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ABSTRACT: Engineering site-selectivity is highly desirable especially in C−H functionalization reactions. We report a new catalyst 
platform that is highly selective for the amidation of benzylic C−H bonds controlled by - interactions in the secondary 
coordination sphere. Mechanistic understanding of the previously developed iridium catalysts that showed poor regioselectivity 
gave rise to the recognition that the -cloud of an aromatic fragment on the substrate can act as a formal directing group through 
an attractive non-covalent interaction with the bidentate ligand of the catalyst. Based on this mechanism-driven strategy, we 
developed a cationic (η5-C5H5)Ru(II) catalyst with a neutral polypyridyl ligand to obtain a record-setting benzylic selectivity in an 
intramolecular C−H lactamization in the presence of tertiary C−H bonds at the same distance. Experimental and computational 
techniques were integrated to identify the origin of this unprecedented benzylic selectivity, and robust linear free energy 
relationship between solvent polarity index and the measured site-selectivity was found to clearly corroborate that the solvophobic 
effect drives the selectivity. Generality of the reaction scope and applicability towards versatile γ-lactam synthesis were 
demonstrated.

Introduction
The selective functionalization of C–H bonds is a central 

theme in transition metal-based catalysis. In principle, 
site-selectivity towards a specific C–H bond is dictated by 
a complex interplay of multiple kinetic and 
thermodynamic factors.1 For instance, secondary C–H 
bonds are sterically less demanding than tertiary 
counterparts and can therefore be accessed more easily by 
metal catalysts, generally leading to faster reactions.2 In 
some cases, the electronic richness on the tertiary position 
can effectively stabilize intermediates that derive from C–
H bond cleavage to favor activation of the tertiary C–H 
bond.3 Unusual electronic structures, such as multiple 
accessible spin states found in high-valent metal-
carbenoids4 and -nitrenoid5 species, further complicate the 
activation mechanisms. As a result, predicting and 
rationally designing selective C–H bond cleavage reactions 
has been notoriously difficult.

Catalytic C–H amination is one of the most direct 
approaches to installing nitrogen functionalities onto 
organic compounds via C–H functionalization.6 Recent 
efforts to harness the power of C–H amination for 
preparing pharmaceutically active products7 dramatically 
increased the complexity of substrates that can be 
processed giving high levels of control even when other 
reactive functionalities are present. Selective benzylic C–H 
amination attracted special attention in this context 
(Scheme 1a), because the benzylamine scaffold is of 
particular pharmaceutical importance.8 Du Bois firstly 
addressed this issue by designing a sulfamate ester 
substrate9 containing benzylic and tertiary C–H bonds 
positioned at the same distance. In this system, benzylic-
to-tertiary (B:T) ratio was shown to be moderate at ~1.5:1,10 
while sterically bulky catalysts enabled selective amidation 
at the tertiary position.9,11

Scheme 1. Site-selective C–H amination via nitrene 
transfer.
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Schomaker reported a remarkable series of silver-based 
catalysts that facilitate C–H functionalization at the 
benzylic over tertiary position at a ratio of 5.8:1.12,13 In 
addition, White recently showed that iron and manganese-
based catalysts can display exceptional selectivity towards 
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2

the benzylic position in the introduction of sulfamate ester 
moieties.14 While these systems are state-of-art examples of 
selective catalysis, most of them are confined to sulfamate 
ester formation. Moreover, strategic concepts for enforcing 
the benzylic selectivity is scarce at the present.

We recently found that 5-membered cyclic amides can 
be formed by driving C–H insertion upon accessing the 
reactive metal-acylnitrenoid intermediates.15 Experimental 
and computational analyses validated the closed-shell 
reactivity of the employed iridium-based catalysts, where 
singlet metal-nitrenoid species are engaged in electrophilic, 
two-electron C–H insertion processes. Considering 
aforementioned issue on the B:T selectivity, we wondered 
whether selective benzylic C–H amidation could be 
achieved in the presence of electron-rich tertiary C–H 
bonds (Scheme 1b). The importance of benzyl-
functionalized lactams further motivated us to target such 
selective catalysis.16 This pursuit is challenging, however, 
because there is no rational strategy for distinguishing the 
benzylic positions in a putative 6-membered cyclic 
transition state.

