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A B S T R A C T

Metallodeuteroporphyrins (MDPs) were employed as the catalysts for aerobic oxidation of b-pinene in
absence of solvents and additives. Allylic hydroxylation products were found to be the main products
from this protocol. The catalytic activity of MDPs with different metal nuclei and the influences of
technological conditions on this reaction were investigated. This catalytic system has bright application
prospect since only eco-friendly and readily available dioxygen were needed.
ã 2016 Zhen-Dong Zhao. Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of

Medical Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction

With the rapid decrease of the fossil resources, there is an ever-
increasing interest for the utilization of renewable biomass
resources in making more valuable products [1,2]. Turpentine,
obtained by collecting and isolating the oleosus exudates of living
pine trees, is the most important and cheapest monoterpene
resources all over the world [3]. As the major component of
turpentine, b-pinene (1, Fig. 1) contributes to 30% in raw
turpentine materials [4]. Due to the presence of a double bond
and a strained four-membered ring, b-pinene can be transformed
readily to produce a number of useful products for pharmaceutical
and other industrial applications [5–7].

b-Pinene oxidation products such as myrtenol (2) and
pinocarveol (3) are valuable pharmaceuticals, fragrance ingre-
dients or chemical intermediates [8,9]. Generally, direct allylic
oxidation of b-pinene by stoichiometric oxidants such as peracids,
SeO2 or H2O2 is the most efficient processes for the production
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of 2 and 3 [10–12]. These procedures have been now rejected
because a large amount of toxic waste could be produced in these
systems and caused great environmental impacts. In contrast to
stoichiometric oxidants, molecular oxygen is an excellent oxidant
due to its inexpensive, eco-friendly and easily available character-
istics [13]. However, because of the inertness of molecular oxygen
and the complex molecular structure of b-pinene, selective
aerobic oxidation of b-pinene by molecular oxygen is still
amongst the major challenges in academic and industrial research
[14].

Metalloporphyrins (MPs) are efficient selective catalysts
applied widely for direct aerobic allylic oxidation of hydrocarbons
[15–17]. But most are used under the assistance of solvents,
reductants and cocatalysts. MPs catalyzed aerobic oxidation of
hydrocarbons in absence of solvents and additives has bright
industry application prospect since only eco-friendly and readily
available molecular oxygen were needed. Aerobic oxidation of
simple hydrocarbons catalyzed by MPs in solvent and additive free
system has been studied [18,19]. However, to the best of our
knowledge, selective allylic oxidation of complex alkenes in MPs
catalyzed aerobic oxidation systems in absence of solvents and
additives has not been reported before.
Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights
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Fig. 1. Structure of b-pinene and its aerobic oxidation products over the catalysis of metallodeuteroporphyrins (MDPs).
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In this work, an efficient metallodeuteroporphyrins (MDPs)
talyzed selective aerobic allylic oxidation method of b-pinene
ig. 1, containing one C¼C bond and six different C��H bonds in a
olecule) was established. Allylic hydroxylation products could be
tained with high selectivity under the catalyzing of metal-
deuteroporphyrin dimethyl esters (Fig. 2, MDPDMEs, 4a–4d) in
sence of solvents and additives because of the high reactivity of
lylic C��H bonds of b-pinene in this aerobic oxidation system.
e effects of reaction parameters and metal nuclei of MDPDMEs
 this reaction were investigated. The possible reaction mecha-
sm and the role of MDPDMEs in this procedure were initially
scussed.

