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ABSTRACT: A strategy for the generation of enantiomerically pure α-functionalised chiral Grignard reagents is presented.  The 

approach involves the synthesis of α-alkoxy- and α-amino sulfoxides in ≥99:1 dr and ≥99:1 er via asymmetric deprotonation (s-

BuLi/chiral diamine) and trapping with Andersen’s sulfinate (menthol-derived).  Subsequent sulfoxide → Mg exchange (room 

temperature, 1 minute) and electrophilic trapping delivers a range of enantiomerically pure α-alkoxy- and α-amino substituted 

products.  Using this approach, either enantiomer of products can be accessed in 99:1 er from asymmetric deprotonation protocols 

without the use of (–)-sparteine as the chiral ligand.  Two additional discoveries are noteworthy: (i) for the deprotonation and trap-

ping with Andersen’s sulfinate, there is a lack of stereospecificity at sulfur due to attack of a lithiated intermediate onto the α-

alkoxy- and α-amino sulfoxides as they form and (ii) the α-alkoxy-substituted Grignard reagent is configurationally stable at room 

temperature for 30 minutes.  

Introduction 

Asymmetric deprotonation α to oxygen
1
 or nitrogen

2
 in 

carbamates 1 using a chiral base (e.g. s-BuLi/(–)-sparteine) 
is an established method for the generation of enantioen-

riched α-functionalised organolithium reagents 2 (Scheme 
1).

3
  Such methodology has been widely-used in synthesis: 

for example, Aggarwal et al. have developed molecular 
assembly lines using O-alkyl carbamates

 4
 and scientists at 

Merck scaled up the asymmetric deprotonation of N-Boc 
pyrrolidine to prepare ~0.7 kg of a glucokinase activator.

5
  

However, two key limitations with this methodology re-
main.  First, enantiomer ratios (ers) of the products from 
asymmetric deprotonations vary widely.  This is especially 
true for N-Boc heterocycles which typically range from 
85:15-95:5 er.  Indeed, the only examples which consistent-
ly give 99:1 er are Hoppe-style deprotonations of O-alkyl 
carbamates using s-BuLi/(–)sparteine,

3
 and are thus limited 

to one enantiomeric series.  Second, over the last two years, 
the commercial availability of (–)-sparteine has been varia-
ble.  This is of much concern as (–)-sparteine generally 
gives the highest enantioselectivity over a wide range of 
reaction types.   

To address these two limitations, we set out to develop a 
new approach in which the asymmetric deprotonation of 

carbamates 1 using s-BuLi/chiral diamine (ideally not (–)-
sparteine) would be merged with electrophilic trapping us-

ing Andersen’s chiral sulfinate (SS)-3
6
 (Scheme 1).  In this 

way, we would improve on the moderate enantioselectivity 
(85:15-95:5 er typically) engendered by the chiral base 

through the generation of α-alkoxy and α-amino sulfoxides 

4 in ≥99:1 dr and ≥99:1 er.  Subsequent sulfoxide → Mg 

exchange on α-functionalised sulfoxides 4 would then gen-

erate chiral α-functionalised Grignard reagents 5 (analo-

gous to organolithiums 2) in ≥99:1 er (Scheme 1). Crucial-

ly, as well as delivering substituted products in ≥99:1 er, it 
was anticipated that our methodology would not rely on (–
)-sparteine for high enantioselectivity.   

Scheme 1. Comparison of asymmetric deprotonation with 

asymmetric deprotonation-chiral sulfinate trapping.  
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A conceptually related approach to organolithiums 2 would 

be to carry out Sn → Li exchange on enantiopure α-alkoxy 

and α-amino-stannanes.  Such an approach was used by 
Still in pioneering studies on the configurational stability of 

α-alkoxy organolithiums
7
 and has been employed more 

recently by Hammerschmidt
8
 and Aggarwal.

9
  However, 

these methods do not represent a general route to organo-

lithiums 2 of 99:1 er, especially for N-Boc heterocycles, 

and it is necessary to carry out the Sn → Li exchange at low 
temperaures (–78 °C) due to the configurational or chemi-

cal instability of the organolithiums 2.
10

  In contrast, our 

approach should deliver a wide range of α-functionalised 
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Grignard reagents 5 in ≥99:1 er via the same general strate-

gy.  It was also envisioned that sulfoxide → Mg exchange 

should be possible at temperatures above –78 °C as α-
functionalised Grignard reagents have a higher degree of 
configurational stability than their organolithium counter-

parts.
11

  Whilst there are some related sulfoxide → Li ex-
changes

12
 (especially in the area of chiral ferrocene synthe-

sis
12a,12c

), we know of only two specific cases where enanti-

oenriched α-functionalised Grignards like 5 have been di-

rectly prepared by sulfoxide → Mg exchange: α-aziridino 

Grignards (Satoh
13

) and α-halo-substituted Grignards 
(Hoffmann

14
 and Blakemore

15
).

