The activation of carbon disulfide by a cluster. The reaction of the μ_3 -CS complex [{Co(η -C₅H₅)}₂{Fe(CO)₂PPh₃}(μ_3 -S)(μ_3 -CS)] with CS₂

Anthony R. Manning,^a[†] Anthony J. Palmer,^a John McAdam,^b Brian H. Robinson^b and Jim Simpson^b[†]

^a Department of Chemistry, University College, Belfield, Dublin 4 Ireland,

^b Department of Chemistry, University of Otago, Dunedin, New Zealand

When $[{Co(\eta-C_5H_5)}_2{Fe(CO)_2PPh_3}(\mu_3-S)(\mu_3-CS)]$ is refluxed in CS₂ solution, it is converted to $[{Co(\eta-C_5H_5)}_2{Fe(CO)PPh_3}(\mu_3-S){\mu_3-CSC(S)S}]$ which contains an unusual C₂S₃ bridging ligand.

 $[\{Co(\eta-C_5H_5)\}_2\{Fe(CO)_2PPh_3\}(\mu_3-S)(\mu_3-CS)] I is formed when the <math>\eta^2$ -CS₂ ligand in [Fe(PPh_3)_2(CO)_2(\eta^2-CS_2)] is cleaved by [Co(η -C₅H₅)(PPh_3)_2].^{1,2} When a solution of this compound in carbon disulfide is heated to reflux for 12 hours, a further molecule of CS₂ is taken up and CO is lost. The product, II, is obtained in 75% yield. It is a brown crystalline solid which, when crystallized from carbon disulfide solution, analyses as Co₂(η -C₅H₅)₂Fe(CO)(PPh₃)(S)(CS)·2CS₂. This is consistent with NMR and IR spectroscopic data,‡ but does not define the actual structure of II which was determined by X-ray crystallography on a crystal grown from benzene solution which analyzed as [{Co(η -C₅H₅)}₂{Fe(CO)PPh₃}(μ_3 -S){ μ_3 -CSC(S)S}]·2C₆H₆.§ It is illustrated in Fig. 1.

The molecular structure of **II** is closely related to that of **I**^{1,2} and is based on an FeCo₂ triangle capped on one face by a μ_3 -S ligand and on the other by a μ_3 -C atom. The coordination about each of the two Co atoms is completed by a η^5 -C₅H₅ group whilst that about Fe is completed by a CO and a Ph₃P ligand and the S* atom of a S*C(S)S moiety which is also bonded to the μ_3 -C atom. The coordination about Fe is severely distorted from that found in **I** where the Fe(L)₃ fragment is more or less symmetrical with respect to an axis from Fe to the midpoint of the Co–Co bond. Furthermore the FeCo₂ triangle is no longer an isosceles triangle as it is in **I** [Fe–Co = 2.5099(6), 2.5061(6) Å] as Fe(1)–Co(1) at 2.642(3) Å is very much longer than Fe(1)– Co(2) at 2.502(4) Å.

The C_2S_3 ligand has no precedent. The various C–S bond lengths lie between those for a C=S (*ca*. 1.62 Å in thioketones)³

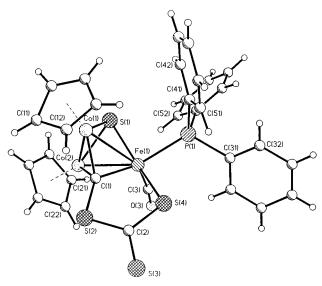
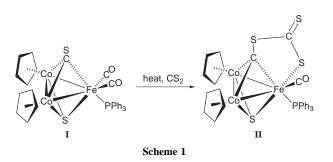



Fig. 1 Structure of $\{Co(\eta - C_5H_5)\}_2\{Fe(CO)(CS_2)PPh_3\}(\mu_3 - S)(\mu_3 - CS)\}$

and a C-S (ca. 1.82 Å in thioethers)³ which is indicative of delocalised bonding. In particular the μ_3 -C-S distance in II [1.774(11) Å] is very long compared with that in I [1.638(3) Å] S-methylated derivative, $[{Co(\eta-C_5H_5)}_2{Fe$ its or $(CO)_2PPh_3$ $(\mu_3-S)(\mu_3-CSMe)$]I, [III]I,² [1.728(7) Å]. The C–S distances are all longer than the comparable ones in [Co(η- C_5H_5)(CNBu^t)(S₂C=S)].⁴ The overall reaction which gives rise to II is shown in Scheme 1. It is reminiscent of that of a thiolate anion, RS⁻, which with CS₂ forms a thioxanthate anion [RSCS₂]⁻⁵ and is a reflection of the nucleophilicity of the μ_3 -CS ligand which has been illustrated by the ease with which I is alkylated to III⁺ salts. The related complex [{Co(η - (C_5H_5) ₃(μ_3 -S)(μ_3 -CS)] is also readily alkylated at S to give $[\{Co(\eta\text{-}C_5H_5)\}_3(\mu_3\text{-}S)(\mu_3\text{-}CSMe)]I,$ but it does not react with CS_2 . This implies that the conversion of I to II takes place because the first-formed $[{Co(\eta-C_5H_5)}_2{Fe(CO)_2PPh_3}(\mu_3-\mu_3)]$ S)(μ_3 -CS \rightarrow CS₂] intermediate can undergo CO loss with the formation of an Fe-S bond which stabilizes the C₂S₃ ligand.

