# Organic & Biomolecular Chemistry



#### COMMUNICATION

View Journal | View Josue

## Regioselective synthesis of 3,4,5-trisubstituted 2-aminofurans†

**Cite this:** *Org. Biomol. Chem.*, 2014, **12**, 5098

Received 20th May 2014, Accepted 30th May 2014

DOI: 10.1039/c4ob01037j

www.rsc.org/obc

Thi Ngoc Tram Huynh, a,b Pascal Retailleau, Clément Denhez,\*a Kim Phi Phung Nguyen and Dom Guillaume

Three series of methyl 5-substituted 2-aminofuran-4-keto-3-car-boxylates have been prepared following a multicomponent reaction strategy by the addition of an isocyanide to 4-oxo-2-butynoate in the presence of an aldehyde. The cycloaddition regioselectivity is generally high (>95%) but decreases when an electron-rich substituent is located at the butynoate 4-position.

Furan is an important five membered O-heterocycle frequently present in biologically important natural products and pharmaceutical substances. <sup>1</sup> 2-Aminofurans are powerful synthetic intermediates <sup>2</sup> whose use is somehow hampered by their limited availability. Such a limitation is particularly stressed for 3,4,5-trisubstituted 2-aminofurans. Indeed, if 3-cyano-4,5-disubstituted-2-aminofurans can be prepared by reaction of  $\alpha$ -bromoacetophenones with malononitrile, <sup>3</sup> or by a cascade Stetter- $\gamma$ -keto nitrile cyclization reaction of aromatic aldehydes and acylidenemalononitriles, <sup>4</sup> most of the reported 3,4,5-trisubstituted-2-aminofurans have been prepared by nucleophilic addition of isocyanides to dimethyl acetylenedicarboxylate in the presence of mainly aromatic aldehydes, <sup>5</sup> but also conjugated aldehydes, <sup>6</sup> or modified aldehydes, <sup>7</sup> acids, <sup>8</sup> or acyl chlorides <sup>9</sup> (Scheme 1).

Diaroylacetylenes (1,4-diarylbut-2-yne-1,4-diones) have also been scarcely but successfully used in place of dimethyl acetylenedicarboxylate<sup>10</sup> (Scheme 1). However, despite its chemical efficiency the isocyanide-based multicomponent approach has exclusively been applied to symmetrical alkynes, allowing the preparation of 3,4,5-trisubstituted-2-aminofurans presenting simultaneously either a diketo- or a diester-functionality at C3

Scheme 1 Known strategies to prepare 3,4,5-trisubstituted 2-aminofurans.

and C4, so far. Recently, a two-step synthesis of three 3,4,5-trisubstituted-2-aminofurans in which the 3- and 4-positions are functionalized with an ester and keto group, respectively, has been reported<sup>11</sup> (Scheme 1).

This synthesis necessitates the oxidation of a 2-amino-2,3-dihydrofuran initially resulting from the reaction of carbenoids with enamines. Taking advantage of the high isocyanide reactivity, we report the regioselective one-step synthesis of 3,4,5-trisubstituted 2-aminofurans in which the 3- and 4-positions are functionalized with an ester and keto group.

First we screened experimental conditions of the three component reaction using benzaldehyde, the known methyl 4-oxo-2-alkynoate (1), 12 and tert-butyl isocyanide (4) in various solvents (Table 1). Even though [Bmim]BF4, toluene/benzene, or PEG 400 have been reported to be suitable solvents for such cycloaddition reactions,  $^{5a-f,6}$  in our hands those solvents failed to deliver the expected furan (Table 1, entries 1–3). Interestingly, the use of H2O as a solvent led to 2-aminofuran 5a in around 68% yield, depending on the reaction temperature (Table 1, entries 4 and 5). Replacement of water with dichloromethane afforded the expected 2-aminofuran in 55% yield when the reaction was performed at room temperature and 72% upon heating at 70 °C (sealed tube) (Table 1, entries 6 and 7). Furthermore and delightedly, the  $^1$ H-NMR spectrum of the crude reaction mixture evidenced that the successful cyclo-

E-mail: clement.denhez@univ-reims.fr

 $<sup>\</sup>begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ 

<sup>&</sup>lt;sup>a</sup>ICMR, UMR7312-CNRS, Université de Reims Champagne Ardenne, UFR Pharmacie, 51 rue Cognacq Jay, 51096 Reims Cedex, France.