 Results and discussion

. Aerobic oxidation of b-pinene under the catalysis of MDPs

According to GC, GC–MS and chemical analysis data, the
idation products consisted of 2, 3, pinocarvone (5) and trace
ount of 2,10-epoxypinane (6) and hydroperoxides (HPs). HPs are
oved to be myrtenyl-hydroperoxide (7) and pinocarvyl-hydro-
roxide (8) [4]. Products 2, 3 and 5 belonged to the oxidation of
lylic C��H bonds. Product 6 was attributed to the epoxidation of
-bond. Products 7 and 8 belonged to the hydroperoxidation of
lylic C��H bonds. b-Pinene could be oxidized by dioxygen in the
sence of any catalysts under similar parameters (Table 1). But the
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. 2. Formula of MDPDMEs mentioned in the text. M = FeCl (4a), Co (4b), MnCl
c), Cu (4d).

ble 1
mparison for aerobic hydroxylation oxidation of b-pinene at different reaction
peratures.

ntry Cat. T (�C) C (%) Product selectivity (%) Shydroxyl (%) TON

2 3 5

 4a 70 5.1 30.5 20.0 11.8 50.5 4700
 4a 80 16.9 59.9 25.1 6.9 85.0 15,400
 4a 90 18.6 60.9 24.9 4.9 85.8 17,000
 Non 90 18.5 34.6 11.3 2.6 45.9 –

 4a 100 20.8 63.3 16.4 4.7 79.7 19,000
 4a 110 21.8 59.8 14.6 1.6 74.4 19,900

action conditions: b-pinene 0.73 (m), FeClDPDME 8 (mm), temperature 90 (� C),
bient pressure, oxygen flow rate 60 (mL/min), time 5 (h).

Please cite this article in press as: S.-C. Xu, et al., Solvent and additive-
metalloporphyrins, Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/
selectivity (S) of allylic hydroxylation products is much lower than
the values under the catalysis of MDPs, indicating that MDPs acted
as critical regioselective catalysts in this reaction. The accumula-
tion of HPs was detected at the initial of this reaction. But HPs could
be decomposed under the catalysis of MPs [19]. When this reaction
proceeded for 5 h, the yield of HPs decreased to a stable value of
about 0.5% while the conversion (C) value of b-pinene reached
18.6%, indicating a completely decomposition of HPs in this
protocol.

2.2. Optimization of the working conditions

MPs are important biomimetic catalysts with bright industry
application prospect. In order to obtain the optimal reaction
conditions, FeClDPDME was selected as a model to investigate the
influence of various working conditions on this reaction. Table 1
listed the C values of b-pinene and the S values of various oxidation
products of this reaction at different temperatures. The results
showed that the C values increased with reaction temperature at
the temperature range from 70 �C to 110 �C. The total selectivity of
allylic hydroxylation products 2 and 3 reached a maximal value of
85.8% at 90 �C. It has been reported that only high-spin unsteady
state perfluorinated or poly-halogenated MPs can activate
molecular oxygen under ambient pressure in this solvent and
additive free system [18]. The reductive potentials of simple MPs
such as metallotetraphenylporphyrines (MTPPs) and MDPs are so
low that they can be easily reduced to their high-spin unsteady
state by thermal decomposition reduction [18,19]. Thus, the
catalytic of MDPs on aerobic oxidation of b-pinene at low reaction
temperatures plays a trivial role, which leads to the decrease of S
values of hydroxylation products 2 and 3. When the reaction
temperature was higher than 100 �C, the selectivity of 2 and 3
decreased dramatically due to the over-oxidation of initial
oxidation products.

In our previous research, catalyst concentration was found to be
a critical factor in MPs biomimetic catalyzed reactions. Fig. 3
showed the conversion of b-pinene and the selectivity of various
oxidation products over the catalysis of different concentration
MDPs from 1 ppm to 9 ppm. The results indicated that the
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Fig. 3. Effects of catalyst concentration C and S values of this reaction. Reaction
conditions: temperature 90 (�C), ambient pressure and time 5 (h).
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Fig. 4. Effects of oxygen flow rate on C and S values of this reaction. Reaction
conditions: b-pinene 0.73 mol, FeClDPDME 8 mmol, temperature 90 �C, ambient
pressure and time 5 h.