16
  In related work, Blake-

more has also reported a sulfoxide → Mg exchange route to 

stereodefined α-magnesiated S,O-acetals
17

 and Bull has 

recently described the synthesis and reactions of α-aziridino 
Grignard reagents.

18
   

Our approach to enantiopure Grignard reagents 5 is summa-
rised in Scheme 1: asymmetric deprotonation of carbamates 

1 using s-BuLi/chiral diamine and trapping with Andersen’s 

sulfinate (SS)-3 should generate α-alkoxy and α-amino sul-

foxides 4 in ≥99:1 dr and ≥99:1 er. We anticipated needing 
to carry out the lithiation reaction only once on each sub-

strate to generate 4.  Subsequent sulfoxide → Mg exchange 

on 4 would then deliver the Grignard reagents 5 on de-
mand, potentially under mild conditions and in ≥99:1 er, 
ready for electrophilic trapping to give a wide range of 
products from just one asymmetric deprotonation reaction.  
In this paper, we present the implementation of this strategy 
with two examples: the preparation and reactions of enanti-

omerically pure α-functionalised Grignard reagents derived 

from sulfoxides anti-6 and syn-7 (Figure 1), the synthesis of 
which does not require (–)-sparteine.  

Figure 1. α-Substituted sulfoxides anti-6 and syn-7.  
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Results and Discussion 

Preparation and Reactions of Enantiopure αααα-Alkoxy 

Grignard Reagents 

The asymmetric deprotonation of O-alkyl carbamates, first 
reported by Hoppe in 1990,

1
 is now recognised as an im-

portant synthetic method due primarily to Aggarwal’s re-
cent extensive studies on boronate rearrangement method-
ology.

4,9,19
  As a result, we commenced our studies with O-

alkyl carbamates.  Thus, racemic deprotonation of O-alkyl 

carbamate 8 using 1.2 eq. of s-BuLi/TMEDA in Et2O at –
78 °C and addition of 2.0 eq. of Andersen’s sulfinate (SS)-

3
6
 to the solution of the organolithium reagent gave, after 

warming to room temperature over 18 h, a separable mix-

ture of sulfoxides anti-6 (25%) and syn-6 (21%) (Scheme 

2).  The assignment of configuration in sulfoxides anti-6 

and syn-6 is presented later (vide infra).  From this initial 
experiment, we expected stereospecific substitution at sul-
fur (with inversion of configuration

6
) to deliver the prod-

ucts in high er.  Disappointingly, sulfoxides anti-6 (83:17 

er) and syn-6 (85:15 er) were isolated with only moderate 
enantioselectivity indicating a lack of stereospecificity at 

sulfur in the trapping with (SS)-3.  Although there is some 
limited precedent

20
 for this, no explanation has previously 

been forwarded.  Of note, there was no epimerisation of 

Andersen’s sulfinate (SS)-3 during the reaction as the excess 

(SS)-3 was recovered unchanged.   

Scheme 2. Racemic deprotonation of O-alkyl carbamate 8 

and trapping with Andersen’s sulfinate (SS)-3.  
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Our proposed mechanism to account for the lack of stereo-
specificity in the trapping step is shown in Scheme 3. 

Deprotonation of O-alkyl carbamate 8 using s-
BuLi/TMEDA will generate a 50:50 mixture of lithiated 

carbamates (S)-9 and (R)-9.  As an example, reaction of 

organolithium (S)-9 with sulfinate (SS)-3 would give sulfox-

ide anti-(S,SS)-6 and, as the amount of anti-(S,SS)-6 in-

creases, we suggest that competitive sulfoxide → Li ex-

change mediated by lithiated carbamate (S)-9 as shown in 
Scheme 3 could occur to give diastereomeric sulfoxide syn-

(S,RS)-6.  An analogous process (using (R)-9) would con-

vert syn-(R,SS)-6 into anti-(R,RS)-6 (Scheme 3).  Such sul-

foxide → Li exchange processes (attack of lithiated carba-
mates onto the sulfoxides) could account for the generation 

of syn-(S,RS)-6 and anti-(R,RS)-6, the enantiomers of the 

expected major products anti-(S,SS)-6 and syn-(R,SS)-6, and 
would thus account for the lack of stereospecificity at sulfur 

in the trapping with sulfinate (SS)-3.   

