibit reversible or irreversiliurn-on switching [4], or turn-off
switching [5] involving two-color transformation Jj6or even multicolor tunning [7, 10]
under the stimuli of mechanical force (press, sheaetch, grind, etc [6, 7,10-11]).
Among them, metal complexes based on Pt(ll) [13-kH]I) [16-18], and Cu(l) [19-21]
constitute a significant portion, while the newlgveloped systems associated with Au(l)

are still limited in recent years [22-26]. In 20QBg first gold(l) complex that exhibits
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blue-to-yellow emission conversion upon grindinghmpestle was reported by Ito and
co-workers [22]. The related research results atdicthat intermolecular aurophilic
interactions may be the main reason for the emissiange upon mechanic stimulation.
However, multicolor mediated mechanochromic makerae very rare, let alone the
capture of the unstable intermediate state betwevering to initial state [27].

In the meanwhile, the development of luminogenshwétggregation-induced
emission characteristic (AlEgens) has been in dingostate since the discovery of
abnormal AIE phenomenon by Tang’s group in 2001.[28 far, a great number of gold
complexes with AIE or mechanochromic propertiesehbeen reported [29-38]. In our
outstanding AIE and mechanochromic behaviors [Z4, 38], in which the Au—€N
coordination bonds are linear or approximatelydingmilar to the other reported gold(l)
isocyanide complexes. In this paper, we reported fiovel gold(l) complexes with
different isocyanide ligands (Figure 1) and invgatied thoroughly the effect of terminal
ligands on photophysical properties of these gpletmplexes. In addition, we observed
some significant conformations according to outolwing crystal analysis. The above
special structural characteristics may endow thsgstems distinct photophysical
properties.

Insert Figure 1
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2. Experiments
2.1. Materials and methods

Specific synthetic strategy has been demonstrat&@theme 1All manipulations
were carried out under an argon atmosphere by wsarglard Schlenk techniques,
unless otherwise stated. The starting materialyeoide 1a, 2a, 3a, 4a were
purchased from Alfa Aesar and were used directh,@, was dried with CaH
then distilled, and ultra-pure water was used adRperiments. All other starting
materials and reagents were obtained commerciatlgn fShen Shi Hua Gong
Company (China) as analytical-grade and used withiather purification.*H
NMR and**C NMR spectra were collected on American Varian ddey Plus 400
spectrometer (400 MHz), Bruker AVANCE Ill HD-400 ¥arian MERCURY Plus
600 MHz instrument'H NMR spectra are reported as followed: chemicit &h
ppm @) relative to the chemical shift of TMS at 0.00 ppntegration, multiplicities
(s = singlet, d = doublet, t = triplet, m = mulgp), and coupling constant (H2JC
NMR chemical shifts reported in pprd) (relative to the central line of triplet for
CDCl; at 77 ppm®*°F NMR chemical shifts are relative t@fg (5 = -163.00). EI-MS
was obtained using Thermo scientific DSQElemental analyses (C, H, N) were
performed by the Microanalytical Services, Colleje&€hemistry, CCNU. UV-Vis
spectra were obtained on Shimadzu UV-3600 speabtopieter. Fluorescence
spectra were recorded on a Hitachi-F-4500 fluomeseespectrophotometer and

Fluoromax-P luminescence spectrometer (HORIBA JOBWON INC.) Absolute
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fluorescence quantum yields were measured on a matsa C11347 Absolute PL
quantum yield spectrometer. XRD studies were resmbah a Shimadzu XRD-6000
diffractometer using Ni-filtered and graphite-mohommated Cu K radiation § =
1.54 A, 40 kV, 30 mA). The X-ray crystal-structudlata were obtained by the
Bruker APEX DUO CCD system. DFT calculations wererfprmed with the
Gaussian 09 program at the B3LYP/6-31G* (Au: Lari2evel of theory.

2.2. Synthesis

2.2.1. General procedure for the synthesis of 4b-4c

Compounds4b, 4c, Au(GgFs)(tht) (tht = tetrahydrothiophene) were prepared
according to the corresponding literatures [40-48). Yield: 73%."H NMR (600 MHz,
DMSO-d°): § (ppm) = 10.31 (s, 1H, I@0), 8.48 (s, 1H, N), 8.13 (d,J = 8.4 Hz, 1H,
Ar-H), 8.07-7.86 (m, 2H, AH), 7.76 (m, 1H, AH), 7.52 (d,J = 47.2 Hz, 3H, AH).
EI-MS: mz = 171.2 [M]*; Found:m/z = 171.2 [M]*. 4c: Yield: 50%.'H NMR (400
MHz, CDCL): & (ppm) = 8.19 (dJ = 8.4 Hz, 1H, ArH), 7.89 (d,J = 8.4 Hz, 2H, ArH),
7.67 (d,J = 8.3 Hz, 1H, ArH), 7.58-7.62 (m, 2H, AH), 7.44 (d,J = 8.2 Hz, 1H, ArH).

