

Carbohydrate Research 337 (2002) 1171-1178

CARBOHYDRATE RESEARCH

www.elsevier.com/locate/carres

Convenient syntheses of symmetrical and unsymmetrical glycosyl carbodiimides and N,N-bis(glycosyl)cyanamides

László Kovács,^a Erzsébet Ősz,^b Zoltán Györgydeák^{a,*}

^aDepartment of Organic Chemistry, University of Debrecen, H-4010 Debrecen, PO Box 20, Hungary ^bDepartment of Medicinal Chemistry, University of Pécs, H-7624 Pécs, Szigeti út 12, Hungary

Received 4 February 2002; accepted 11 April 2002

Abstract

Reaction of glycosyl trimethylphosphinimides with carbon disulfide under mild conditions (room temperature, short reaction time) leads to symmetrical glycosyl carbodiimides. Addition of bis(trimethylsilyl)carbodiimide to peracetylated aldoses under the influence of SnCl₄ afforded N,N-bis(glycosyl)cyanamides for the first time. Readily accessible unsymmetrical N,N'-bis(glycosyl)thioureas can be desulfurated and transformed into the corresponding carbodiimides using HgO in CHCl₃/water at room temperature. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Glycosyl azides; Glycosyl carbodiimides; Glycosyl cyanamides; Staudinger reaction

1. Introduction

Sugar carbodiimides are key intermediates in syntheses of various glycoconjugates (trehazolin-type glycosidase inhibitors,^{1,2} glucocinnamoyl spermidine antibiotics,^{3,4} etc.), which play an important role in biological systems.⁵ These examples of synthetic compounds with two monosaccharide moieties bound by a (thio)urea bridge are limited to symmetrical and unsymmetrical N,N-bis(glycosyl) derivatives.⁶ Glycosyl carbodiimides are precursors of urea-, thiourea-, and guanidine-type sugar derivatives, that can be easily synthesized from the corresponding glycosyl carbodiimides by nucleophilic addition of water or hydrogen sulfide, respectively.⁷ Another possible application of carbodiimides is the synthesis of carbohydrate derivatives that could be utilised as core structures for the construction of dendrimers.8 The use of sugar cores should lead to potentially biodegradable, non-toxic and chiral dendrimers. Two general methods are known for the synthesis of glycosyl carbodiimides: (i) from glycosyl thioureas⁹ by elimination of hydrogen sulfide; (ii) from glycosyl phosphinimides which could be easily prepared from the glycosyl azides by Staudinger reaction.^{10,11} Thiourea-linked pseudooligosaccharides both symmetrical and unsymmetrical, have been synthesized by the reaction of sugar isothiocyanates and amino sugars⁹ (or glycosyl iminophosphorane).^{12,13}

2. Results and discussion

Reaction of peracetylated glycopyranosyl azides¹⁴ (β-D-gluco 1, α -D-gluco 2, β -D-galacto 3, α -D-galacto 4, 2-amino-2-deoxy-β-D-gluco 5, β-D-manno 6, β-D-xylo 7, α -D-arabino 8, β -D-arabino 9) (Scheme 1) with 1 equivalent of trimethylphosphine in dry dichloromethane at room temperature led to the corresponding glycosyl trimethylphosphinimides.¹⁵ The in situ reaction of these compounds with carbon disulfide under mild conditions led to the symmetrical glycosyl carbodiimides 10-14 (Scheme 2). In the case of the 1,2-trans azides 1, 3, 5, 7, 8, the expected products were obtained in good yields as stable crystalline solids. The hexopyranosyl carbodiimides of D-gluco and D-galacto configuration 10 and 11 were obtained in about 10 min, while formation of the pentopyranosyl carbodiimides 13 and 14 took about 12 h. From the 1,2-cis azides 2, 4, 6, 9, complex

^{*} Corresponding author. Tel.: + 36-52-512900/2453; fax: + 36-52-453836

E-mail address: gyorgydeak@tigris.klte.hu (Z. György-deák).