Scheme 3. Proposed mechanism to account for lack of ste-

reospecificity in trapping with sulfinate (SS)-3.
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To establish that the sulfoxide → Li exchange was occur-
ring, a crossover-type experiment using two different O-
alkyl carbamates was devised.  Thus, ethyl O-alkyl carba-

mate 10 was deprotonated using 1.0 eq. of s-BuLi/TMEDA 

in Et2O at –78 °C and then 1.0 eq. of sulfoxide anti-6 (ra-
cemic) was added.  After 1 h at –78 °C, the reaction was 
quenched with MeOH.  Purification by chromatography 

gave a 96% yield (based on anti-6) of a 13:12:70:5 mixture 

of sulfoxides anti-11, syn-11, anti-6 and syn-6 (Scheme 4).  

Crucially, the product mixture contained anti-11 and syn-11 
(separately synthesised and characterised, see Supporting 

Information) indicating that the proposed sulfoxide → Li 
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exchange was occurring, even at –78 °C. It is also notable 

that some syn-6 was also present.  This suggests that lithiat-

ed carbamates (S)-9 and (R)-9 are formed in the solution, as 

necessitated by the sulfoxide → Li exchange.   

Scheme 4. Crossover-type experiment to establish the via-

bility of the proposed sulfoxide →→→→ Li exchange process.  
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With a mechanism for the lack of stereospecifity at sulfur 
established, we then attempted to minimise the loss of er in 

the trapping with Andersen’s sulfinate (SS)-3.  The reaction 
time was reduced from warming to room temperature over 
18 h (conditions A) to 5 min at –78 °C (MeOH quench, 
conditions B).  We compared the reaction under normal 

addition (addition of (SS)-3 to the lithiated carbamate) and 
reverse addition (addition of lithiated carbamate to sulfinate 

(SS)-3) which should mean that the organolithium reagent is 
not present in excess.  The results are summarised in Table 
1. Use of both –78 °C for 5 min (conditions B) and reverse 
addition of the lithiated carbamate to Andersen’s sulfinate 

(SS)-3 led to increases in er of anti-6 and syn-6 (87:13-91:9 
er) (entries 2/3) compared to the original result (83:17-
85:15 er, entry 1, Scheme 2). 

Table 1.  Synthesis of αααα-alkoxy sulfoxides anti-6 and syn-6.   

Ph S
p-Tol

CbO

O

anti-6

Ph S
p-Tol

CbO

O

syn-6

+
Ph

CbO

8

1. sBuLi, diamine

    –78 °C, Et2O

2. (SS)-3, Normal or 
    Reverse addition

Conditions A or B
Cb = C(O)NiPr2

N

N
H

H

(–)-sparteine
((–)-sp)

N

N
Me H

(+)-sparteine surrogate
((+)-sp surr)

N

N

Me

Me

tBu

tBu

(R,R)-12  

Entry Diamine
a 

Trapping 
conditions

b 
anti-6 

%,
c
 er

d 

syn-6 

%,
c
 er

d 

1 TMEDA Normal, A 25, 83:17 21, 85:15 

2 TMEDA Normal, B 23, 88:12 32, 91:9 

3 TMEDA Reverse, B 25, 87:13 29, 90:10 

4 (–)-sp Normal, A 53, 99:1 0.2, nd 

5 (+)-sp surr Normal, A 7, 87:13 45, 99:1 

6 (R,R)-12 Reverse, B 56, 99:1 14, 93:7 

7 (S,S)-12 Reverse, B 17, 95:5 54, 99:1 
a
 1.2 eq. s-BuLi/diamine, Et2O, –78 °C, 1 h. 

b
 Normal = 

addition of (SS)-3 to organolithium; Reverse = addition of 

organolithium to (SS)-3; Trapping conditions A: –78 °C → 

rt and then 18 h at rt; Trapping conditions B: –78 °C for 5 

min. 
c
 % Yield after chromatography. 

d
 Er determined by 

chiral stationary phase (CSP)-HPLC.   