EI-MS: m/z = 153.2 [M]"; Found:nv/z = 153.3 [M]".
2.2.2. General procedure for the synthesis of 5b-5d

Syntheses of compound# and 5¢ The mixture of5a (0.50 g 2.60 mmol) and
K2COs (1.10 g, 7.80 mmol) was added in DMF (30 ml). Aidbromodecane_(0.69 g,

3.10 mmol) was added dropwise after heating taowefltemperature and the reaction



98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

residue was stirred for 12 h at 110 with formic acid (30 ml). After a series of
post-processing, collecting the expected purple €bl1 g ofScin a yield of 48%MH
NMR (400 MHz, CDC}Y): & (ppm) = 8.41 (dJ = 11.5 Hz, 0.5 H, BO, cis), 8.34 (d,J =
8.2 Hz, 0.5 H, €O, trans), 7.90 (dJ = 8.3 Hz, 0.5 H, M, trans), 7.72-7.81 (ddJ = 8.3
Hz, 0.5 H, MH, cis), 7.61 (d,J = 8.5 Hz, 1H, ArH), 7.56 (t,J = 13.5 Hz, 1H, ArH), 7.26
(d,J = 8.2 Hz, 1H, ArH), 7.23 (dJ = 8.1 Hz, 1H, ArH), 6.78 (d,J = 8.1 Hz, 2H, ArH),
4.14 (t,J = 6.3 Hz, 2H, OE@l), 1.93 (d,J = 6.9 Hz, 4H, €l,), 1.35 (s, 12H, 6,), 0.88 (t,

J=6.5 Hz, 3H, El3). EI-MS:mV/z = 327.5 [M[; Found:mvz = 327.3 [M]".

Synthesis of compourteld: The procedure did is similar to compoundc using the
following amounts:5¢ (1.00 g, 5.80 mmol) and triphosgene (1.89 g, 6ol). The
product was obtained as a deep purple solid (0)48 g yield of 64% NMR (400
MHz, CDCL): & (ppm) = 8.32 (dJ = 8.3 Hz, 1H, ArH), 8.12 (d,J = 8.1 Hz, 1H, ArH),
7.68 (t,J = 7.6 Hz, 1H, ArH), 7.60 - 7.51 (m, 2H, AH), 6.72 (dJ = 8.2 Hz, 1H, ArH),
4.16 (t,J = 6.4 Hz, 2H, OEl,), 2.22 - 1.94 (m, 4H, B,), 1.27 (d,J = 9.3 Hz, 12H, E,),

0.88 (t,J = 7.0 Hz, 3H, El3). EI-MS: vz = 309.5 [M]"; Found:m/z = 309.6 [M]".

2.2.3. General procedure for the synthesis of 1-5
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Synthesis of complek: Under an argon atmosphere, a mixture gfis8u(tht) (0.41
g, 0.91 mmol) anda (0.074 g, 0.88 mmol) was stirred in &k, (20 ml) overnight at
room temperature. After finishing the present react the reaction system was
concentrated in vacuo. Recrystallization with JCH/n-hexane. The product was
obtained as a light-yellow solid (0.20 g, 52%). NMR (400 MHz, CDC}): & (ppm) =
1.61 (s, 9H, E). *C NMR (100 MHz, CDGJ): & (ppm) = 150.5, 148.5, 140.5, 138.1,
135.7, 58.7, 29.7%F NMR (CDC}): & (ppm) = -116.1, -157.9, -162.8. IR (KBr): 2219
v(C=N) cm*. Anal. Calcd for GHsAuFsN: C, 29.55; H, 2.03; N, 3.13. Found: C, 29.34;

H, 2.13; N, 3.09.

Synthesis of comple& The procedure of compleXis similar to complexX. using
the following amounts: §sAu(tht) (0.46 g, 1.03 mmol) angla (0.11 g, 1.00 mmaol).
The product was obtained as a white solid proddet7(g, 46%)*H NMR (400 MHz,
CDCl3): 6 (ppm) = 3.89 (s, 1H, N&), 2.03 (s, 2H, E,), 1.81 (s, 4H, ©,), 1.48 (s, 4H,
CHy). **C NMR (100 MHz, CDGJ): & (ppm) = 150.7, 149.1, 148.2, 140. 5, 138.0, 135.6,
128.4, 54.7, 31.6, 24.6, 22.F NMR (CDCE): & (ppm) = -115.9, -158.1, -162.7. IR
(KBr): 2217 v(C=N) cm?. Anal. Calcd for GsHp;AuRsN: C, 33.00; H, 2.34; N, 2.96.

Found: C, 32.88; H, 2.42; N, 2.90.

Synthesis of comple8: The procedure of complekis similar to complexX using
the following amountsCsFsAu(tht) (0.46 g, 1.03 mmol) arga (0.13 g, 1.00 mmol). The

product was obtained as a white solid (0.27 g, 56#4)NMR (400 MHz, CDCJ): 3
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(ppm) = 7.36 (tJ = 7.7 Hz, 1H, ArH), 7.19 (d,J = 7.7 Hz, 2H, ArH), 2.50 (s, 6H,
Ar-CHs). °C NMR (100 MHz, CDGJ): & (ppm) = 161.0, 150.5, 148.2, 140.6, 138.1,
136.2, 131.0, 128.5, 124.1, 18 NMR (CDCk): 5 (ppm) = -116.0, -157.5, -162.5. IR
(KBr): 2220 w(C=N) cm'. Anal. Calcd for GsHeAuFsN: C, 36.38; H, 1.83; N, 2.83.

Found: C, 36.27; H, 1.91; N, 2.76.

