Accepted Manuscript

Synthesis of amides *via* copper-catalyzed amidation of aryl halides using isocyanides

Issa Yavari, Majid Ghazanfarpour-Darjani, Mohammad J. Bayat

PII:	S0040-4039(14)00821-1
DOI:	http://dx.doi.org/10.1016/j.tetlet.2014.05.032
Reference:	TETL 44623
To appear in:	Tetrahedron Letters
Received Date:	28 January 2014
Revised Date:	20 April 2014
Accepted Date:	7 May 2014

Please cite this article as: Yavari, I., Ghazanfarpour-Darjani, M., Bayat, M.J., Synthesis of amides *via* coppercatalyzed amidation of aryl halides using isocyanides, *Tetrahedron Letters* (2014), doi: http://dx.doi.org/10.1016/ j.tetlet.2014.05.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Synthesis of amides via copper-catalyzed amidation of aryl halides using isocyanides

Issa Yavari*, Majid Ghazanfarpour-Darjani, Mohammad J. Bayat

R N-R H Cu₂O, Cs₂CO₃, ligand 80% aq DMSO, 85 °C + Ar-X R-NC Ar

Synthesis of amides via copper-catalyzed amidation of aryl

halides using isocyanides

Issa Yavari*, Majid Ghazanfarpour-Darjani, Mohammad J. Bayat

Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran

ABSTRACT

An efficient method for intermolecular C-C cross-coupling reactions between isocyanides and aryl halides, catalyzed by copper(I) oxide, is developed. This transformation serves as a direct method for the preparation of benzamides in aqueous DMSO, in moderate to good yields.

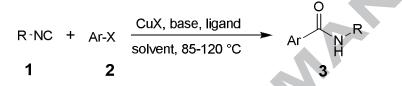
Keywords:

Aryl halide

Isocyanide

Amidation

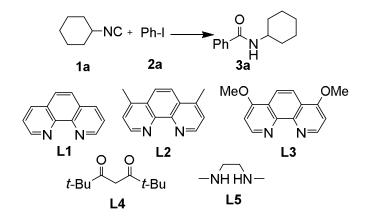
C-C cross-coupling


Copper(I) oxide

* Corresponding author. Tel.: +98 21 82883465; fax: +98 21 82883455.

E-mail address: yavarisa@modares.ac.ir (I. Yavari).

The development of metal-catalyzed cross-coupling reactions has revolutionized the formation of C-C bonds.¹⁻³ However, the use of toxic carbon monoxide and expensive transition metal catalysts has limited the scope of these types of coupling reactions.^{4, 5}


Isocyanides are derivatives of carbon that are similar to carbon monoxide.⁶ Recently, Jiang and co-workers reported a method for the synthesis of amides *via* palladium-catalyzed C-C coupling of aryl halides with isocyanides in the presence of CsF in aqueous DMSO.⁷ This report, prompted us to describe our results on the direct aminocarbonylation of aryl halides using isocyanides in the presence of Cu₂O, which constitutes a synthesis of benzamides *via* copper-catalyzed C-C cross-coupling of aryl halides with isocyanides with isocyanides (see Scheme 1).⁸

Scheme 1. Reaction between isocyanides and aryl halides.

Cyclohexyl isocyanide (1) and iodobenzene (2a) were selected for initial development of the reaction conditions. When 1 and 2a were treated with cesium carbonate and CuI in 80% aqueous DMSO at 85 °C for five hours, *N*-cyclohexylbenzamide (3a) was obtained in 14% yield. The presence of a ligand had a beneficial effect on this transformation. Among the various ligands tested for optimization of the reaction conditions, 4,7-dimethoxy-1,10-phenanthroline (L3) gave the best yields (see Table 1).

Table 1. Reaction of cyclohexyl isocyanide (1a, 1.5 mmol), iodobenzene (2a, 1.0 mmol), Cu source (10 mol%), ligand (0.2 mmol), and base (1.5 mmol) at 85 °C for 5 h under argon

\		Ph	<u>N</u>		
	1a 2	2a 3	a		
		L2 Bu -NH H L5		Me	50
Entry	Catalyst	Base	Ligand	Solvent	Yield (%)
1	Cu ₂ O	Cs ₂ CO ₃	L1	80% aq DMSO	41
2	Cu ₂ O	Cs_2CO_3	L2	80% aq DMSO	62
3	Cu ₂ O	Cs ₂ CO ₃	L3	80% aq DMSO	85
	Cu ₂ O	Cs_2CO_3	L4	80% aq DMSO	53
	Cu ₂ O	Cs ₂ CO ₃	L5	80% aq DMSO	30
	Cu ₂ O	K ₂ CO ₃	L3	80% aq DMSO	72
	Cu ₂ O	КОН	L3	80% aq DMSO	12
	Cu ₂ O	Cs ₂ CO ₃	L3	80% aq DMF	65
	Cu ₂ O	Cs ₂ CO ₃	L3	80% aq MNP	57
0	Cu ₂ O	Cs ₂ CO ₃	L3	80% aq MeCN	42
1	Cu ₂ O	Cs_2CO_3	L3	H ₂ O	-
2	AgI	Cs_2CO_3	L3	80% aq DMSO	-
3	CuCl	Cs_2CO_3	L3	80% aq DMSO	45
4	CuI	Cs ₂ CO ₃	L3	80% aq DMSO	63
5	CuBr	Cs ₂ CO ₃	L3	80% aq DMSO	34
6	Cu(Ac) ₂	Cs_2CO_3	L3	80% aq DMSO	8

With optimized reaction conditions in hand, different substituted aryl halides and isocyanides were subjected to this cross-coupling process to explore the scope of this transformation (Table 2).