Next, we explored the use of chiral diamines with the inten-
tion that high enantioselectivity in the asymmetric deproto-
nation could be coupled with ~90:10 stereospecificity at 

sulfur in trapping with (SS)-3 to deliver the major diastere-
omer in 99:1 er (together with reduced er of the minor dia-
stereomeric sulfoxide).  For comparison, the previously 
reported enantioselectivity for the deprotonation (–78 °C, 

Et2O) and trapping of O-alkyl carbamate 8 are as follows: 
(–)-sparteine (99:1 er, Bu3SnCl);

21
 (+)-sparteine surrogate 

(94:6 er, Bu3SnCl)
21

 and diamine (R,R)-12
22

 (82:18 er, 
CO2).  To our delight, use of all three diamines gave the 
major diastereomeric sulfoxide in 99:1 er (entries 4-7).  

Sulfoxide anti-6 (99:1 er) was isolated in 53-56% yield 

using (–)-sparteine or (R,R)-12 (entries 4/6) whereas syn-6 
(99:1 er) with opposite configuration at the O-alkyl carba-
mate stereogenic centre was accessible in 45-54% yield 

using the (+)-sparteine surrogate or (S,S)-12 (entries 5/7).  
The known asymmetric induction with these diamines

1,21,22 

and the predominance for inversion of configuration at sul-

fur in trapping with (SS)-3
6,20

 allowed assignment of the 

configurations in anti-6 and syn-6.  Given the recent varia-
bility in the availability of (–)-sparteine, it is significant and 

synthetically useful that sulfoxides anti-6 and syn-6 can be 
accessed in 99:1 er using the commercially available dia-

mines (R,R)-12 and (S,S)-12 (entries 6/7).  
 

With anti-6 and syn-6 of 99:1 er in hand, we then explored 

the sulfoxide → Mg exchange and trapping.  Optimisation 

was carried out using racemic anti-6 which was treated with 
1.3-2.5 eq. of i-PrMgCl in THF at room temperature before 

trapping with MeO2CCl.  This gave ester 13 together with 

the sulfoxide 14, the by-product of the sulfoxide exchange 

process.  In addition, some of O-alkyl carbamate 8 and 

starting material, anti-6, were also isolated (Table 2).  

Table 2. Optimisation of sulfoxide →→→→ Mg exchange with 

anti-6.     

Ph S
p-Tol

CbO

O

anti-6 (racemic)

1. iPrMgCl

    THF, rt

2. MeO2CCl

CbO

O

OMe

Ph

CbO

8

Ph

13

p-Tol
S

O

14

+

+
Cb = C(O)NiPr2 Ph MgCl

CbO

15

via:

 

Entry Eq. of 

i-PrMgCl
 

Time 

min
 

13 

%
a 

14 

%
a 

8 

%
a 

anti-6 

%
a 

1 1.3 5 48 81 14 4 

2 1.3 1 65 73 6 8 

3 1.5 5 42 82 17 0 

4 1.5 1 67 84 9 0 

5 2.5 1 75 84 5 0 
a
 % Yield after chromatography.  

Using 1.3 eq. of i-PrMgCl and trapping after 5 min gave a 

moderate 48% yield of ester 13 even though the sulfoxide 

→ Mg exchange must have been efficient, as shown by the 

formation of sulfoxide 14 in 81% yield (entry 1).  Better 
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results were obtained if the exchange time was reduced to 

just 1 min: 65% yield of 13 (entry 2).  To explain these 
results, we suggest that the intermediate Grignard reagent 

15 is chemically unstable either by deprotonation of sulfox-

ide 14 or via intramolecular nucleophilic attack onto the 
C=O of the carbamate group, a known process for the or-
ganolithium analogue at temperatures above –20 °C.

4
  Use 

of 1.5 eq. or 2.5 eq. of i-PrMgCl and 1 min reaction times 

ensured that no starting anti-6 remained (entries 3-5).  The 
best results were obtained using 2.5 eq. of i-PrMgCl in 

THF at room temperature for 1 min: after trapping, ester 13 

was isolated in 75% yield (entry 5).  This 75% yield of 13 
is similar to the 84% yield of sulfoxide exchange by-

product 14 indicating that any side-reactions of Grignard 

reagent 15 can be minimised with a 1 min reaction time.   

Significantly, we then showed that the Grignard reagent (S)-

15 was configurationally stable at room temperature during 

the sulfoxide → Mg exchange and trapping.  Three exam-

ples are shown in Scheme 5.  Sulfoxide anti-6 of 99:1 er 
was treated with i-PrMgCl in THF at room temperature for 

1 min (to give Grignard reagent (S)-15) and then reacted 
with MeO2CCl, CuBr•SMe2/allyl bromide or cyclohexa-

none to give (R)-13 (of known configuration
21d

), (R)-16 and 

(R)-17 respectively, each in 99:1 er. The enantiomers of the 
products depicted in Scheme 5 are equally accessible start-

ing from syn-6: for example, sulfoxide → Mg exchange on 

syn-6 and trapping gave (S)-17 in 74% yield and 99:1 er. 