Synthesis of compleA: The synthesis of complekis similar to complext using
the following amounts: g=sAu(tht) (0.29 g, 0.44 mmol) anttc (0.07 g, 0.43 mmol). The
product was obtained as a white solid (0.13 g, 58#)NMR (400 MHz, CDCY): &
(ppm) = 8.12 (tJ = 9.0 Hz, 2H, ArH), 8.00 (d,J = 7.9 Hz, 1H, ArH), 7.85 - 7.75 (m,
2H, Ar-H), 7.71 (t,J = 7.1 Hz, 1H, AH), 7.57 (tJ = 8.4 Hz, 1H, ArH). *C NMR (100
MHz, CDCk): & (ppm) = 133.6, 132.3, 129.2, 128.9, 128.3, 12¥26.2, 125.0, 121.9.
F NMR (CDCE): & (ppm) = -116.0, -157.3, -162.3. IR (KBr): 222@=N) cm*. Anal.

Calcd for G/H7AURsN: C, 39.48: H, 1.36; N, 2.71. Found: C, 39.351Hl5; N, 2.65.

Synthesis of complexs: The procedure ofs is similar to complex1l with
CgFsAu(tht) (0.20 g, 0.45 mmol) aned (0.14 g, 0.44 mmol). The product was obtained
as a white solid (0.19 g, 65%H NMR (400 MHz, CDCJ): 5 (ppm) = 8.39 (dJ = 9.0
Hz, 1H, ArH), 8.03 (d,J = 8.4 Hz, 1H, ArH), 7.83-7.70 (m, 2H, AH), 7.65 (t,J = 7.7
Hz, 1H, ArH), 6.80 (d,J = 8.4 Hz, 1H, ArH), 4.21 (t,J = 6.4 Hz, 2H, OEl,), 2.03 -
1.90 (m, 2H, @), 1.46 - 1.18 (m, 14H, 1g,), 0.89 (t,J = 7.0 Hz, 3H, El5). **C NMR

(100 MHz, CDC}): 8 (ppm) = 159.6, 158.0, 150.8, 148.5, 140.6, 138358.7, 129.4,



157  128.7, 127.5, 125.6, 123.3, 121.7, 113.0, 103.,681.9, 29.6, 29.3, 29.0, 26.2, 22.7,
158 14.1."F NMR (CDCE): 5 (ppm) = -116.0, -157.6, -162.4. IR (KBr): 222@C=N) cm™.
159  Anal. Calcd for G;H,7AURNO: C, 48.15; H, 4.04; N, 2.08. Found: C, 48.034H,1; N,

160 1.99.
161 Insert Scheme 1

162 3. Results and discussion

163  3.1. Synthesis

164 The synthetic route of complexdss has been presented in Scheme 1. These five
165  target gold(l) complexes were obtained in a feypsigith the yields of 46%-65%.

166  3.2. Diverse mechanochromic properties of 1-3

167 Mechanochromic properties were investigated by medmphotoluminescence (PL)
168  spectroscopy. Complek exhibited a “turn-on” and tricolor change in respe to the
169  external mechanical stimuli. As shown in Figuretl® initial powder of complex
170  exhibited a weak emission at 465 nm, which is larde observed under the irradiation
171 of 365 nm UV lamp due to a low quantum yiet:] of 3.7%. But its emission could be
172 further lighted up by the stimulation of mechanidalrce, showing bright cyan
173 luminescence with_a_red-shifted band at 495 nm, taedcorresponding quantum yield
174  was increased by 6.5-foldPpg = 24.2%). Interestingly, unlike some similar repadr

175  mechanochromic systems [4B],which the emission of ground powder could revert

176  the original state very directly after exposingdichloromethane vapor, yet the cyan
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fluorescence of complek transformed into dark yellow after fuming showiagoroad
band at around 560 nm. The above transformatiomdsat the yellow transition state and
the cyan state is reversible, while the originalieblstate could not be recovered.
(Zemmax 484 nm) was discovered upon grinding with an obsly increased quantum
yield from 6.3% to 10.9%. Interestingly, we obsehtbhat the above cyan powder need
go through an orange transition state before retoydo the initial blue state after
fuming with dichloromethane vapor. Subsequentlig thetastable state self-recovered to
the original state within a few minutes without amgatment and this self-recovery
process showed desirable repeatability. Unfortupatehis special state was too
instantaneous to be further explored. In the cdserplex3, a reversible transformation
from an original blue emissiom¢ = 27.7%) to a brighter cyan staté«= 61.3%) could
also be realized by mechanical grinding and didmn@thane fuming. Accordingly,
mechanochromic data of complexe8 have been summarized in Table 1. Indeed, no
any obvious emission change could be observed upenhanical stimulation for
complexes4 and 5. This might be caused by the existence of stranigrmolecular
interactions and hence formed compact packinggaltlee presence of naphthalene rings
(vide infra), which is difficult to destroyed under the stimtibn of external mechanical
forces.

Insert Table 1
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Insert Figure 2

Insert Figure 3

To further explore the mechanochromic mechanisme, ¢thanges of molecular
arrangements in different states were investigatagpowder X-ray diffraction (XRD).
As shown in Figure 2, Figure S4 and S5, the XRDepas of the initial solid samples for
complexesl-3 all exhibited sharp and intense peaks consistéhttihe diffraction peaks
obtained by single crystal structure simulatiordi¢ating that all the original states are
crystalline states. After grinding with pestle, weand broadening peaks were observed
for these three complexes, corresponding to thendton of amorphous phases.
Differently, some new ordered intense diffractiadaks differing from the initial pattern
appeared in complek after treating the ground samples with LH vapor. The above
observations demonstrate that the crystalline phéiee fuming is different from that of
unground sample and diverse morphologies givetasarious fluorescence. This may
be the reason why complek exhibits tricolor-changing mechanochromic behavior
While the reflection peaks of fumed sample couldréstored for comple® and 3. It
explained reversible bicolor but not tricolor mesbehromism for complexX and 3.
Anyway, we can preliminarily conclude that the nesiele conversions between
crystalline states and amorphous phases are rebf@fa the above color changes for
complexesl-3 upon mechanical stimulation.