<sup>&</sup>lt;sup>b</sup>Department of Organic Chemistry, University of Science, National University – Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist. 5, 748355 Ho Chi Minh City, Vietnam <sup>c</sup>ICSN, UPR2301-CNRS, 1 Avenue de la Terrasse, 91190 Gif sur Yvette, France

<sup>†</sup> Electronic supplementary information (ESI) available: Synthesis, characterization of new compounds, computational details and crystallographic data of 7b and 8b. CCDC 949882 and 949883. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ob01037j

**Table 1** Screening of the reaction conditions for 2-aminofuran synthesis

Ph + 
$$t-Bu$$
  $t-Bu$   $t-$ 

| Entry       | Solvent, conditions                                              | Yield (%) |
|-------------|------------------------------------------------------------------|-----------|
| 1           | PEG 400, <sup>a</sup> RT, 24 hours                               | 0         |
| 2           | C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub> , reflux, 24 hours | 0         |
| 3           | [Bmim]BF <sub>4</sub> , RT, 24 hours                             | 0         |
| 4           | H <sub>2</sub> O, RT, 24 hours                                   | 69        |
| 5           | H <sub>2</sub> O, 110 °C, sealed tube, 24 hours                  | 66        |
| 6           | CH <sub>2</sub> Cl <sub>2</sub> , RT, 24 hours                   | 55        |
| 7           | CH <sub>2</sub> Cl <sub>2</sub> , 70 °C, sealed tube, 24 hours   | 72        |
| a  PFG = nc | alv(ethylene glycol)                                             |           |

Table 2 Cycloaddition yield (%) using methyl 5,5-dimethyl-4-oxohex-2-ynoate (1) or methyl 4-phenyl-4-oxo-2-butynoate (2) and various aromatic aldehydes

| Ar                                                          | $5^{a,b}$      | $6^{a,b}$      |
|-------------------------------------------------------------|----------------|----------------|
| Ph                                                          | 5a (72)        | <b>6a</b> (52) |
| p-O <sub>2</sub> N-C <sub>6</sub> H <sub>4</sub>            | <b>5b</b> (93) | <b>6b</b> (79) |
| m-O <sub>2</sub> N-C <sub>6</sub> H <sub>4</sub>            | 5c (92)        | <b>6c</b> (78) |
| Piperonyl <sup>c</sup>                                      | <b>5d</b> (53) | <b>6d</b> (45) |
| $p	ext{-}	ext{H}_3	ext{C-}	ext{C}_6	ext{H}_4$               | 5e (61)        | <b>6e</b> (57) |
| <i>p</i> -F-C <sub>6</sub> H <sub>4</sub>                   | <b>5f</b> (50) | <b>6f</b> (52) |
| 2-(Pivaloyloxy)-C <sub>6</sub> H <sub>4</sub>               | 5g (60)        | <b>6g</b> (58) |
| 3-(Pivaloyloxy)-C <sub>6</sub> H <sub>4</sub>               | <b>5h</b> (53) | <b>6h</b> (50) |
| 4-(Pivaloyloxy)-C <sub>6</sub> H <sub>4</sub>               | 5i (62)        | 6i (52)        |
| 3,5-Dimethoxy-4-(pivaloyloxy)-C <sub>6</sub> H <sub>2</sub> | <b>5j</b> (70) | <b>6j</b> (63) |
| 2-(3-Methyl)thiophenyl                                      | <b>5k</b> (59) | <b>6k</b> (53) |

<sup>a</sup> Reactions were conducted using 1 eq. of 1 (or 2) and 1.1 eq. of *tert*-butyl isocyanide (4). <sup>b</sup> Isolated yields. <sup>c</sup> 5-Benzo[d[1,3]dioxole.