Scheme 5. Synthesis of trapped products in 99:1 er via sul-

foxide →→→→ Mg exchange with anti-6.  
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CbO
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Ph MgCl
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iPrMgCl

THF, rt
1 min
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73%, 99:1 er
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OH
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E+
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CbO

Ph

(R)-16
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Reaction of the Grignard reagent (S)-15 derived from anti-6 
with aldehydes was also explored (Scheme 6).  These reac-

tions gave protected diols (R,S)-18-21 with anti-
diastereoselectivity (70:30 to ≥99:1 dr, inseparable mix-
tures) in 65-78% yields, each diastereomer being formed in 

99:1 er.  The relative configuration of (R,S)-21 was as-
signed by conversion (using LiAlH4) into the known

23
 anti-

diol with (R,S)-18-21 assigned by analogy.  This methodol-
ogy represents a new, connective strategy for the asymmet-
ric synthesis of anti-1,2-diols

24
 which are typically synthe-

sised in two steps (Wittig reaction and asymmetric dihy-
droxylation).   

Scheme 6. Synthesis of monoprotected diols in 99:1 er via 

sulfoxide →→→→ Mg exchange with anti-6.
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We also explored the use of sulfoxide anti-6 (99:1 er) in 
Aggarwal-style boronate rearrangement chemistry.

4,9,19
  

Trapping Grignard reagent (S)-15 derived from anti-6 with 
i-BuB-pinacolate and subsequent oxidation (H2O2, NaOH) 

gave alcohol (R)-22 in 68% yield but only 94:6 er (Scheme 
7).  Such a lack of stereospecificity in the rearrangement 
with Mg is precedented

15,19a
 and we turned to Li to solve 

the problem.  Thus, sulfoxide → Li exchange of sulfoxide 

anti-6 using n-BuLi (THF, –78 °C, 1 min) and reaction with 
i-BuB-pinacolate (reflux, 16 h) followed by oxidation gave 

alcohol (R)-22 in 72% yield and 99:1 er (Scheme 7).   

Scheme 7. Use of sulfoxide anti-6 in boronate rearrange-

ment chemistry to give alcohol (R)-22 in 99:1 er.
 

2.5 eq. iPrMgCl

THF, rt, 1 min

Ph M

CbO

M = MgCl
M = Li

OH
iPr

(R)-22

Mg: 68%, 94:6 er

Ph

1. iBuB(pin)

    reflux, 16 h

2. H2O2, NaOH

    rt, 2 h
2.5 eq. nBuLi

THF, –78 °C, 1 min

anti-6

99:1 er

or

Li: 72%, 99:1 er
Cb = C(O)NiPr2   

Finally, with simple access to Grignard reagent (S)-15 (of 
99:1 er), we were in a position to investigate its configura-
tional stability over longer times than 1 min.  With sulfox-

ide → Mg exchange reaction times of 15 and 30 min, trap-

ping with cyclohexanone gave alcohol (R)-17 in 98:2 er 
(34% and 24% yield respectively) (Scheme 8).  The low 

yields with extended sulfoxide → Mg exchange times are 

due to the chemical instability of Grignard reagent (S)-15 
(as discussed previously).  From this marginal loss of er 
(within the error limits of HPLC detection), we conclude 

that α-functionalised Grignard reagent (S)-15 is configura-
tionally stable at room temperature for 30 min.  This is a 
significant observation in the context of configurational 

stability of α-functionalised organometallic reagents.   

Scheme 8. Investigation of the configurational stability of 

αααα-functionalised Grignard reagent (S)-15.  
 

Ph MgCl

CbO

(S)-15

CbO

Ph

OH
(R)-17

O

Cb = C(O)NiPr2
1 min: 71%, 99:1 er

15 min:

30 min:

34%, 98:2 er

24%, 98:2 er

Ph S
p-Tol

CbO

O

anti-6

2.5 eq.
iPrMgCl

THF, rt
1-30 min

99:1 er Exchange time

 

 

Preparation and Reactions Enantiopure of αααα-Amino 

Grignard Reagents 
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Our attention then switched to N-Boc heterocycles.  Unfor-

tunately, attempts to prepare α-amino sulfoxides syn/anti-

23 and syn/anti-24 (Figure 2) by deprotonation (s-BuLi, 
TMEDA, –78 °C) and sulfinate trapping of N-Boc pyrroli-
dine and N-Boc piperidine respectively were unsuccessful.  