Analogues of **II** are obtained when Ph_3P in **I** is replaced by $(PhO)_3P$ or Bun_3P , but not when it is replaced by $(MeO)_3P$. The extent of this reaction is being investigated at present.

The exocyclic S atom in **II** is nucleophilic and with electrophiles E such as $Me^+(I^-)$ or $HgCl_2$ gives [{Co(η -C₅H₅)}₂{Fe(CO)PPh₃}(μ_3 -S){ μ_3 -CSC(S \rightarrow E)S}] adducts. These have been characterized by elemental analysis and spectroscopy.

Attempts to use **I** to activate other cumulenes such as CO_2 , COS and MeNCS have not, as yet, been successful. The only isolable product has been $[{Co(\eta-C_5H_5)}_3(\mu_3-S)(\mu_3-CS)],^6$ which is a thermal decomposition product of **I**.

We thank Professor W.T. Robinson, University of Christchurch, Christchurch, New Zealand for collecting the X-ray data, and Labkem Ltd. (Dublin) for financial assistance to A. J. P.

Notes and References

† E-mail: armannin@ollamh.ucd.ie; jsimpson@alkali.otago.ac.nz ‡ *Spectroscopic data* for **II**: v(CO) 1922 cm⁻¹ (KBr disc); ¹H NMR (CDCl₃ solution) δ 4.11(s) and 4.90(s) (C₅H₅); 7.40 (m) (PPh₃); ¹³C NMR (CDCl₃ solution) δ 84.93 and 86.08 (C₅H₅); 128.3(d), 130.2(s), 133.5(d), 135.0(d) (PPh₃); 218.7 (d, J = 22.2 Hz; CO); 243.4 (d, J = 18.7 Hz; SCS); 346.1 (d, J = 15.3 Hz; μ_3 -C) [all downfield from (CH₃)₄Si; d = doublet].

§ *Crystal data* for **II**: C₄₃H₃₇Co₂FeOPS₄, M = 902.65, monoclinic, space group $P2_1/n$, a = 9.853(13), b = 19.97(2), c = 20.61(2) Å, $\alpha = 90$, $\beta =$

Chem. Commun., 1998 1577

91.79(4), $\gamma = 90^{\circ}$, U = 4055(8) Å³; Z = 4; $D_c = 1.478$ Mg m⁻³; absorption coefficient 1.440 mm⁻¹; F(000) 1848; data collection 2.04 $< \theta < 25.01^{\circ}$, -11 < h < 0, 0 < k < 23, -24 < l < 24, reflections collected 6687, independent reflections collected 6380. Solved by direct methods.⁸ Refined by full-matrix least-squares⁹ to $R_1 = 0.0692$ and $wR_2 = 0.1575$ [$I = 2\sigma(I)$], and $R_1 = 0.1488$ and $wR_2 = 0.1823$; max. and min. residual electron densities = 1.482 and -0.620 e Å⁻³, respectively. CCDC 182/907.

- 1 A. R. Manning, L. O'Dwyer, P. A. McArdle and D. Cunningham, J. Chem. Soc., Chem. Commun., 1992, 897.
- 2 A. R. Manning, L. O'Dwyer, P. A. McArdle and D. Cunningham, J. Organomet. Chem., in press, and references therein.
- 3 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, *J. Chem. Soc., Perkin Trans.* 2, 1987, S1.

- 4 J. Doherty, J. Fortune, A. R. Manning and F. S. Stephens, J. Chem. Soc., Dalton Trans., 1984, 1111.
- 5 D. Coucouvanis, Prog. Inorg. Chem., 1970, 11, 233.
- 6 H. Werner and K. Leonhard, Angew. Chem., Int. Ed. Engl., 1979, 18, 627.
 H. Werner, K. Leonhard, O. Kolb, E. Röttinger and H. Vahrenkamp, Chem. Ber., 1980, 113, 1654.
- 7 J. Fortune and A. R. Manning, Organometallics, 1983, 2, 1719.
- 8 G. M. Sheldrick, SHELXS-86, A program for the solution of crystal structures from diffraction data, University of Göttingen, Germany, 1986; G. M. Sheldrick, *Acta Crystallogr., Sect. A*, 1990, **46**, 467.
- 9 G. M. Sheldrick, SHELXL-96, A program for the solution of crystal structures from diffraction data, University of Göttingen, Germany, 1996.

Received in Cambridge, UK, 20th April 1998; 8/02906G