Thus, we attempted to construct a conceptual 
foundation based on the reaction mechanism that may 
allow for engineering such B:T selectivity. In an iterative 
search that incorporated insights from both computational 
and experimental studies, we identified a novel ruthenium 
catalyst system that displays an exceptional selectivity 
towards benzylic C–H amidation (Scheme 1c). Specifically, 
DFT calculations suggested that non-covalent interactions 
between the catalyst and the substrate may be exploited to 
direct the reactivity towards the benzylic position. The 
cationic (η5-C5R5)Ru(II) complexes (R= H or Me), which is 
a renowned catalyst for Trost’s hydrosilylation17 and allylic 
substitution18 reactions, were found to be ideal for this new 
strategy. This new platform allows for rapidly prepararing 
a variety of so-far inaccessible catalysts by simply 
premixing the commercially available metal precursor and 
neutral ligands on demands. Such operational simplicity 
was further leveraged for parallel screening of ligand 
effects, and a novel catalyst was identified that led to 
unprecedented site-selectivity towards benzylic position 
with B:T ratios as high as 25:1. Integrated experimental and 
computational mechanistic studies on the origin of the 
site-selectivity confirmed the active role of π-π interactions 
under the Curtin-Hammett situation. The highly reactive 
yet selective nature of the new system further enabled 
catalytic production of various γ-lactams from versatile 
amide agents, 1,4,2-dioxazol-5-ones.
Results and Discussion

Evaluation of B:T selectivity against known 
catalysts. Initially, we sought to utilize a model substrate 
that allows for systematically evaluating the performance 
of various catalysts towards the B:T selectivity. For this 
purpose, 1,4,2-dioxazol-5-one 1 containing both benzylic 
and tertiary C–H bonds at the γ- and γ’-positions was 
selected owing to its robust nature as an acylnitrene 
precursor.19 Various catalysts that previously displayed 
notable reactivity for γ-lactam formation were tested and 
the results are summarized in Scheme 2. Iridium(III) 

catalysts bearing either N,N’ or N,O-bidentate ligands (Ir1 
to Ir4) offered excellent amidation reactivity, but produced 
almost equimolecular amount of γ-lactams 2B and 2T. 
Chiral iridium catalysts (Ir520 and Ir621) that previously 
enabled asymmetric induction afforded diminished 
reactivity and selectivity. Inspired by the elegant recent 
work of Yu,22 the (p-cymene)Ru(II)-based catalyst (Ru1) 
was also tested, but it only gave moderate selectivity (2B:2T 
= 2.1:1). Displacement of the chiral diamine ligand to 
aminoquinoline functionalities (Ru2) yielded poor 
regioselectivity, suggesting that none of the currently 
known catalysts for the γ-lactam formation gives 
satisfactory results and highlighting the fundamental 
difficulty in differentiating the benzylic from tertiary C–H 
bonds mentioned above. Because identifying catalysts 
capable of effectively carrying out γ-lactam forming 
reactions is challenging on its own right, a conventional 
screening of a large diversified set of catalysts is neither 
possible nor desirable. Thus, we sought to more 
comprehensively understand the reaction mechanism and 
identify a conceptual feature that may allow for 
engineering high levels of B/T selectivity using the 
acylnitrene intermediate.

Scheme 2. Evaluation of B:T selectivity with previously 
reported catalysts.a
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aReactions were performed for 12 hours at room 
temperature; yields and B:T-selectivities were determined 
by crude 1H NMR analysis using 1,1,2-trichloroethane as an 
internal standard. Otherwise stated, single diastereomer 
was observed for compound 2B. bRetrieved from reference 
15. TCE, 1,1,2,2-tetrachloroethane. Meoc, 
methyloxycarbonyl.

Computer-Aided Design Strategy. Mechanistically, 
the regioselectivity is determined at the step of C–H 
insertion, as highlighted in Scheme 3. Previous studies 
established a mechanism involving the oxidative 
decarboxylation of the catalyst-substrate adduct I to give a 
highly reactive iridium-acylnitrenoid intermediate II.23 
Whereas complex II may have several distinct conformers, 
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II-B and II-T illustrated in Scheme 3 are most relevant to 
the key C–H insertion step leading to the benzylic and 
tertiary amidation, respectively. Since traversing the 6-
membered C–H insertion transition states might 
irreversibly lead to the corresponding lactam products,15 
the process determining the selectivity can be analyzed by 
employing the Curtin-Hammett principle that gives 
control over the two possible reaction pathways.