Other routes to syn/anti-23 and syn/anti-24 (e.g. oxidation 
of the sulfides) were explored with no success.  We suspect 

that α-amino sulfoxides syn/anti-23 and syn/anti-24 are 

unstable due to α-elimination of the sulfoxide promoted by 

the nitrogen lone pair.  Our attention thus focused on α-

amino sulfoxides syn/anti-7 (derived from N-Boc chloropi-

peridine 25 as reported by Beak,
25

 Figure 2) since α-
elimination should be disfavoured by the [3.1.0] bicyclic 
system.  Furthermore, the highest enantioselectivity report-
ed for the s-BuLi/(–)-sparteine-mediated desymmetrisation 
of 4-chloro and 4-tosyl N-Boc piperidines was only 78:22 
er.

25b,25c
  Our sulfoxide methodology could thus provide a 

significant improvement by generating products in 99:1 er.   

Figure 2. αααα-Amino sulfoxides syn/anti-23, syn/anti-24 and 

syn/anti-7.  
 

N

Boc

S
p-Tol

O

syn/anti-23

H

S
p-Tol

O

H

N

Boc

syn/anti-24

N

Boc

S
p-Tol

O

syn/anti-7

N

Boc

Cl

25  

To start with, racemic deprotonation of 4-chloro N-Boc 

piperidine 25 was carried out using 2.2 eq. of s-
BuLi/TMEDA (Scheme 9).  Mechanistically, the reaction 

proceeds via cyclisation of α-lithiated piperidine 26 to cy-

clopropane 27 which undergoes a second α-lithiation be-
fore electrophilic trapping.  In this case, addition of 2.2 eq. 

of Andersen’s sulfinate (SS)-3 to the solution of the organo-
lithium reagent gave, after warming to room temperature 

over 18 h, sulfoxides syn-7 (38%, 58:42 er) and anti-7 

(45%, 70:30 er) (Scheme 9).  Notably, α-amino sulfoxides 

syn/anti-7 were stable, isolable compounds unlike their 

more simple pyrrolidine analogues syn/anti-23.  The lack of 

stereospecificity at sulfur was more pronounced with α-

amino sulfoxides syn-7 and anti-7 compared to the corre-

sponding α-alkoxy carbmates anti-6 and syn-6 (Scheme 2).  
This probably reflects the fact that the lithated cyclopropyl 
N-Boc pyrrolidine is the better leaving group in the sulfox-

ide → Li exchange process that results in the loss of er.  

The configurational assignment of sulfoxides syn-7 and 

anti-7 is presented later (vide infra).   

Scheme 9. Racemic deprotonation of N-Boc chloropiperi-

dine 25 and trapping with Andersen’s sulfinate (SS)-3. 

N

Boc

Cl

25

N

Boc

S
p-Tol

O

syn-7

N

Boc

S
p-Tol

O

anti-7

+

1. 2.2 eq. sBuLi

    2.2 eq. TMEDA

2. 2.2 eq.

–78 °C, Et2O

iPr

O
S

p-Tol

O

(SS)-3

38%, 58:42 er 45%, 70:30 er

N
Boc Li

Cl

N

Boc

H

via

26 27  

As with the O-alkyl carbamates, we explored shorter reac-
tion times, reverse addition and chiral diamines in order to 

prepare α-amino sulfoxide syn-7 in 99:1 er (Table 3).  Us-
ing TMEDA and reverse addition with a 5 min trapping 

time at –78 °C, better results were obtained: sulfoxide syn-7 

was formed in 39% yield and 89:11 er and sulfoxide anti-7 
was isolated in 44% yield and 88:12 er (entry 3). Before 

investigating the chiral diamines in the synthesis of α-

amino sulfoxides syn-7 and anti-7, we explored their inher-
ent enantioselectivity in the deprotonation-cyclisation-

trapping of 4-chloro N-Boc piperidine 25 (trapping with 
PhNCO, see Supporting Information): (–)-sparteine gave 
56:44 er;

26
 (+)-sparteine surrogate gave 54:46 er and dia-

mine (S,S)-12 gave the highest enantioselectivity of 67:33 
er.  Not surprisingly, low enantioselectivity with (–)-
sparteine and the (+)-sparteine surrogate led to moderate 
yields and only slightly improved ers of the expected major 

diastereomers syn-7 (27%, 96:4 er) and anti-7 (27%, 93:7 

er) respectively upon trapping with (SS)-3 (entries 4/5).  