3.3. Crystal structures and DFT calculations



218 Furthermore, we look forward to setting up deep emsthnding of the
219 aforementioned mechanochrmic behaviors. Fortunatelg obtained the crystal
220  structures for all the target complexie$ by slow crystallization from CyCl,/MeOH
221 or hexane Accordingly, we carried out detailed exploratibor the above crystal
222 structures and anticipated to unearth some integestformation. Pertinent diffraction
223 parameters, bond lengths (A) and bond angles (ug) been presented in Table S1-S6
224  (ESIt). By comparing the above crystal data, we can rlesthat the whole molecular
225  skeletons of complexek and 3 feature desirable coplanar and linear structuré wie
226 Au—-C=N and C-Au-C angles of 180.00°. The structure ohmex 5 is approximately
227  linear with the Au—€N angle of 178.09° and C—Au-C angle of 179.73°pe&esvely
228 (Figure S6). The characters of the above complexesvery similar to the systems
229 reported in literatures [6, 12, 22, 23]. In additiothe nearly linear Au—€N
230 (e-conformer: 179.57°a-conformer: 176.93°) and C—Au—Ce-¢onformer: 176.37°;
231 a-conformer: 173.92°) angles in these two conform&hmsw slightly difference for
232 complex 2. Specifically, complex4 exhibits bent structures with the Au=l and
233 C-Au-C angles of 164.57° and 173.64°, respectifféigure 5). It should be mentioned
234 that the above bending conformation is still raredpserved in the reported
235 gold(l)-isocyanide systems [6, 12, 23]. Mono-substid cyclohexyl undergo rapid
236  chair-to-chair conversion between two different foomations,viz. equatorial ¢) and
237 axial (@) conformers, at room temperature [44]. It hasnbe®cumented that the

238  equatorial conformer is ordinarily more stable whie@ substituent is a bulky group due
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to the steric effects. However, we observed bottettanda-conformers in the same unit
cell for complex2, with the isocyano—Au segment located in the esrisdtand axial sites
on the cyclohexyl ring, respectively (Figure 4). fdanterestingly, the two conformers
are oriented in opposite directions and weak C-HHinteractions could be observed
between different conformers. In 2005, Balch etaddo reported a similar [(cyclohexyl
isocyanide)Au'](PRs) complex and they obtained the yellow and colsrlésrms of
polymorphs successfully, in which the colorlessyparph consists of two half-cations
with the e- and a-conformer, respectively [45]. In order to get gidi into the above
phenomenon, we carried out the density functiohabty (DFT) calculations based on
the monomerd anda-conformer) and dimer models using the B3LYP fumdl. The
basis set employed here is 6-31G* (Lanl2DZ for Aona. As shown in Figure 6, the
HOMO and LUMO orbitals of botle- anda-conformers predominantly localize on the
CeFs unit and the central isocyano-Au fragment, respelst indicating an
intramolecular ligand to metal charge transfer gitaon character, while the two
monomers separately contribute to the frontier mdber orbital for the dimer and an
obvious intermolecular charge transfer could octutaddition, the energies of HOMO
(e-: -6.06,a-: -6.08 eV) and LUMOé&-: -1.29 eV,a-: -1.36 eV) orbitals for botle- and
a-conformers are very similar. But their respectareergy gap (-4.7 eV) is obviously
higher than that of the dimer (-4.3 eV). These ltesmply that the intermolecular charge
transfer is much easier to occur than that of titeamolecular process, which might

provide a good foundation for the stable coexisesfdoth two conformers.
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Insert Figure 4

Insert Figure 5

Insert Figure 6

We are then interested in exploring the crystalkpar of complexesl-5 and
attempt to find the reason for their different maatichromic behaviors. Complexes
only feature multiple intermolecular C—H---F interactioformed by head-to-tail
arrangement between the terminal penta-fluorophgmylip and the adjacent alkyl or
aryl group, respectively, except for compl8xinteracting with disordered methanol
molecule. And these multiple intermolecular C—H-intéractions act as guiding force
and hold the molecules to form loose 3D networksclumplexesl-3. The slippage is
very likely to take place between molecules under gstimulus of external mechanical
force and the intermolecular distances containimlg-gold distances could be perturbed,
which is supported by an obvious red shift in thesspective emission peak after
grinding. By contrast, the distances between thtece of intermolecular aryl rings for
complexest and5 are 3.467A and 3.472A, respectively. It's cleat ttomplexed and5
exhibited strong intermolecularr interactions due to the presence of naphthalewys ri
and presented very tight stackings, which brings that the corresponding packing
modes for complexe4 and5 are hard to change by grinding and complekemd5
accordingly do not show mechanochromic behaviersaddition, based on the different

crystal packings of complexesandb, it's also clear that the introduction of a simple
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alkoxy group could effectively tune the crystal ustures. Herein, our original
expectation of achieving distinct diverse propertiy a simple modification for the
bridging ligands of a series of gold complexes migghfulfilled successfully.
3.4. AIE behaviors