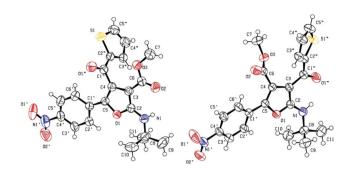
addition was accompanied by single regioisomer formation. Characteristic  $^{13}$ C chemical shift of 2-aminofuran C3- and C4-atoms at  $\delta$  91.0 and 123.6, respectively,  $^{11}$  unequivocally indicated the exclusive (above 95%) formation of **5a** (Table 1), the furan resulting from a nucleophilic attack of the isocyanide at the carbon alpha of the methyl 4-oxo-2-alkynoate ester group.  $^{13}$ 

Then, we focused on the cycloaddition regioselectivity. We observed that aldehydes had no influence on the regioselectivity since all eleven studied aromatic aldehydes afforded only one regioisomer with the yield of 50–95% after cycloaddition in the presence of 1 or 2 in  $\rm CH_2Cl_2$  at 70 °C (Table 2). If nitrobenzaldehydes and benzaldehyde afforded tetrasubstituted furans in high yield, 2-aminofurans 5f or 5h, and 6f or 6h resulting from 4-fluorobenzaldehyde or 4-pivaloyloxybenzaldehyde, respectively, were obtained in only 50% yield (Table 2).

Table 3 Cycloaddition yield (%) using methyl 4-oxo-4-(thiophen-2-yl)-but-2-ynoate (3) and various aromatic aldehydes

| Ar                                                          | Isomer 7 <sup><i>a,b</i></sup> | Isomer <b>8</b> <sup>a,b</sup> |
|-------------------------------------------------------------|--------------------------------|--------------------------------|
| Ph                                                          | 7a (40)                        | 8a (10)                        |
| p-O <sub>2</sub> N-C <sub>6</sub> H <sub>4</sub>            | 7 <b>b</b> (62)                | <b>8b</b> (30)                 |
| m-O <sub>2</sub> N-C <sub>6</sub> H <sub>4</sub>            | 7c (61)                        | 8c (25)                        |
| Piperonyl <sup>c</sup>                                      | 7d (23)                        | <b>8d</b> (9)                  |
| $p$ - $H_3$ C- $C_6$ $H_4$                                  | 7e (32)                        | <b>8e</b> (8)                  |
| <i>p</i> -F-C <sub>6</sub> H <sub>4</sub>                   | 7f (42)                        | <b>8f</b> (8)                  |
| 2-(Pivaloyloxy)-C <sub>6</sub> H <sub>4</sub>               | 7g(47)                         | 8g (-)                         |
| 3-(Pivaloyloxy)-C <sub>6</sub> H <sub>4</sub>               | 7 <b>h</b> (35)                | 8h (12)                        |
| 4-(Pivaloyloxy)-C <sub>6</sub> H <sub>4</sub>               | 7i (41)                        | 8i (12)                        |
| 3,5-Dimethoxy-4-(pivaloyloxy)-C <sub>6</sub> H <sub>2</sub> | 7 <b>j</b> (40)                | <b>8j</b> (13)                 |
| 2-(3-Methyl)thiophenyl                                      | 7k (26)                        | <b>8k</b> (8)                  |

<sup>a</sup> Reactions were conducted using 1 eq. of 3 and 1.1 eq. of *tert*-butyl isocyanide (4). <sup>b</sup> Isolated yields. <sup>c</sup> 5-Benzo[d][1,3]dioxole.


Then, to evaluate the influence of the C4-alkyne substituent on the regioselectivity, we used methyl 4-phenyl-4-oxo-2-butynoate (2)<sup>12,14</sup> in place of 1. In that case, cycloaddition again nicely occurred with a higher than 95% regioselectivity (Table 2). However, it was associated with a slightly lower chemical yield compared to those observed with 1.

More contrasting results were obtained when methyl 4-oxo-4-(thiophen-2-yl)but-2-ynoate<sup>15</sup> (3) was used. In this case, even though global chemical yields were similar to those observed with 1 or 2, a minor regioisomer (8) resulting from the nucleophilic isocyanide attack at  $\alpha$ -position of the keto group was isolated together with 7, the regioisomer resulting from a similar attack at  $\beta$ -position of the keto group (Table 3).

The structures of  $7\mathbf{b}$  and  $8\mathbf{b}$  (Ar = p-NO2-C<sub>6</sub>H<sub>4</sub>) were unambiguously solved by X-ray crystallography (Fig. 1). A high reactivity of the  $\alpha$ -position of the methoxycarbonyl group of alkynes such as 1–3 towards nucleophilic attack has generally been assumed since the pioneering work of Jones  $et~al.^{13}$  However, the reactivity of the Michael-acceptor is known to be reduced if it is substituted with an electron rich group. <sup>16,17</sup> It is very likely that the electron-rich thienyl group modifies the alkyne charge distribution, resulting in a lower regioselectivity of the isonitrile attack.