Table 2. Copper-catalyzed synthesis of aryl amides 3 from aryl halides 1 and isocyanides 2	2

R-NC	+ Ar-X	Cu₂O, Cs₂CO₃, L3 ► 80% aq DMSO, 85 °C		o ⊥	,R	2
	80			Ar N		
1	2			3		
Entry	R	Ar	Product		Yield (%)	
2				X = I	X = Br	X = Cl
1	cyclohexyl	Ph	3a	85	81	32
2	cyclohexyl	o-tol	3b	76	72	11
3	cyclohexyl	<i>m</i> -tol	3c	83	80	30
4	cyclohexyl	4-MeO-C ₆ H ₄	3d	80	72	23
5	cyclohexyl	$4-O_2N-C_6H_4$	3e	91	85	48
6	cyclohexyl	2-thienyl	3f	78	73	22
7	cyclohexyl	$4-NC-C_6H_4$	3g	88	81	36
8	cyclohexyl	4-Cl-C ₆ H ₄	3h	82	80	25
9	t-Bu	Ph	3i	84	78	34
10	<i>t</i> -Bu	4-MeO-C ₆ H ₄	3ј	80	76	20
11	<i>t</i> -Bu	$4-O_2N-C_6H_4$	3k	85	80	45
12	Me ₃ CCH ₂ Me ₂ C	$4-Ac-C_6H_4$	31	79	77	23
13	2,6-Me ₂ -C ₆ H ₃	Ph	3m	76	73	10

Chlorobenzene derivatives needed a higher catalyst loading (30%) and temperature (120 °C) to furnish products **3**. In most cases the yields were low, except for derivatives bearing an electron-withdrawing group on the aryl ring.

In conclusion, we have described a cheap and efficient method to convert aryl halides into amides *via* a copper-catalyzed reaction of an aryl halide with an isocyanide. The chemistry is optimized through a ligand screen which leads to the use of a dimethoxyphenathroline ligand. Aryl iodides and bromides are particularly good substrates. This chemistry offers a useful alternative to current palladium-catalyzed protocols and can be of general interest to the synthetic community.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/

References and notes

- 1. Grasa, G. A.; Colacot, T. J. Org. Lett. 2007, 9, 5489.
- 2. Jensen, A. E.; Dohle, W.; Knochel, P. Tetrahedron 2000, 56, 4197.
- Diederich, F.; Stang, P. J. Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, 1998.
- 4. Salvadori, J.; Balducci, E.; Zaza, S.; Petricci, E.; Taddei, M. J. Org. Chem. 2010, 75, 1841.
- 5. Brennfuuhrer, A.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2009, 48, 4114.
- 6. Tumanov, V. V.; Tishkov, A.; Mayr, H. Angew. Chem. Int. Ed. 2007, 46, 3563.
- 7. Jiang, H.; Liu, B.; Li, Y.; Wang, A.; Huang, H. Org. Lett. 2011, 13, 1028.

8. Spectroscopic and analytical data for products **3i-3m** have been reported.⁷ Melting points and IR spectroscopic data of these derivatives were in complete agreement with the literature.

Typical procedure for the preparation of benzamides 3a-m:

To a mixture of Cu₂O (0.015 mg, 0.1 mmol) and Cs₂CO₃ (0.555 g, 1.5 mmol) in 80% aqueous DMSO (3 mL), was added the aryl halide (1.0 mmol) at room temperature under argon. After 15 min, the isocyanide (1.5 mmol) was added, and the mixture stirred at 85 °C for 5 h, then cooled to room temperature, diluted with H₂O, and extracted with CH₂Cl₂ (2 × 5 mL). The combined organic layers were washed with brine (5 mL) and dried over MgSO₄. The solvent was removed and the residue purified by column chromatography on silica gel (hexane/EtOAc 4:1) to give product **3**.

N-Cyclohexylbenzamide (3a). Colorless solid, mp: 152-154 °C; yield: 0.17 g (85%). IR (KBr) (v_{max} , cm⁻¹): 3245, 3073, 2928, 1629, 1538, 1332, 1152. ¹H NMR (500.1 MHz, CDCl₃): $\delta_{\rm H}$ 1.18-1.27 (2H, m, CH₂), 1.37-1.46 (4H, m, 2CH₂), 1.77-2.01 (4H, m, 2CH₂), 3.93-4.01 (1H, m, CH), 6.01 (1H, br s, NH), 7.41 (2H, t, ³*J* = 7.3 Hz, 2CH), 7.47 (1H, t, ³*J* = 7.0 Hz, CH), 7.75 (2H, d, ³*J* = 7.8 Hz, 2CH). ¹³C NMR (125.7 MHz, CDCl₃): $\delta_{\rm C}$ 24.9 (2CH₂), 25.6 (CH₂), 33.2 (2CH₂), 48.7 (CH), 126.9 (2CH), 128.5 (2CH), 131.2 (CH), 135.2 (C), 166.6 (C=O). EI-MS: *m/z* (%) = 203 (M⁺, 1), 174 (16), 120 (83), 105 (67), 98 (65), 77 (100). Anal. Calcd for C₁₃H₁₇NO (203.13): C, 76.81; H, 8.43; N, 6.89%. Found: C, 76.49; H, 8.34; N, 6.95%.