Table 2
Comparison for aerobic oxidation of b-pinene under the catalysis of different
MDPs.a

Entry Catalyst C (%) Product selectivity (%) Shydroxyl (%) TON

2 3 5

1 4a 18.6 60.9 24.9 4.9 85.8 17,000
2 FeCl3�6H2O 17.8 43.2 14.4 2.4 57.6 16,200
3 4b 17.1 54.7 21.3 2.5 76.0 15,600
4 CoCl2�6H2O 18.4 42.0 14.6 1.6 56.6 16,800
5 4c 17.2 48.1 22.1 2.8 70.2 15,700
6 MnCl2�4H2O 18.3 38.0 14.5 1.3 52.5 16,700
7 4d 17.5 49.1 14.9 3.5 64.0 16,000
8 CuCl2�2H2O 17.5 39.8 18.1 1.4 57.9 16,000

a Reaction conditions: b-pinene 0.73 mol, MDPs and metal salts 8(mmol,
temperature 90 �C, ambient pressure, oxygen flow rate 60 mL/min, time 5 h.
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conversion of b-pinene and the selectivity of allylic C–H oxidation
products increased with the increasing of FeClDPDME concentra-
tion when the catalyst concentration was lower than 5 ppm. Higher
concentration of FeClDPDME would lead to the formation of
inactive m-oxo metalloporphyrin dimers [20,21]. Therefore,
although more catalyst was added, the efficient concentration of
active catalyst reduced and caused the decrease of C and S values in
this reaction.

The effect of oxygen flow rate on conversion and product
selectivity were also investigated. As illustrated in Fig. 4, the
conversion of b-pinene increased with the increase of the flow rate
of oxygen at flow rate less than 60 mL/min. If the oxygen flow rate
was higher than 80 mL/min, the selectivity of product 2 and 3
decreased evidently with the increase of oxygen flow rate. This
phenomenon might be explained as follows: The dissolved oxygen
in liquid phase increased with the increase of the oxygen flow rate.
Thus, the production of 2 and 3 increased with the increase of
oxygen flow rate. However, the higher flow rate of oxygen would
accelerate the over-oxidation of 2 and 3 to other by-products.

2.3. Effect of central metal of MDPs

As reported in our previous work, MPs with different central
metal possess different catalytic activities. Table 2 summarized the
data obtained from the aerobic oxidation of b-pinene under the
catalysis of various MDPs. The results showed that the S values of
allylic hydroxylation products varied dramatically with the change
of central metal nuclei. Under the catalysis of various correspond-
ing metal salts, the S values were much lower, indicating this
variation is mainly caused by the different catalytic abilities of
MDPs, which follows a sequence of FeClDPDME > CoDPDME >
MnClDPDME > CuDPDME. It has been reported that the catalytic
activity of MPs can be influenced by the stability and redox
potential of central metal nuclei, resulting to the higher selectivity
Scheme 1. Aerobic oxidation of b-

Please cite this article in press as: S.-C. Xu, et al., Solvent and additive-f
metalloporphyrins, Chin. Chem. Lett. (2016), http://dx.doi.org/10.1016/j.
for allylic hydroxylation products in our procedure [19,20]. This
phenomenon might be attributed to the different redox potential
of various MDPs.

2.4. Probable reaction mechanism

Aerobic oxidation of hydrocarbons in presence and in absence
of catalysts has been widely investigated in previous researches. It
is widely accepted that these processes are initiated by different
active radical intermediates, which generated from the decompo-
sition of HPs [4,22]. These radicals remove hydrogen atoms in
substrate molecules, yielding corresponding resonance-stabilised
alkyl radicals. As it is mentioned above, b-pinene could be oxidized
by oxygen in or in absence of MPs. Aerobic oxidation of b-pinene in
absence of catalysts has been explicitly investigated by Hermans
and coworkers and found to be propagated by different peroxyl
radicals [4]. These radicals abstract weakly bonded a-hydrogen
atoms in the substrate, yielding the corresponding hydroperoxides
and resonance-stabilised alkyl radicals (Scheme 1). O2 adds to
these allyl radicals and generates allylic hydroperoxidation,
allylic hydroxylation and epoxidation porducts via complex
approaches.