Based on the preceding mechanochromic investigati@n observed that all the
solid states for complexds5 were luminescent, although their correspondingssion
intensities were not very remarkable. However, wivea turned to explore their
corresponding solution states, we found that al ¢bmplexes were not luminescent,
which inspired us to associate with the AIE phenoome Therefore, using THF as a
good solvent and water as a poor solvent, we medghe UV-vis absorption spectra and
photoluminescence of complexgss in THF/H,O mixtures with various water fractions
(fw). The corresponding data is listed in Table 2sAswn in Table 2, all the complexes
presented absorption peaks from 200-350 nm, whichdcbe contributed to the-7*
transitions. On the other hand, the absorption estlg broadened and exhibited
distinctly various degree of red-shift when the avatolumes were increased to a certain
value. At the same time, obvious level-off tailsrev@lso observed at long-wavelength
region, which might result from the presence ofl neano-aggregates [46-47]. The
formation of aggregates was confirmed by DLS (Dyitaloght Scattering) study and the
related data have been showed in Figure S11.

Insert Table 2
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Emission spectra demonstrated that their respeatigeegation processes would be
lighted when the poor solvents were added to tHetiesn. Complexesl (tert-butyl
substituted) and2 (cyclohexyl substituted) exhibited typical AIE l@fior, which
displayed continually increased luminescence dutiegaggregation process. Complex
presented one weak emission band Wjtk at around 375 nm in pure THF. However,
the original emission intensity decreased and alm@ad peak at 500-600 nm appeared
exhibiting yellow emission when the water fractiovas increased to 90%. The
corresponding emission intensity boosted markedgr @0-times compared with it being
in pure THF. A similar AIE phenomenon was obseri@domplex2. The original weak
emission in pure THF solution was around 408 nm famther aggregation induced
emission appeared at around 557 nm, and equadiyngdyj, gave rise to dramatic increase
of the emission intensity over than 40-times. Abjyyathis is because that these
complexes are soluble in THF solution but practycanmiscible with water. Raising
water contents will certainly reduce its dissolvicepacity, which further results in the
generation of aggregated nanoparticles in TH®&/hixture with a high,, value. On the
other hand, intermolecular distance containing @ull distances will be altered and
aurophilic interactionill form [48]. The above factors will ultimatelyedd to the
enhancement of emission intensity and the appearahced-shifted yellow emission.
Distinctively, replacing the substituents from ramomatic rings to phenyl or naphthyl
ring, the aggregation behaviors for comple8es are special but consistent. Complexes

3-5 all began to emit when tHg values were increased to 70% with new peaks at 419
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nm @), 627 nm §), and 512 nm&5), respectively. Meanwhile, their respective enussi
intensity reached the maximum, while their emissiseakened gradually when tiig
value was increased continuously to 80% and evéa. 30erein, we have to address a
guestion: what's the reason for the above subséqgeenching phenomenon. We
tentatively presume that further aggregations mdy shortened the gold-gold distances,
but also tightened the intermolecular interactibesveen aromatic rings especially the
n-n interactions for complexe$ and 5, which adversely lead to the quenching of the
initial luminescence. Actually, as collected in Tal2, the red-shifted absorptions after
aggregation might provide a support for our abaoespmption.

Insert Figure 7

4. Conclusion

In summary, five novel gold(l) complexes with varsoisocyanide ligands were
designed and synthesized. The elaborate modifitaifathe terminal ligands has been
proved to effectively tune thephotophysical properties. Alkyl modified complexe8
exhibited tricolor or bicolor switching mechanocmic behaviors involved in a
reversible conversion between crystalline state amwbrphous phase. Based on the
crystal analysis, the loosing packings formed thhomultiple intermolecular C—H---F
interactions might be the reason for the above ameathromism. Conversely, the aryl
bridged complexegl and5 are not mechano-responsive due to the tight armhgt

intermoleculart-m packings. In addition, the structural differendehe terminal ligands
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gives rise to distinctive AIE characteristics famntplexesl-5. The X-ray single-crystal
analysis of complexX also indicates that the equatorial)(and axial &) conformers
could stably coexist and could realize a lower-gpentermolecular charge transfer,
which is quite rare in the similar gold systems a&odld provide new information for
related molecule designing. The above prominent hareachromic properties may
establish the foundation for their applications nmechanical sensors, and chemical
detectors. All the complexes present typical AlE&relateristics and these AIE-gens are
hoped to be used in the field of biomedical imaging
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540 i) C10H21Br, K;COs, DMF; iv) Au(GsFs)(tht), CH.Cl,, tht = tetrahydrothiophene.

541  Table 1Optical properties of complexds3 in different solid states.

Solid states
Complex
Unground powder Ground powder Treated with DCM
1 465 nnf (3.7%) 495 nm (24.2%) 560 nm (3.5%)
2 466 nm (6.3%) 484 nm (10.9%) 466 nm
3 398, 416 nm (27.7%) 489 nm (61.3%) 398, 416 nm

542  “Emission maximum wavelengtief, may)- Absolute photoluminescence quantum yield.
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Figure 3. Photographs of complexeéXa) and3(b) in different situations taken

under the 365 nm UV lamp.

Figure 4. (a) The single crystal structure of compl2x(b) Intermolecular interactions

and (c) crystal packing diagram of compx
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Figure 5. (a) The single crystal structure of compkx(b) Intermolecular interactions
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558 Figure 6. The molecular orbitals and corresponding energiesnonomer ¢ and
559  a-conformer) and dimer of compleX The geometry optimizations are based on the
560  crystal structures.