Scheme 1.

reaction mixtures were formed, and the expected products could not be isolated but were identified by NMR spectroscopy. According to Pintér and co-workers, the separation of these mixtures by chromatography is not possible because the carbodiimides react with traces of water to give the corresponding glycosyl ureas.¹⁶

Peracetylated glycoses can react with trimethylsilylated nucleophiles¹⁷⁻¹⁹ (azide, cyanide, etc.) in the presence of a Lewis acid catalyst (SnCl₄, BF₃·Et₂O, etc.) and the expected, nucleophile containing derivatives are formed. In order to obtain the symmetric N,N'-bis(glycosyl)carbodiimides, peracetylated glycopyranoses (β-Dgluco 15, β -D-galacto 16, β -D-xylo 17, β -D-ribo 18, α -D-arabino 19 and α -D-lyxo 20, Scheme 3) were treated with 1.2 equivalents of freshly prepared bis(trimethylsilyl)carbodiimide.²⁰ Unexpectedly, the reaction of the aldose derivatives 15-20 furnished complex reaction mixtures from which the N.N-bis(glycopyranosyl) cyanamides 21, 23, 25, 27, 30, 31) and N,N-bis(glycopyranosyl) cyanoguanidines 22, 24, 26, 28 could be isolated by column chromatography in convenient yields (Scheme 4). As Lewis acids tin tetrachloride, trimethylsilyl triflate and BF₃·Et₂O were tried. However, in the case of BF₃·Et₂O the starting material was recovered unchanged even after 7 days of continuous stirring at room temperature. The pentopyranosyl cyanamide derivatives 25, 27, 30, 31 were obtained more rapidly than the hexopyranosyl compounds 21 and 23. Starting from 19, we isolated the monosubstituted cyanamide derivative 29, too (Scheme 5). Further experiments showed that the pure symmetrical glycosyl carbodiimides were transformed into the corresponding cyanamides under the influence of the Lewis acid. Similar carbodiimide-cyanamide isomerization have been observed recently in the case of an aromatic carbodiimide in the presence of 2.5 mol % of Pd₂(dba)₃·CHCl₃ and 10 mol % of 1,2-bis(diphenylphosphino)ethane.²¹

In order to obtain the unsymmetrical carbodiimides, methyl 3,4,6-tri-*O*-acetyl-2-amino-2-deoxy-β-D-glucopyranoside²² (32) was reacted with methylisothiocyanate and 2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl isothiocyanate⁹ (33) in dry ethylacetate to give the corresponding *N*-methyl-*N*'-glycosyl thiourea 34 and *N*,*N*'-bis(glycosyl) thiourea derivative (35), respectively (Scheme 6). These compounds can be desulfurated in excellent yields using HgO in CHCl₃-water at room temperature. The synthesized products 36 and 37 are crystalline solids.

The structure elucidation of the newly prepared compounds was based mainly on IR and NMR measurements. We have found strong absorptions around 2150 and 2230 cm⁻¹ in the infrared spectra corresponding to the carbodiimide and cyanamide groups. The presence of one series of sugar signals in the ¹H as well as ¹³C NMR spectra of these compounds indicates symmetrical bis(glycosyl) structures. The proton assignments were based on ¹H-¹H COSY experiments. The ¹³C NMR spectra revealed signals characteristic for the carbodiimide (137-140 ppm) and for the cyanamide (108-111 ppm) type carbons. ¹⁵N NMR spectra of compounds **13** and **25** indicated the presence of one (77.2 ppm) versus two nitrogen resonances (45.8 and 196.3 ppm) characteristic for the carbodiimides and

	\mathbb{R}^1	\mathbb{R}^2	R^3	\mathbb{R}^4	\mathbb{R}^5	R^6	\mathbf{R}^7	\mathbb{R}^8	R^9
15	OAc	Н	Н	OAc	OAc	Н	Н	OAc	CH ₂ OAc
16	OAc	Н	Н	OAc	OAc	Н	OAc	Н	CH ₂ OAc
17	OAc	Н	Н	OAc	OAc	Н	Н	OAc	Н
18	OAc	Н	Н	OAc	Н	OAc	Н	OAc	Н
19	Н	OAc	OAc	Н	Н	OAc	Н	OAc	Н
20	Н	OAc	OAc	Н	OAc	Н	Н	OAc	Н

Scheme 3.