Scheme 3. Distinctive reaction pathways to 2B and 2T.
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The reaction mechanism was investigated in detail using 
the representative iridium catalyst Ir2 at the B3LYP-D3/cc-
pVTZ(-f) level of density functional theory24,25 and the key 
findings are summarized in Figure 1. As shown in a full 
reaction energy diagram in Figure S6, the putative iridium-
nitrenoid species II can be generated from an adduct I by 
traversing the decarboxylation transition state with an 
activation barrier of 13.2 kcal/mol. Extensive 
conformational search of the resulting intermediate 
located two active intermediate conformers II-B and II-T, 
which are thermodynamically more stable than their 
parent linear conformer II by 2.8 and 2.3 kcal/mol, 
respectively, thus identifying II-B as the lowest energy 
intermediate. Complex II-B can undergo benzylic C–H 
insertion with a barrier of 5.2 kcal/mol (II-B to II-B-TS), 
whereas tertiary functionalization requires slightly less 

energy of 4.6 kcal/mol (II-B to II-T, then to II-T-TS). The 
computed free energy difference between II-B-TS and II-
T-TS (ΔΔG‡= 0.6 kcal/mol) taken at face value suggests 
that the tertiary C–H bond activation is slightly preferred 
over the benzylic C–H activation, and this finding is 
consistent with an experimental trend observed in Scheme 
2. But, given that these reaction steps have very low 
barriers of ~5 kcal/mol and follow immediately the likely 
rate-determining decarboxylation step, these seemingly 
reasonable agreement between theory and experiment 
must be evaluated with some caution. Nonetheless, the 
calculations are fully consistent with the experimental 
findings and a closer inspection of the factors that 
determine the C–H bond insertion is justified. 

Interestingly, the optimized transition state geometries 
reveal a critical insight that is useful for a possible catalyst 
design strategy. As highlighted in Figure 1, there is a 
potential π-π interactions in the intermediate conformer 
II-B that precedes the benzylic insertion, which is absent 
in the conformer II-T. In II-B the phenyl moiety of the 
substrate is arranged in parallel orientation to the 
quinoline ligand of the catalyst at a π-π distance of 3.65 Å, 
well within the expected distance of a π-π stack.26 This 
attractive interaction, however, weakens as the bulky 
phenyl moiety approaches the metal center for the 
benzylic activation and at the transition state II-B-TS the 
π-π stack is lost, as a detailed analysis of the intrinsic 
reaction coordinate (IRC) trajectory unambiguously 
confirmed (Figure S7).

Intrigued by this computational analysis, we envisioned 
that if the attractive π-π interaction can be maintained 
throughout the C–H insertion event, it may offer a new way 
of enhancing the B:T selectivity towards benzylic 
functionalization in the absence of any coordinating 
group. As depicted in Scheme 4, we anticipated that the 
barrier associated with the benzylic activation could be 
lowered, while the barrier for the tertiary C–H bond 
remains unaffected. To test this idea, we imagined that an 
aromatic ligand with an extended π-system may be a 
reasonable candidate. At the same time, we were also 
mindful of the electronic structure of the metal-nitrenoid 

Figure 1. Potential energy profile of the Ir2 system for B:T selectivity-demanding stages.
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species and the influence from the ancillary ligand Cp* 
because they were previously identified as critical factors 
in other C–H functionalization reactions.27 To incorporate 
these concerns, we sought to systematically examine d6-
based catalysts, such as Ir(III), Rh(III), and Ru(II) 
complexes that are known to mediate metal-acylnitrenoid 
formation from carbonylnitrene precursors, e.g. 
dioxazolones and acyl azides.28