In MPs biomimetic catalyzed system, b-pinene might be
oxidized in a different procedure. Under the catalyst of MPs, HPs
could decomposed rapidly by MPs to corresponding hydroxylation
products (Scheme 2a). Meanwhile, MPs transformed to high-
valence MP radicals (e.g. ferric(IV) porphyrin radicals, [FePIV = O+],
Scheme 2b) [19]. These radicals are regarded as the active species
to initiate this reaction, which removes hydrogen atoms in alkyls
and yields caged pair of alkyl radicals and high-valence MPs. The
caged pair collapses to alcohol or over-oxidized ketone products
via a complex oxygen transfer process [19,23]. Perhaps, this is the
main reason for the high selectivity of allylic hydroxylation
products in this catalytic oxidation system. Aerobic oxidation of
b-pinene in absence of catalysts might occur as a competing
reaction in this system. Therefore, the increasement of the flow
rate increased the selectivity of HPs and other over-oxidation
pinene in absence of catalysts.

ree selective aerobic allylic hydroxylation of b-pinene catalyzed by
cclet.2016.11.020
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Scheme 2. Aerobic oxidation of b-pinene under the catalysis of FeP.
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oducts. MPs with different central metal nuclei possess different
tivities in this biomimetic catalytic process. Higher reactive
talysts could promote the decomposing of HPs and the
opagating of MPs catalyzed process, resulting to the different
lectivity for allylic hydroxylation products.

 Conclusion

Aerobic oxidation of b-pinene catalyzed by MDPs in absence of
lvents and additives at ambient pressure was studied. The
timal reaction conditions of this protocol were evaluated to be
�C, 5 ppm and 60 mL/min. The catalyst active of MDPs with
fferent central metal nuclei followed a sequence FeClDPDME >
oDPDME > MnClDPDME > CuDPDME. This catalytic system has
ight application prospect since only eco-friendly and readily
ailable dioxygen were needed.

 Experimental

1H NMR spectra were determined on a Bruker Avance III
0 MHz spectrometer (Bruker, German). IR spectra were charac-
rized by a Thermo Nicolet IS10 IR instrument (Thermo, USA). ESI-
S/MS spectra were recorded on a Finnigan TSQ Quantum Ultra

 mass spectrometer (Finnigan, USA). GC detection were
rformed through a Shimadzu GC-2014AF (Shimadzu, Japan)

 instrument. GC–MS analysis was performed on an Agilent
90N/5973N GC–MS instrument (Agilent, USA).
Hemin (purity > 98.5%) was obtained from Tianjin Institute of

fe Sciences Applications (China). b-pinene obtained from
uzhou Sonbon Forest Chemical Co. was redistilled and purified

 over 98.5% before use. Other chemicals were of analytical grade
tained commercially and used without further purification.
ganic solvents were dried before use. MDPDMEs and their
termediates were synthesized from hemin according to the
eratures published in our previous work [19–25] and identified
1H NMR, IR and ESI+-MS.

. Aerobic oxidation procedure

Aerobic oxidation of b-pinene was carried out in a 250 mL four-
cked glass flask containing a reflux condenser, a thermometer
d a breather pipe. b-Pinene (100 g, 0.73 mol) and a certain
ount of MDPs were added. When the flask was heated to a
rtain temperature (60–110 �C), oxygen was fed into the mixture
ith a flow rate of 20–100 mL/min. The reaction was sampled
ery one-hour and analyzed by GC using n-nonane as an inert
ternal standard. Hydroperoxides were determined according to
e method reported in our previous work [19]. Other components
ere identified by GC–MS.
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