15-20

21, 23, 25, 27, 30, 31

22, 24, 26, 28

		\mathbb{R}^1	R^2	R^3	R ⁴	R ⁵	R ⁶	R^{7}
Educt	Product							
15	21	Н	OAc	OAc	Н	Н	OAc	CH ₂ OAc
15	22	Н	OAc	OAc	Н	Н	OAc	CH ₂ OAc
16	23	Н	OAc	OAc	Н	OAc	Н	CH ₂ OAc
16	24	Н	OAc	OAc	Н	OAc	Н	CH ₂ OAc
17	25	Н	OAc	OAc	Н	Н	OAc	Н
17	26	Н	OAc	OAc	Н	Н	OAc	Н
18	27	Н	OAc	Н	OAc	Н	OAc	Н
18	28	Н	OAc	Н	OAc	Н	OAc	Н
19	30	OAc	Н	Н	OAc	Н	OAc	Н
20	31	OAc	Н	OAc	Н	Н	OAc	Н

cyanamides, respectively.²³ The conformations of the sugar moieties (${}^{4}C_{1}$ for **10–13**, **21–28**, **31**, **34–37** and ${}^{1}C_{4}$ for **14**, **29**, **30**) are evident from the vicinal ${}^{1}H_{-}{}^{1}H$ coupling constants determined from the ${}^{1}H$ NMR spectra (see Section 3). In the case of pentopyranose derivatives the conformer ratio (Table 1) was calculated by using $J_{4a,5a}$ 11.6 Hz and $J_{4e,5e}$ 1.5 Hz as limiting values for the ${}^{4}C_{1}$ and ${}^{1}C_{4}$ conformers, respectively taken from the literature.²⁴ The configurations of the anomeric carbons could be deduced by relying on the ${}^{3}J_{H-1,H-2}$ values (see Section 3).

In summary, symmetrical and unsymmetrical glycosyl carbodiimides, N,N-bis(glycosyl)cyanamides could be obtained under mild conditions. To the best of our knowledge, glycosyl cyanamides are not known in the literature. We have found that pure symmetrical glycosyl carbodiimides were transformed into the corresponding cyanamides under the influence of Lewis acid.

Scheme 5.

Scheme 6.

Table 1

Conformational equilibria of D-pentopyranosyl carbodiimides, cyanamides and cyanoguanidines^a in CDCl₃

Compound	${}^{4}C_{1}$	${}^{1}C_{4}$
13	84	16
14	5	95
25	82	18
26	84	16
27	89	11
29	7	93
30	11	89
31	89	11

^a Calculated on the basis of $J_{4,5}$ couplings using $J_{4a,5a}$ 11.6 Hz and $J_{4e,5e}$ 1.5 Hz as limiting values for the ${}^{4}C_{1}$ and ${}^{1}C_{4}$ conformers, respectively as taken from Ref. 24.

3. Experimental

Distilled dichloromethane was dried by storage over 4 Å molecular sieves. Melting points were measured on a Kofler hot-stage and are uncorrected. Optical rotations were recorded in chloroform solution on a Perkin–Elmer 241 polarimeter in a 1 dm cell at room temperature (22 ± 2 °C). IR spectra were taken with a

Perkin-Elmer 16 PC FT-IR spectrometer. NMR spectra were recorded with Bruker WP 360 SY (360/90 MHz for ¹H/¹³C) and Varian ^{UNITY}INOVA 400 WB $(400/100/40 \text{ MHz} \text{ for } {}^{1}\text{H}/{}^{13}\text{C}/{}^{15}\text{N})$ spectrometers. Chemical shifts are referenced to Me₄Si (¹H), to the residual solvent signal (13C: 77.00 ppm for CDCl₃) or to NH_4Cl (50 mg/700 µL $H_2O/D_2O = 9:1$) as an external standard (¹⁵N). Measurements were run at 298 K probe temperature. The ¹H and ¹³C assignments were based on ¹H-¹H COSY, gradient enhanced ¹³C-¹H HSQC, ¹⁵N-¹H HSQC, ¹³C-¹H HMBC and ¹⁵N-¹H HMBC experiments measured using standard Varian software. The designation of peak multiplicities follows the general use (s: singlet, d: doublet, t: triplet, Ψ t: pseudo triplet, q: quartet, m: multiplet). MALDI-TOF measurements were performed with a Bruker BIFLEX III mass spectrometer. TLC was performed on DC-Alurolle, Kieselgel 60 F_{25} (E. Merck); the plates were visualized by gentle heating. For column chromatography, Kieselgel 60 (E. Merck) was used. Organic solutions were concentrated under diminished pressure at 40-50 °C (water bath). Glycosyl azides (1-9), peracetylated aldoses (15-20) were prepared as described in the literature.^{18,25,26} Me₃P solution (1 M in toluene), methylisothiocyanate and bis(trimethylsilyl)carbodiimide are commercial products of Fluka AG, Buchs, Switzerland.