However, the combination of diamine (R,R)-12 and (SS)-3 

was optimal and gave sulfoxide syn-7 in 53% yield and 

99:1 er (entry 6).  Notably, this synthesis of sulfoxide syn-7 
in 99:1 er does not rely on the use of (–)-sparteine.  Finally, 

starting from 25, use of diamine (S,S)-12 and trapping with 

(SS)-3 gave sulfoxide anti-7 in only 87:13 er (54% yield).  
Unlike the O-alkyl carbamates, it was not possible to access 

both α-amino sulfoxides syn-7 and anti-7 in 99:1 er.  Pre-
sumably, the diamine plays a role in facilitating loss of er at 

sulfur by sulfoxide → Li exchange, especially if the initial 
enantioselectivity from the asymmetric deprotonation step 

is moderate (67:33 er with diamine (R,R)-12 or (S,S)-12).  
Nonetheless, (+)-menthol is commercially available and 

thus would allow access to ent-syn-7 in 99:1 er via depro-

tonation of 4-chloro N-Boc piperidine 25 using diamine 

(S,S)-12 and trapping with sulfinate (RS)-3.   

Table 3.  Synthesis of αααα-amino sulfoxides syn-7 and anti-7.  

N

Boc

Cl

25

N

Boc

S
p-Tol

O

syn-7

N

Boc

S
p-Tol

O

anti-7

+

1. sBuLi, TMEDA

    –78 °C, Et2O

2. (SS)-3, Normal or 
    Reverse addition

Conditions A or B

N

N
H

H

(–)-sparteine
((–)-sp)

N

N
Me H

(+)-sparteine surrogate
((+)-sp surr)

N

N

Me

Me

tBu

tBu

(R,R)-12  

Entry Diamine
a
 Trapping 

conditions
b 

syn-7 
%,

c
 er

d 
anti-7 
%,

c
 er

d 

1 TMEDA Normal, A 38, 58:42 45, 70:30 

2 TMEDA Normal, B 36, 80:20 47, 78:22 

3 TMEDA Reverse, B 39, 89:11 44, 88:12 

4 (–)-sp Reverse, B 27, 96:4 24, 89:11 

5 (+)-sp surr Reverse, B 26, 99:1 27, 93:7 

6 (R,R)-12 Reverse, B 51, 99:1 25, 87:13 

7 (S,S)-12 Reverse, B 12, 89:11 54, 87:13 
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a
 2.2 eq. s-BuLi/diamine, Et2O, –78 °C, 1 h. 

b
 Normal = 

addition of (SS)-3 to organolithium; Reverse = addition of 

organolithium to (SS)-3; Trapping conditions A: –78 °C → 

rt and then 18 h at rt; Trapping conditions B: –78 °C for 5 
min. 

c
 % Yield after chromatography. 

d
 Er determined by 

chiral stationary phase (CSP)-HPLC. 

The configuration of sulfoxide syn-7 was assigned based on 
the known

25c
 deprotonation-cyclisation of 4-chloro N-Boc 

piperidine 25 using s-BuLi/(–)-sparteine, the known
27

 

deprotonation of N-Boc piperidine using s-BuLi/(R,R)-12 

and the conversion of syn-7 into known
28

 amino alcohol 

cis-30 (Scheme 10).  Thus, the sulfoxide in syn-7 was re-

duced to the sulfide 28 (using NaI and trifluoroacetic an-
hdyride).  Then, ligand-controlled diastereoselective lithia-
tion

22
 (s-BuLi/(+)-sparteine surrogate), carbon dioxide 

trapping and borane reduction gave alcohol cis-29 as a sin-

gle diastereomer.  Use of s-BuLi/TMEDA gave cis-29 in 
only 68:32 dr.  Finally, reductive cleavage of the sulfide 

gave amino alcohol cis-30.  The relative and absolute con-
figuration was established by comparison of spectroscopic 

and optical rotation data with known cis-30.
28

  The prepara-

tion of cis-30 also completes a formal synthesis of sax-
agliptin, a drug for the treatment of type 2 diabetes.

28,29
 

Scheme 10. Synthesis of known amino alcohol cis-30 from 

sulfoxide syn-7 and formal synthesis of saxagliptin.   