Scheme 4. Catalyst design strategy for benzylic selectivity. 
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Searching for a new catalyst platform that satisfies the 
aforementioned criteria, we became interested in 
polypyridine ligands that have neutral molecular charge 
and rich aromatic π-clouds in a rigid planar backbone, such 
as 1,10-phenanthroline (phen). Indeed, free polypyridine 
compounds are known for participating in π-π interactions 
with various organic fragments, and the extent of such 
interaction further increases substantially upon bidentate 
σ-coordination to a Lewis acidic metal center due to 
coordinatively induced π-polarization (Scheme 4).29 Most 
prominently, Barton demonstrated that the phen 
functionality in the [Ru(phen)3]2+ complex can readily 
intercalate into DNA through strong π-π interactions with 
nucleobase pairs.30 Interestingly, recent examples in 
transition metal catalysis accentuated the importance of π-
π stacking in catalytic activity and selectivity.31 Zhu 
discovered an iron/phen-based catalyst that enables 
benzylic selective hydrosilylation of styrene derivatives.32 
Mechanistic studies have identified that π-π interaction 
between a substrate and the catalyst guided the excellent 
regio-selectivity. In a similar vein, Schomaker and co-
workers have found that π-π stacking is operative in 
silver/polypyridyl amine catalysis for selective C–H 
amidation of sulfamidate esters.12b Computational study 
suggested that the pyridyl moiety coordinated to a silver 
catalyst displays active non-covalent interaction through 
space. In this system, benzylic C–H functionalization is 
favored over tertiary activation up to 5.8:1 in B:T selectivity.

Reaction development. Motivated by these examples 
and our own computational analysis, we sought to prepare 
metal complexes bearing neutral phen ligands to harness 
potential π-π interactions for lowering the activation 
barrier for the benzylic C–H cleavage (Scheme 5). Targeted 
[Cp*Ir(phen)Cl]Cl (Ir7) and analogous rhodium (Rh1) and 
ruthenium (Ru3) congeners were independently 

synthesized by reacting metal-chloride dimers and free 
phen ligand.33 Catalytic amounts of these complexes were 
subsequently subjected to a solution of dioxazolone 1 with 
concomitant addition of sodium organoborate to generate 
cationic species having one vacant coordination site. To 
our surprise, the dicationic complexes did not display any 
reactivity (entries 2-4). Analysis of the crude mixtures 
indicated that quantitative amount of the starting 
materials remained unreacted after 12 h at room 
temperature. We reasoned that this lack of reactivity might 
be due in part to thermodynamic inaccessibility of 
dicationic metal-nitrenoid species. Kinetic barrier for the 
key oxidative decarboxylation is expected to be much 
higher in energy because of the highly electrophilic nature 
of putative dicationic metal-nitrenoid intermediate.

Scheme 5. Reaction Development.a
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aReactions were performed for 12 h at room temperature; 
yields and B:T-selectivities were determined by crude 1H 
NMR analysis using 1,1,2-trichloroethane as an internal 
standard. bRun in hexafluoro-2-propanol (HFIP) solvent.

The inactivity of the dicationic complexes on the lactam 
formation highlights the importance of catalyst charge on 
the amidation reactivity. It led us to pursue a new catalyst 
platform having a d6 configuration where a molecular 
charge of +1 could be maintained upon complexation with 
neutral phen ligand. One possible class of the catalysts that 
meet this criteria includes a group 8 Cp*Ru(II) complex, 
which has been mainly utilized as effective pre-catalyst for 
alkyne hydrosilylation17 and allylic substitution18 reactions. 
In fact, while arene-coordinated ruthenium(II) complexes, 
such as (p-cymene)Ru(II) chloride dimers, have been 
extensively studied in the C–H amidation chemistry 
recently,34 a related Cp*Ru(II) complex has received much 
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5

less attention, and there is no literature example for 
utilizing this type of catalysts for C–H amidation reactions.

The targeted Cp*Ru(II)/phen complex Ru4 was simply 
prepared by mixing commercially available solvento-
complex [Cp*Ru(MeCN)3](PF6) and phen ligand. To our 
delight, mono-cationic Ru4 catalyst indeed displayed 
amidation reactivity, and afforded the desired γ-lactam 
products in overall yield of 61% (entry 5, Scheme 5). More 
significantly, the B:T selectivity was found to be in favor of 
the benzylic position by as much as 7.4 times. This B:T ratio 
is remarkable when compared to the reactions with the 
previously known catalysts shown in Scheme 2. An obvious 
optimization of this encouraging result is to test the 
simpler Cp variants. Interestingly, substitution of the Cp* 
ancillary ligand with Cp groups further enhanced the 
reactivity and selectivity to afford 80% combined yield and 
8.3:1 of the B:T ratio (entry 6). Control reactions in the 
absence of phen ligand afforded significantly lowered 
activities (entries 7-8), suggesting that the 1,10-
phenanthroline ligand plays an important role in the 
selectivity determining process, as designed. Utilizing 
HFIP as solvent gave rise to an even higher selectivity of 
14:1 and product yield of 88% (entry 9). Of note, evaluation 
of solvent effects with the previous catalysts in Scheme 2 
gave only a marginal impact on the selectivity, showcasing 
the unique selectivity of the newly scrutinized CpRu(II) 
platform.