In order to explain the observed regioselectivity, we determined DFT-based reactivity<sup>18</sup> and Fukui condensed indices<sup>19</sup>  $f_k^+$  and  $f_k^{-20}$  widely used to study 1,3-dipolar cycloadditions.<sup>21</sup> As expected, *tert*-butyl isocyanide (4) featured a  $f_k^-$  concentrated on the isocyanide carbon (0.581 unit). Interestingly, alkyne 1 featured a  $f_k^+$  concentrated on carbon 2 (0.178 unit) associated with a high discrimination between the two reactive alkyne carbons (difference of 0.134 unit in favor of carbon 2).

Conversely, alkynes 2 and 3 displayed a more balanced Fukui indices distribution. Indeed, whereas the highest  $f_k^+$  was again concentrated on carbon 2 (0.051 and 0.105 unit for 2 and 3, respectively),  $f_k^+$  indices on carbon 3 were calculated



Communication

Fig. 1 ORTEP (50% ellipsoid probability) diagram of regioisomers 7b (left) and 8b (right).

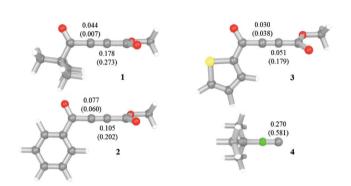



Fig. 2 Calculated DFT-based reactivity indices at the M062X/6-31G(d,p) level of theory. (Fukui  $f_{\nu}^{+}$  electrophilic indices are specified over reactive carbons and  $f_k^-$  nucleophilic indices are specified in parentheses.)

to be 0.077 and 0.030 unit for 2 and 3, respectively. These results are fully in accordance with the regioselectivity observed for the cycloaddition involving alkynes 1 and 2, but do not explain the experimental results obtained for alkyne 3 (Fig. 2). Therefore a more detailed computational study needs to be performed. Such a study is currently in progress in our laboratory.

#### Conclusions

In conclusion, we have been able to prepare a large variety of 3,4,5-trisubstituted 2-aminofurans from 4-oxo-2-alkynoates and isocyanides. The reaction occurs in a highly regioselective manner that could be however reduced if the keto substituent is electron rich.

### Acknowledgements

TNTH was supported by AUF (Agence Universitaire de la Francophonie). The authors acknowledge the ICSN for X-ray crystal resolution and the ROMEO mesocenter for software licensing and CPU facilities.