N

Boc

S
p-Tol

O

syn-7
99%

NaI, TFAA
acetone

–40 °C, 10 min
N

Boc

S
p-Tol

28

1. sBuLi, (+)-sp surr

     –78 °C, Et2O, 10 min

2. CO2
3. BH3•Me2S

84%

cis-29

N

Boc

S

OH

p-Tol
N

BocOH

Raney Ni
THF-EtOH

rt, 5 h

cis-30

73%

NNC

O

NH2 OH

Saxagliptin  

With ready access to α-amino sulfoxide syn-7 in 99:1 er, 

sulfoxide → Mg exchange and subsequent trapping of α-

functionalised Grignard reagent (R,R)-31 with electrophiles 

was explored.  The sulfoxide → Mg exchange on sulfoxide 

syn-7 (99:1 er) worked well using 2.5 eq. of i-PrMgCl in 
THF at room temperature for 1 min.  Direct electrophilic 

trapping delivered (S,R)-32-33, (R,R)-34 and (S,R)-35 in 
99:1 er (64-89% yield) using MeO2CCl, allyl bro-
mide/CuBr•SMe2, benzyl bromide/CuBr•SMe2 and PhNCO 
respectively (Scheme 11).  In these cases, due to the bicy-
clic system, configurational stability of the intermediate 

Grignard reagent (R,R)-31 is assured.   

Scheme 11. Synthesis of trapped products in 99:1 er via 

sulfoxide →→→→ Mg exchange with syn-7.  
 

N

Boc

S
p-Tol

O

syn-7

THF, rt
1 min

N

Boc

MgCl

E+

N

Boc

E

(R,R)-31

N

Boc O

OMe

(S,R)-32

N

Boc

(S,R)-33

N

Boc

Ph

(R,R)-34

N

Boc O

NHPh

(S,R)-35

E+ = MeO2CCl E+ = CuBr•Me2S

 then allyl–Br

E+ = PhCNOE+ = CuBr•Me2S

 then allyl–Br

2.5 eq.
iPrMgCl

89%, 99:1 er 69%, 99:1 er 64%, 99:1 er 67%, 99:1 er

 

Finally, we also showed that α-functionalised Grignard 

reagent (R,R)-31 derived from syn-7 could be coupled with 
aryl bromides (via transmetallation to Zn and Pd-mediated 
Negishi coupling

18,24
).  In this way, arylated heterocycles 

(S,R)-36-39 were generated in 99:1 er (Scheme 12).  Thus, 
a wide range of substituted N-Boc cyclopropyl pyrrolidines 
are now accessible in 99:1 er via asymmetric deprotonation 

using s-BuLi/diamine (R,R)-12, trapping with sulfinate (SS)-

3 and subsequent sulfoxide → Mg exchange and electro-
philic trapping.   

 

 

Scheme 12. Sulfoxide →→→→ Mg exchange and Negishi cou-

pling to give arylated products in 99:1 er from syn-7.  
 

N

Boc

S
p-Tol

O

syn-7

THF, rt
1 min

N

Boc

MgCl N

Boc

Ar

(R,R)-31

2.5 eq.
iPrMgCl

N

Boc

N

Boc

OMe

N

Boc

CO2Me

N

Boc S

(S,R)-36 (S,R)-37 (S,R)-38 (S,R)-39

1. ZnCl2

6 mol% tBuPHBF4
Ar–Br, rt. 16 h

2.  5 mol% Pd(OAc)2

68%, 99:1 er 68%, 99:1 er 74%, 99:1 er 72%, 99:1 er  

 

Conclusion 

In conclusion, we present a new strategy for the generation 

of enantiopure α-functionalised chiral Grignard reagents 
via asymmetric deprotonation, trapping with Andersen’s 

sulfinate (SS)-3 and sulfoxide → Mg exchange.  Using α-

alkoxy- and α-amino sulfoxides anti-6 and syn-7 in ≥99:1 

dr and ≥99:1 er, access to a range of enantiopure α-

substituted products (via sulfoxide → Mg exchange at room 
temperature for 1 min and trapping) is possible. Our meth-
odology does not rely on the use of (–)-sparteine for the 
asymmetric deprotonation step and delivers a wide range of 

previously inaccessible α-substituted products in 99:1 er.  
In the course of our studies, we have identified two im-
portant aspects.  First, in the deprotonation and trapping 

with Andersen’s sulfinate (SS)-3, there is a lack of stereo-
specificity at sulfur due to attack of a lithiated intermediate 

onto the sulfur in the α-alkoxy- and α-amino sulfoxides as 

they form.  Second, the α-alkoxy-substituted Grignard rea-

gent (S)-15 is configurationally stable at room temperature 
for 30 minutes.  Finally, extension of this approach to ac-
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cess chiral α-functionalised Grignard reagents from a wide 
range of asymmetric deprotonation reactions without the 
need for (–)-sparteine can be envisaged.   
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