561 Table 2Optical properties of complexdss in solution and aggregates.

Absorbance maximunif,s nm) Emission maximumid, nm)
Complex
Solution state Aggregate state Solution state Agpjeestate
1 254 256 - 556
2 255 257 - 557
3 239 270 - 419
4 306 336 - 627

5 238,325 251,327 -- 512, 551, 596
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| = emission intensity anld = emission intensity in THF solution. (c) Photaken

under 365 nm UV light of complexin THF-water mixtures.
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1. Crystallographic Details

Single crystals of complexe$-5 were obtained by slow crystallization from
CH.Cl,/(MeOH or hexane), and approximate dimensions \whoved in Table 1. They
were mounted on a glass fiber for diffraction expent. Intensity data were collected on
a Nonius Kappa CCD diffractometer with MooKradiation (0.71073 A) at room
temperature. The structures were solved by a catibm of direct methods
(SHELXS-97} and Fourier difference techniques and refinedutiymiatrix least-squares
(SHELXL-97). All non-H atoms were refined anisotropically. THeatoms were placed
in the ideal positions and refined as riding atoRwsther crystal data is provided in Table
S1. Bond distances and angles is given in Table (B3%stallographic data for the
structures in this paper have been deposited WehQambridge Crystallographic Data
Centre as supplemental publication CCDC 1564000 1564074 2), 1564075 3),
1564076 4), 15640915).
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613
614
615 Table S1 Crystal data and parameters of data collectiahrafinement for complexes-5
Complex 1 2 3 4 5
2(CisHoAUFRN CoH2AURSN
Formula  CoHoAURN  CuruAurN 0 N o aupy GRS
, GH/0
Formula 447.16 473.19 1037.48 518.21 672.45
weight
Tem('f)rat”re 297(2) 298(2) 298(2) 298(2) 298(2)
Crystal system Orthorhombic Triclinic Monoclinic ~ Monoclinic Tridtiic
Space group Imma P-1 C2/c C2/c P-1
a(h) 7.075(4) 11.053(4) 8.843(3) 8.337(4) 9.253(2)
b(A) 10.387(7) 11.816(5) 29.114(9) 31.252(13) 9.283(2)
c(A) 18.193(11) 12.210(5) 6.981(2) 6.881(3) 16.111(4)
a (°) 90 75.392(6) 90 90 86.783(3)
() 90 64.248(5) 111.964(4) 106.231(7) 81.267(4)
v (®) 90 78.628(6) 90 90 71.397(3)
V (A3 1336.9(14) 1382.7(9) 1666.8(9) 1721.3(13) 1296.3(5)
Z 4 4 4 4 2
Density
(calculated) 2.401 2.273 2.067 2.000 1.723

(Mg/m’)



Absorption
coefficient
(mm*)

F(000)

Crystal size

(mn)

Theta range
for data
collection (°)

Index ranges

Reflections
collected

Independent
reflections

Max. and min.
transmission

Data /
restraints /
parameters

Goodness-of-f
it on F2

FinalR indices
[1>26(1)]

Rindices (all
data)

Largest diff.
peak and hole

(e”)

11.053 10.684 8.875 2.000 1.723

896 880 974 964 654

0.20x0.12x0.1 0.10x0.10x0.1 0.10x0.10x0.1 0.12x0.10x0.1 0.15x0.12x0.1
2 0 0 0 0

2.2410 23.79 1.7910 25.01 1.4to0 28.38 3.35t025 1.28to 26.00

-7<h<8, -12<h<13, -11<h<11, -9<h<9, -11<h<11,
-11<k<11, -14<k<13, -37<k<38, -36k<37, -11<k<11,
-20<1<20 -14<1<14 -9<1<9 -7<1<8 -18<1<19

3426 8474 7278 5927 9693
611 [R(int) = 4787 R(int) = 2080 R(int) = 1520 R(int) = 5059 R(int) =
0.0806] 0.0748] 0.0462] 0.1383] 0.0449]
0.265 and 0.357 and 0.428 and 0.423 and 0.564 and
0.222 0.344 0.412 0.371 0.443
611/59/73 4787/74/337 2080/13/124 15kPP/117 5059/0/317
1.093 1.054 1.084 1.084 1.056
R1=0.0932, R1=0.1114, R1=0.0331, R1=0.0702, R1=0.0604,
WR2 =0.2204 wR2=0.2817 wR2=0.0829 wR2=0.1733 wR2=0.1667
R1=0.1210, R1=0.1542, R1=0.0483, R1=0.0928, R1=0.0696,
WR2 =0.2414 wR2=0.3165 WwR2 =0.0946 wR2=0.1949 wR2 =0.1805
2.833 and 5.889 and 1.374 and 1.408 and 2.692 and
-1.991 -2.845 -1.602 -1.179 -2.095




616
617
618
619

620 Table S2 Selected bond lengths (A) and angles (deg) ofpbextd.

Bond distances (A)

Au(1)-C(5) 1.99(3) Au(1)-C(1) 2.07(6)
C(1)-N(1) 1.09(6) C(2)-N(1) 1.38(6)
C(2)-C(3) 1.508(11) C(2)-C(4) 1.510(11)