#### Notes and references

- 1 (a) S. F. Kirsch, Org. Biomol. Chem., 2006, 4, 2076-2080; (b) A. Kumar and S. R. Meneni, in Modern approaches to the synthesis of O- and N-heterocycles, ed. T. S. Kaufman and E. L. Larghi, Research Signpost, Trivandrum, India, 2007, vol. 1, pp. 1-23.
- 2 (a) B. M. Trost and P. J. McDougall, Org. Lett., 2009, 11, 3782-3785; (b) S. Kiren, X. Hong, C. A. Leverett and A. Padwa, Org. Lett., 2009, 11, 1233-1235; (c) J. Boonsompat and A. Padwa, J. Org. Chem., 2011, 76, 2753-2761; (d) F. R. Petronijevic and P. Wopf, J. Am. Chem. Soc., 2011, 133, 7704–7707; (e) K. C. Nicolaou, P. S. Baran, Y. L. Zhong, K. C. Fong and H. S. Choi, J. Am. Chem. Soc., 2002, 124, 2190-2201; (f) F. Xiao, J. C. Lancelot, H. Prunier and S. Rault, J. Heterocycl. Chem., 1996, 331, 2007-2011; (g) A. O. Abderhamid, A. M. Negm and I. M. Abbas, J. Prakt. Chem., 1981, 331, 31-36.
- 3 A. W. Erian, S. M. Sherif and H. M. Gaber, Molecules, 2003, 8,793-865.
- 4 P. Liu, M. Lei, L. Ma and L. Hu, Synlett, 2011, 1133-1136.
- 5 (a) V. Nair and A. U. Vinod, Chem. Commun., 2000, 1019-1020; (b) J. Azizian, M. R. Mohammadizadeh, A. A. Mohammadi and A. R. Karimi, Heteroat. Chem., 2005, 16, 259–262; (c) M. A. Terzidis, J. Stephanidou-Stephanatou and C. A. Tsoleridis, J. Org. Chem., 2010, 75, 1948-1955; (d) J. S. Yadav, B. V. Subba Reddy, S. Shubashree, K. Sadashiv and D. Krishna Rao, J. Mol. Catal. A: Chem., 2007, 272, 128-131; (e) N. Hazeri, M. T. Maghsoodlou, S. M. Habibi-Khorassani, G. Marandi, K. Khandan-Barani, M. Aiyaadini and A. Aminkhani, ARKIVOC, 2007, 173-179; (f) J. S. Yadav, B. V. Subba Reddy, S. Shubashre, K. Sasashiv and J. J. Naidu, Synthesis, 2004, 2376-2380; (g) S. Asghari and M. Qandalee, Asian J. Chem., 2010, 22, 3435-3438; (h) V. Nair, A. Unni Vinod, N. Abhilash, R. S. Menon, V. Santhi, R. L. Varma, S. Viji, S. Mathew and R. Srinivas, Tetrahedron, 2003, 59, 10279-10286; (i) I. Akritopoulos-Zanze, Applications of Isocyanides in the Synthesis of Heterocycles, in Isocyanide Chemistry: Applications in Synthesis and Material Science, ed. V. G. Nenajdenko, John Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2012, pp 451-492; (j) V. Nair, C. Rajesh, A. U. Vinod, S. Bindu, A. R. Sreekanth, J. S. Mathen and L. Balagopal, Acc. Chem. Res., 2003, 36, 899-907.
- 6 (a) B. V. Subba Reddy, D. Somashekar, A. Mallikarjun Reddy, J. S. Yadav and B. Sridhar, Synthesis, 2010, 2069-2074; (b) M. Qandalee, M. Mokhtary, S. Asghari and M. Mehrzadi, e-J. Chem., 2012, 9, 791-795.
- 7 M. H. Mosslemin, M. Anary-Abbasinejad and H. Anaraki-Ardakani, Synlett, 2009, 2676-2678.
- 8 A. Alizadeh, S. Rostamnia and L.-G. Zhu, Synthesis, 2008, 1788-1792.
- 9 R. Mossetti, D. Caprioglio, G. Colombano, G. C. Tron and T. Pirali, Org. Biomol. Chem., 2011, 9, 1627–1631.
- 10 M. Adib, M. H. Sayahi, S. A. Koloogani and P. Mirzael, Helv. Chim. Acta, 2006, 89, 299-303.

- 11 Y. Jiang, V. Z. Y. Khong, E. Lourdusamy and C.-M. Park, *Chem. Commun.*, 2012, **48**, 3133–3135.
- 12 (a) T. Naka and K. Koide, *Tetrahedron Lett.*, 2003, 44, 443–445; (b) R. A. Aitken, H. Hérion, A. Janosi, N. Karodia, S. V. Raut, S. Seth, I. J. Shannon and F. C. Smith, *J. Chem. Soc.*, *Perkin Trans.* 1, 1994, 2467–2472.
- 13 E. R. H. Jones, Y. Shen and M. C. Whiting, *J. Chem. Soc.*, 1950, 236–241.
- 14 K. Liu, F. Jia, H. Xi, Y. Li, X. Zheng, Q. Guo, B. Shen and Z. Li, *Org. Lett.*, 2013, **15**, 2026–2029.
- 15 A. Vaitiekunas and F. F. Nord, *J. Am. Chem. Soc.*, 1954, **76**, 2737–2740.

- 16 B. D. Mather, K. Viswanathan, K. M. Miller and T. E. Long, Michael addition reactions in macromolecular design for emerging technologies, *Prog. Polym. Sci.*, 2006, 31, 487–531.
- 17 C. M. Filloux, S. P. Lathrop and T. Rovis, *Proc. Natl. Acad. Sci. U. S. A.*, 2010, **107**, 20666–20671.
- 18 Full computational details can be found in the ESI.†
- 19 W. Yang and R. G. Parr, *Proc. Natl. Acad. Sci. U. S. A.*, 1985, **82**, 6723–6726.
- 20 J. Melin, P. W. Ayers and J. V. Ortiz, J. Phys. Chem. A, 2007, 111, 10017–10019.
- 21 L. R. Domingo, M. J. Aurell and R. Contreras, J. Phys. Chem. A, 2002, 106, 6871–6875.