Scheme 6. Ligand effects on (η5-C5H5)Ru(II)-catalyzed 
C−H amidation of dioxazolones.a
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We firstly examined commercially available 1,10-
phenanthroline derivatives as potential ligands, and the 
results are summarized in Scheme 6. Electronic variation 
resulted in high selectivity with variable product yields, 
possibly due to the electronic perturbation on the π-cloud 
(L2 to L8). Among them, 5-nitro-1,10-phenanthroline (L5) 
gave quantitative conversion to the benzyl-amidated γ-
lactam 2B with excellent site-selectivity, reaching up to 
25.4:1 ratio (2B:2T), which is arguably a record-setting 
selectivity in the intramolecular C–H amidation reactions 
when benzylic and tertiary C–H bonds compete with each 
other. The ligand pool was further extended to include a 
related family of bidentate nitrogen donors. Whereas the 
bipyridyl framework provided variable selectivities and 
reactivities (L9 to L12), 4,5-diazafluoren-9-one (L13) and 
1,10-phenanthroline-5,6-dione (L14) ligands that had been 
studied for aerobic oxidation reactions35 displayed 
excellent activities towards selective C–H amidation 
reactions. In comparison, the 8-aminoquinoline scaffold 
(L15, L16), which was effective in iridium(III) catalysis,15 
resulted in decreased efficiency and selectivity.

Benzylic selectivity over other reactive positions. 
We next wondered whether our new catalyst system is 
tolerant to stereo-electronic perturbations of the 
substrates. Utilizing the pre-mixing strategy to generate an 
active catalyst, a score of substrates was subjected to the 
optimal conditions with ligand L5 (Figure 2). Installing 
electron-withdrawing groups on the aromatic moiety 
eroded the B:T selectivity to some extent. For example, 
whereas the p-chloro substituent displayed excellent 
regioselectivity (17:1, 3B), the trifluoromethyl group only 
gave moderate selectivity (4.9:1, 4B). Interestingly, notable 
increase in the selectivity was observed when electron-rich 
ligand L2 was used in lieu of L5. The use of ligands with 
electron-donating groups may enhance the proposed  
interactions with electron-deficient aryl groups in 
substrates, thus eventually increasing the benzylic 
selectivity. On the other hand, electron-donating 
substituents such as methoxy group offered almost 
exclusive benzylic selectivity (>20:1, 5B and 6B). This 
electronic trend is easy to understand considering the 
substituent effects on the benzylic bond strengths. Similar 
qualitative observation was made in a recent study by 
Schomaker and co-workers in silver-catalyzed selective C–
H amidation reactions.12b Steric variation on the tertiary 
moiety afforded excellent benzylic regio-selectivity, as 
exemplified by a substitution of isopropyl with cyclohexyl 
group (7B). Moreover, a new type of substrate 8 that 
contains phenylethyl and isobutyl groups at the α-carbon 
to the dioxazolone moiety also displayed a high level of 
benzylic selectivity yet with moderate diastereoselectivity 
(9B). Of particular note, otherwise identical reactions with 
the iridium catalyst (Ir2) resulted in poor site-selectivity in 
most of the cases examined, clearly highlighting 
extraordinary selectivity by the current ruthenium catalyst 
system.
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Further elaboration was made with substrates that 
contain potentially reactive positions. For example, 
subjecting substrate 10 with γ-secondary bonds gave rise to 
excellent level of benzylic selectivity. A dioxazolone 
substrate bearing β-phenyl moiety (12) is interesting 
because benzo-fused δ-lactam 13A could be formed via an 
ipso spiro-lactamization/skeletal rearrangement 
sequence.36 Whereas reaction with Ir2 indeed gave a 
mixture of 13B and 13A, the current ruthenium system 
exclusively afforded γ-lactam 13B in 72% yield. When γ-
allylic C−H bonds competes with benzylic 
functionalization, diastereoselective formation of 15B was 
observed albeit only displaying moderate regioselectivity.