C(3)-H(3A) 0.9600 C(3)-H(3B) 0.9600

C(3)-H(3C) 0.9600 C(4)-H(4A) 0.9600

C(4)-H(4B) 0.9600 C(4)-H(4C) 0.9600
C(5)-C(6) 1.386(10) C(5)-C(6)#1 1.386(10)
C(6)-F(1) 1.384(10) C(6)-C(7) 1.389(10)
C(7)-C(8) 1.384(10) C(7)-F(2) 1.386(10)
C(8)-C(7) 1.384(10) C(8)-F(3) 1.387(10)

Bond angles (°)

C(5)-Au(1)-C(1) 180.0 N(1)-C(1)-Au(1) 180.0
N(1)-C(2)-C(3) 106(3) N(1)-C(2)-C(4) 100(6)
C(3)-C(2)-C(4) 114.6(17) C(2)-C(3)-H(3A) 109.5
C(2)-C(3)-H(3C) 109.5 H(3A)-C(3)-H(3C) 109.5

H(3B)-C(3)-H(3C) 109.5 C(2)-C(4)-H(4A) 108.8



C(2)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5
C(2)-C(4)-H(4C) 109.8 H(4A)-C(4)-H(4C) 109.5
H(4B)-C(4)-H(4C) 109.5 C(6)-C(5)-C(6) 118(2)
C(6)-C(5)-Au(l) 120.9(11) F(1)-C(6)-C(5) 124.4(18))
F(1)-C(6)-C(7) 114.7(17) C(5)-C(6)-C(7) 120.9(16)
C(8)-C(7)-F(2) 119.1(19) C(8)-C(7)-C(6) 120.8(15)
F(2)-C(7)-C(6) 120.2(18) C(7)-C(8)-C(7) 118(2)
C(7)-C(8)-F(3) 120.8(10) C(1)-N(1)-C(2) 180.0(17)
621
622 Table S3 Selected bond lengths (&) and angles (deg) ofatex2.
Bond distances (A)
Au(1)-C(7) 1.92(2) Au(1)-C(1) 2.041(11)
Au(2)-C(20) 2.02(2) Au(2)-C(14) 2.059(11)
C(1)-C(2) 1.3900 C(1)-C(6) 1.3900
C(2)-F(1) 1.238(19) C(2)-C(3) 1.3900
C(3)-F(2) 1.26(2) C(3)-C(4) 1.3900
C(4)-F(3) 1.337(18) C(4)-C(5) 1.3900
C(5)-F(4) 1.333(19) C(5)-C(6) 1.3900
C(6)-F(5) 1.38(2) C(7)-N(1) 1.18(3)
C(8)-N(1) 1.429(10) C(8)-C(9) 1.512(10)
C(8)-C(13) 1.513(10) C(8)-H(8) 0.9800

Bond angles (°)




623

624

C(7)-Au(1)-C(1) 173.9(8) C(20)-Au(2)-C(14) 176.5(8)
C(2)-C(1)-C(6) 120.0 C(2)-C(1)-Au(1) 119.8(9)
C(6)-C(1)-Au(1) 120.2(9) F(1)-C(2)-C(1) 121.0(15)
F(1)-C(2)-C(3) 119.0(15) C(1)-C(2)-C(3) 120.0
F(2)-C(3)-C(4) 118.6(16) F(2)-C(3)-C(2) 121.3(16)
C(4)-C(3)-C(2) 120.0 F(3)-C(4)-C(5) 115.1(16)
F(3)-C(4)-C(3) 124.9(16) C(5)-C(4)-C(3) 120.0
F(4)-C(5)-C(4) 115.7(16) F(4)-C(5)-C(6) 124.3(16)
C(4)-C(5)-C(6) 120.0 F(5)-C(6)-C(5) 115.8(13)
F(5)-C(6)-C(1) 124.2(13) C(5)-C(6)-C(1) 120.0
Table S4 Selected bond lengths (A) and angles (deg) ofpbex8.
Bond distances (A)
Au(1)-C(1) 2.027(6) C(6)-C(7) 1.398(7)
Au(1)-C(5) 1.970(9) C(6)-C(7A) 1.398(7)
F(1)-C(2) 1.352(8) C(7)-C(8) 1.378(8)
F(2)-C(3) 1.345(9) C(7)-C(10) 1.499(10)
F(3)-C(4) 1.337(10) C(8)-C(9) 1.376(9)
O(1)-C(11) 1.41(4) C(8)-H(8) 0.9300
O(1)-0(1B) 1.18(5) C(9)-H(9) 0.9300
O(1)-H(1) 0.8200 C(10)-H(10C) 0.9600
N(1)-C(5) 1.115(11) C(10)-H(10A) 0.9600



N(1)-C(6) 1.430(8) C(10)-H(10B) 0.9600
Bond angles (°)
C(1)-Au(1)-C(5) 180.00(1) C(6)-C(7)-C(10) 121.4(6)
O(1B)-O(1)-H(1) 100.00 C(8)-C(7)-C(10) 121.4(6)
C(5)-N(1)-C(6) 180.00(1) C(6)-C(7)-C(8) 117.2(6)
Au(1)-C(1)-C(2A) 122.9(3) C(7)-C(8)-C(9) 121.4(7)
C(2)-C(1)-C(2A) 114.2(5) C(8)-C(9)-C(8A) 120.1(7)
Au(1)-C(1)-C(2) 122.9(3) C(9)-C(8)-H(8) 119.00
F(1)-C(2)-C(3) 115.2(6) C(7)-C(8)-H(8) 119.00
C(1)-C(2)-C(3) 124.1(6) C(8)-C(9)-H(9) 120.00
F(1)-C(2)-C(1) 120.7(5) C(8A)-C(9)-H(9) 120.00
F(2)-C(3)-C(4) 119.5(6) C(7)-C(10)-H(10A) 110.00
625
626 Table S5 Selected bond lengths (A) and angles (deg) ofpbex.
Bond distances (A)
N(1)-C(14) 1.202(10) N(1)-C(1) 1.414(10)
N(1)-H(1) 0.5060 C(1)-C(2) 1.3900
C(1)-C(6) 1.3693 C(1)-H(1) 0.9367
C(2)-C(3) 1.3900 C(2)-H(Q) 0.9300
C(3)-C(4) 1.3900 C(3)-H(@) 0.9300
C(4)-C(5) 1.4134 C(4)-H(4) 0.9300
C(5)-C(6) 1.3890 C(5)-C(4)#1 1.418(19)



627

628

C(6)-C(1)#1 1.367(14) C(7)-C(8) 1.389(6)

C(7)-C(8)#1 1.389(6) C(7)-Au(1)#1 2.106(11)
C(7)-Au(l) 2.106(11) C(8)-F(1) 1.315(11)

Bond angles (°)
C(14)-N(1)-C(1) 161.5(17) C(14)-N(1)-H(1) 151.4
C(1)-N(1)-H(1) 15.7 C(2)-C(1)-C(6) 119.4
C(2)-C(1)-N(1) 120.6(4) C(6)-C(1)-N(1) 119.8(4)
C(2)-C(1)-H(1) 123.0 C(6)-C(1)-H(1) 117.3
N(1)-C(1)-H(1) 8.4 C(1)-C(2)-C(3) 120.0
C(1)-C(2)-H(2) 120.0 C(3)-C(2)-H(2) 120.0
C(4)-C(3)-C(2) 120.0 C(4)-C(3)-H(3) 120.0
C(2)-C(3)-H(3) 120.0 C(3)-C(4)-C(5) 120.5
C(3)-C(4)-H(4) 119.7 C(5)-C(4)-H(4) 119.7
C(4)-C(5)-C(6) 117.4 C(4)-C(5)-C(4)#1 125.7(4)
Table S6 Selected bond lengths (A) and angles (deg) ofpbexs.
Bond distances (A)

Au(1)-C(7) 1.957(10) Au(1)-C(1) 2.014(8)
C(1)-C(2) 1.366(11) C(1)-C(6) 1.399(12)
C(2)-F(1) 1.339(9) C(2)-C(3) 1.396(13)
C(3)-F(2) 1.347(11) C(3)-C(4) 1.367(14)
C(4)-F(3) 1.333(11) C(4)-C(5) 1.368(15)



629

C(5)-C(6) 1.340(15) C(5)-F(4) 1.357(11)
C(6)-F(5) 1.351(10) C(7)-N(1) 1.155(12)
C(8)-C(9) 1.374(12) C(8)-C(17) 1.398(11)
C(8)-N(1) 1.404(12) C(9)-C(10) 1.375(13)
C(9)-H(9) 0.9300 C(10)-C(11) 1.375(11)
Bond angles (°)
C(7)-Au(1)-C(1) 179.7(3) C(2)-C(1)-C(6) 114.3(8)
C(2)-C(1)-Au(1) 122.1(6) C(6)-C(1)-Au(1) 123.6(6)
F(1)-C(2)-C(1) 120.7(8) F(1)-C(2)-C(3) 116.2(7)
C(1)-C(2)-C(3) 123.1(8) F(2)-C(3)-C(4) 119.7(9)
F(2)-C(3)-C(2) 121.0(9) C(4)-C(3)-C(2) 119.3(8)
F(3)-C(4)-C(3) 119.5(9) F(3)-C(4)-C(5) 121.4(10)
C(3)-C(4)-C(5) 119.1(9) C(6)-C(5)-F(4) 122.1(10)
C(6)-C(5)-C(4) 120.1(8) F(4)-C(5)-C(4) 117.7(10)
C(5)-C(6)-F(5) 117.3(8) C(5)-C(6)-C(1) 124.1(8)
F(5)-C(6)-C(1) 118.6(8) N(1)-C(7)-Au(1) 178.1(8)
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632

633

634

Figure S1.(a) The single crystal structure of complexb, c) Intermolecular interactions and (d,

e) crystal packing diagram of compl&x



180.00 454 oo

635

636  Figure S2.(a, b) The single crystal structure of comp&xb, c) Intermolecular interactions

637 and (d, e) crystal packing diagram of compex
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639  Figure S3.(a) The single crystal structure of comp&Xb, c) Intermolecular interactions and

640 (d, e) crystal packing diagram of compkex
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643  Figure S4.(a) PL spectrall, = 365 nm) and (b) XRD patterns of compkin different solid

644 states.
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Figure S5.(a) PL spectraifx = 365 nm) and (b) XRD patterns of compkin different solid
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Figure S9.Absorption (a) and PL spectra (b) of the dilutauiohs of complex (20 uM, Aex =
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Highlights

*

Five novel gold(l) complexes with various isocyanide ligands have been

synthesized and characterized.

Alkyl modified Au(l) complexes exhibit infrequent tricolor or reversible bicolor

mechanochromic behaviors.

All the target complexes present prominent but different aggregation-induced

emission(AlE) characteristics.

The equatoria (e-) and axia (a-) conformers could stably coexist in the same unit
cell for cyclohexyl isocyanide gold(l) complex, which is quite rare in the similar

gold systems.