Evidences for π-π interactions during catalysis. To 
further elucidate the mechanistic origin of the 
unprecedentedly high selectivity towards the benzylic C–
H bond, integrated experimental and computational 
mechanistic studies were conducted. Two independent 
factors were envisaged to be relevant to inducing the 
benzylic selectivity: (a) radical character of a putative 
ruthenium-nitrenoid intermediate, and (b) non-covalent 
interaction between catalyst and substrate in the 
selectivity-determining step. At the outset, we sought to 
characterize the active catalyst. Treatment of 
tris(acetonitrile) Ru complex with ligand L5 in TCE solvent 
immediately generated complex Ru6 upon concomitant 
release of two acetonitrile molecules, as monitored by 1H 
NMR spectroscopy (Scheme 7a). Single crystal of Ru6 
could be obtained after slow diffusion of diethyl ether into 

saturated acetonitrile solution, and its X ray-
crystallographic analysis unambiguously assigned its solid-
state structure. Selectivity in the lactam formation with 
this isolated ruthenium catalyst was observed to be 
identical (Scheme 7b) when compared to what was found 
using the catalyst obtained in situ by the pre-mixing 
protocol described in Scheme 6. This result confirms the 
active involvement of Ru6 in the catalytic process. 

The predominant cleavage of C–H bonds with lower BDE 
is often taken as an indirect evidence for open-shell 
reactivity. For example, Che observed a quantitative 
correlation between reaction rate constants and bond 
dissociation energies (BDEs) in related stoichiometric C–H 
amidation reactions via H-atom abstraction.37 Thus, we 
were mindful of the possibility that the observed high B:T 
ratio might arise from the radical character of the putative 
Ru-nitrenoid intermediate because BDE of benzylic C–H 
bond (86 kcal/mol) is lower in energy than that of tertiary 
position (96 kcal/mol).1 To examine this hypothesis, we 
performed a series of diagnostic experiments aimed to 
probe for radical reactions. A catalytic reaction with a 
substrate 16-d2 having syn-dideuterio group gave a KIE 
value of 2.2 (Scheme 7c), which is in a similar range with 
our previously observed  KIE of 1.5 for the closed-shell 
iridium catalysts.15 Product analysis showed that the 
diastereomeric lactam 18 that may be formed by generating 
a carbon-centered radical followed by epimerization, was 
not detected. Moreover, the catalytic conversion of the 
enantio-enriched dioxazolone (S)-19 afforded a complete 

Figure 2. Benzylic selectivity over other reactive sites. Reactions were performed in HFIP solvent for 12 hours at 40 oC; 
benzylic selectivities were determined by crude 1H NMR analysis; isolated yields. Otherwise noted, single diastereomer 
was formed upon the reactions. rr, regiomeric ratio; dr. diastereomeric ratio. aTCE as solvent. bRetrieved from reference 
15. cL2 instead of L5.
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retention of stereochemistry, confirmed by chiral HPLC 
analysis (Scheme 7d). While the thermal generation of a 
Ru-nitrenoid species having an open-shell state cannot be 
completely ruled out at the current stage, these 
experimental results strongly suggest that the Ru-
catalyzed reaction follows a closed-shell mechanism.

Scheme 7. Experimental mechanistic studies.
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One unanswered question in our proposed mechanism 
is that under a two-electron mechanism manifold, the 
tertiary C–H bond cleavage is frequently favored over 
benzylic functionalization. Representative examples 
include the Rh(II)-catalyzed C–H amidation by Du Bois9 
and Ir(III)-catalyzed C–H amidation from our laboratory.15 
To rationalize this aspect, we investigated the importance 
of the interactions in the second coordination sphere. As 

explained above, the 1,10-phenanthroline ligand contains a 
delocalized π-cloud that can form a π-π sandwich dimer 
with aromatic functionalities of the substrate to give 
stabilization energy in the range of 2~3 kcal/mol.26c One 
way for experimentally probing such interactions is to 
interrogate the solvent influence on the catalyst activity. In 
fact, Diederich and co-workers discovered that the 
magnitude of molecular association between 
macromolecular cyclophane host and pyrene substantially 
increases when more polar solvents are employed (Scheme 
8a).38 The observed trend was further quantified by a 
linear-free energy relationship, where experimentally 
measured association constants were directly correlated 
with the empirical solvent polarity parameter, ET(30).39 
Indeed, Iverson further showed that degree of aromatic π-
π interactions between aedamer monomers are positively 
proportional to the ET(30) values (Scheme 8b).40 

Scheme 8. Quantifying solvophobic effects with empirical 
solvent polarity parameter, ET(30).
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 Linear free-energy relationship between association
constants (Ka) and empirical solvent polarity scale (ET)

 Stronger binding observed with more polar solvents

These studies quantitatively showcased solvophobic 
effects, which states that cohesive force between polar 
solvent molecules drive strong interactions between non-
polar solutes.

Thus, we envisioned that perturbation of the 2B:2T 
selectivity might be observed if π-π stacking plays an 
important role in rendering the benzylic selectivity. 
Typical organic solvents with a wide range of ET(30) values 

Figure 3. Linear free-energy relationship of the B:T selectivity on a solvent polarity scale. ET(30) values were retrieved 
from reference 39b. Measured −ΔΔG‡ values were calculated from −ΔΔG‡ = RT ln([2B]/[2T]) at 313.15 K. aDetermined by 
crude 1H NMR analysis. bDetermined by HPLC analysis. DCE, 1,2-dichloroethane.
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were tested and the results are enumerated in Figure 3. 
While moderate to excellent yields were obtained with the 
subjected solvents, a clear trend was observed in selectivity 
that more polar solvents promote reactivity at the benzylic 
C–H bonds. Specifically, non-polar solvents, such as 
tetrachloromethane and benzene, displayed selectivities in 
the range of 9:1, whereas alcoholic solvents afforded much 
higher selectivities. This observation was quantitatively 
supported by a linear free energy relationship between 
solvent polarity indices and experimentally obtained ΔΔG‡ 
value (Figure 3, right). Robust regression model with R2 
and leave-one-out cross-validated R2 (Q2

L1O) values of 0.93 
and 0.89, respectively, implies that polarity of solvent 
directly impacts on the selectivity. As the ET(30) values 
positively correlate with both the extent of π-π stacking38,40 
and the selectivity observed herein, we concluded that the 
aforementioned hydrophobic effect is critical in the 
selectivity-determining step for the benzylic C−H 
amidation.

N
H

O

H

IV-B-TS

+

Ru
N

N

O2N

3.715 Å

3.695 Å



a. b.

Figure 4. Optimized structure and NCI plot41 of IV-B-TS.

DFT calculations further corroborate the proposed 
mechanism, as summarized in Figure S8. The calculated 
intermediate and transition state structures indicate that 
the π-π stacking interaction is maintained at the 
intermediate (IV-B) and transition states (IV-B-TS) to give 
a barrier that is 1.4 kcal/mol lower than what is required for 
the C–H activation at the tertiary position (Figure 4a). This 
free energy difference is in excellent agreement with the 
experiment. The structures shown in Figure 4a highlights 
that it is the π-π stacking interaction that arrests the 
intermediate IV into the conformer IV-B and allows for 
overriding the innate preference for the tertiary position. 
The existence of these non-covalent interactions was 
further confirmed by the reduced density gradient method 
devised by Yang and coworkers (Figure 4b).41

General applicability to γ-lactam synthesis. 
Motivated by the exceptional performance of the currently 
developed Ru catalyst system, we sought to extend the 
method for the synthesis of γ-lactams in a more general 
sense. From a synthetic standpoint, our approach to cyclic 
amide is of general interest because the dioxazolone 
reactant is easy to prepare from the corresponding 
carboxylic acid, which is one of the most abundant 
feedstock chemicals available. As described previously, the 
challenge associated with the lactamization lies in 
suppressing Curtius-type rearrangements that affords 
undesired side-product, while enforcing the desired C–H 

Figure 5. General application to the selective γ-lactam synthesis. a1,1,2,2-TCE as a solvent. b10 mol % of catalyst was 
used. cRun at 60 oC.
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insertion reaction.15 To test the performance of the new 
catalyst system, we extensively screened ligands including 
nitrogen, phosphine, and N-heterocyclic carbenes and 
interrogated their effects on the chemo-selectivity with γ-
phenylpropyl dioxazolone as a model substrate, as listed in 
Scheme S3. As the acetonitrile ligand in the pre-catalyst 
can be readily displaced with neutral bidentate donors by 
a priori mixing, we envisioned to perform a rapid screening 
of ligand effects in the desired amidation. It is interesting 
that this fast screening effort was not possible in previously 
employed iridium systems with anionic ligands because 
base-mediated ligand complexation has always been a 
bottleneck for the catalyst discovery.15,20-22,36 Taking full 
advantage of this pre-mixing technique, we designed a 
parallel screening protocol that may accelerate the 
discovery of better catalysts by employing stock solutions 
of the reaction elements and multi-channel pipettes, which 
is essentially the procedure utilized in high-throughput 
experimentation.42 Specifically, to a series of targeted 
ligands measured in reaction vials were added a stock 
solution of [CpRu(MeCN)3](PF6) precatalyst via multi-
channel pipette and the reactions were placed under 
vigorous stirring at room temperature for 5 min. Within all 
tested ligands, in situ chelation was confirmed by 1H NMR 
monitoring or intense color change. Subsequent addition 
of a substrate allowed for an interrogation of the ligand 
influence on the amidation efficiency in a short period of 
time.

When a premixed Ru/L5 system was employed, aliphatic 
dioxazolones containing γ-benzylic C–H bonds were 
readily converted to cyclic amides in good to excellent 
yields (Figure 5). Representative γ-phenylpropyl 
dioxazolone was cyclized to furnish product 17 in 92% yield, 
and the reaction could be scaled to gram-scale without 
difficulty. Halide substituents at the para-position (21-23) 
and electron-withdrawing CF3 group (24) were compatible 
with the present conditions. Electron-donating 
substituents such as p-alkyl (25, 26) and 3,4-dimethoxy 
groups (28), also offered good to excellent product yields 
except for tert-butoxy group (29). In comparison with the 
previously reported iridium systems,15 the present 
ruthenium catalysis shows broader scope on substrates 
especially bearing electron-donating substituents. Other 
aromatic groups including napthyl (30), thiophenyl (31), 
and benzofuryl (32) groups were successfully applicable to 
the optimal conditions. Notably, sterically encumbered 
α,α-dimethyl substitutions were tolerated by the 
ruthenium catalyst (33). Of note, we previously observed 
sluggish conversion when this type of substrates were 
subjected to iridium-based catalysts owing to undesired 
decomposition to the corresponding isocyanates.15 High 
level of diastereselective cyclization was achieved using 
dioxazolones having β-substituents (34-37). Additional 
types of substrates bearing various γ C–H bonds including 
tertiary (38, 39), secondary (40), allylic (41), and 
propargylic (42) groups were also readily cyclized to 
furnish the corresponding lactams.

Conclusions

We showcased that π-π stacking is an excellent 
molecular feature to exploit for differentiating the benzylic 
from tertiary C–H bonds. A mechanistically driven 
hypothesis enabled the development of a highly modular 
catalyst system that has been rarely utilized for C–H 
amidation reactions. By installing a chelating ligand with 
an extended π-cloud it was possible to maintain a π-π 
stacking interaction with the phenyl group of the substrate 
throughout the selectivity determining transition state, 
which directed the C–H bond functionalization towards 
the benzylic position. This simple and convenient access to 
various catalysts is of particular interest because base-
mediated ligand complexation with anionic ligands is a 
prerequisite for most of the previously reported systems. 
Fully integrated experimental and computational analysis, 
especially linear free energy relationship between solvent 
polarity index and the selectivity, indicated that the π-π 
stacking in secondary coordination sphere plays a pivotal 
role for inducing the selectivity under the closed-shell 
reactivity regime. Other factors described in Scheme 4, 
however, also played additional roles in affording the 
desired regioselectivity. The change to the neutral ligand 
required the exchange of the Ir(III)-center of the catalyst 
with the isolobal Ru(II), and the steric tension at the metal 
center was also variable between Cp* and Cp supporting 
ligands. We anticipate that our strategy and discovery 
could expand the horizon of catalyst development in C−H 
functionalization reactions and related fields.
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