General Procedure A for the preparation of symmetric glycopyranosyl carbodiimides (10–14).—To a solution of glycosyl azide (1–9) (0.20 g, 0.54 mmol) in dry CH_2Cl_2 (2 mL) 1 equiv of trimethylphosphine was added. The mixture was stirred at room temperature until the N₂ evolution ceased. Then 1.6 equiv of CS_2 was added and the resulting mixture was stirred at room temperature temperature for 12 h (pentopyranosyl derivatives) and 1 h (hexopyranosyl derivatives). Finally, the solution was evaporated and the crude product was purified by crystallisation.

Bis(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)carbodiimide (10). Prepared from 1 (0.20 g, 0.53 mmol) according to General Procedure A; Yield: 0.15 g (80%), colourless crystalline product; mp 177-179 °C (CH₂Cl₂-Et₂O), lit.¹¹ mp 178 °C; $[\alpha]_D$ – 42.5° (c 1.0, CHCl₃); lit.¹¹ $[\alpha]_{D} - 43.0^{\circ}$ (c 1.0, CHCl₃); v (KBr): 2154 (N=C=N) and 1746 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 5.12 (Ψ t, 1H, $J_{3,4}$ 9.5 Hz, H-3), 5.05 (Ψ t, 1H, J_{4.5} 10.0 Hz, H-4), 4.90 (\Put, 1H, J_{2.3} 8.9 Hz, H-2), 4.68 (d, 1H, J_{1,2} 9.0 Hz, H-1), 4.22 (dd, 1H, J_{5,6a} 4.8 Hz, J_{6a,6b} 12.1 Hz, H-6a), 4.10 (m, 1H, H-6b), 3.71 (ddd, 1H, J_{5.6b} 2.1 Hz, H-5), 2.05, 1.99, 1.96, 1.93 (s, 12H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 170.5, 170.0, 169.2, 169.0 (acetyl CO), 137.9 (N=C=N), 84.0 (C-1), 73.8, 72.8, 72.4, 67.9 (C-2, C-3, C-4, C-5), 61.6 (C-6), 20.4 (acetyl CH_3).

Bis(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)carbodiimide (11). Prepared from **3** (0.20 g, 0.53 mmol) according to General Procedure A; Yield: 0.18 g (95%), mp 89–91 °C (CH₂Cl₂–Et₂O), lit.¹¹ syrup; $[\alpha]_D - 9.4^\circ$ (*c* 1.0, CHCl₃); *v* (KBr): 2156 (N=C=N) and 1750 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 5.39 (dd, 1H, $J_{4,5}$ 1.1 Hz, H-4), 5.15 (dd, 1H, $J_{2,3}$ 9.9 Hz, H-2), 5.00 (dd, 1H, $J_{3,4}$ 2.6 Hz, H-3), 4.74 (d, 1H, $J_{1,2}$ 8.4 Hz, H-1), 4.25–3.90 (m, 3H, H-5, H-6a, H-6b), 2.18, 2.09, 2.06, 1.99 (s, 12H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 169.9, 169.8, 169.0, 168.9 (acetyl CO), 137.3 (N=C=N), 84.4 (C-1), 72.5, 70.7, 69.7, 66.8 (C-2, C-3, C-4, C-5), 60.9 (C-6), 20.5 (acetyl CH₃).

Bis(2-*acetamido*-3,4,6-*tri*-O-*acetyl*-2-*deoxy*-β-*D*-*glucopyranosyl*)*carbodiimide* (**12**). (a) Prepared from **5** (0.20 g, 0.53 mmol) according to General Procedure A; Yield: 0.14 g (71%), colourless crystalline product; mp 212–214 °C (CH₂Cl₂–Et₂O), lit.¹⁰ mp 205–210 °C; $[\alpha]_D$ – 27.2° (*c* 1.0, CHCl₃); lit.¹⁰ $[\alpha]_D$ – 27.0° (*c* 1.0, CHCl₃).

(b) Prepared from **5** (0.38 g, 1.00 mmol) with triphenylphosphine according to General Procedure A; Yield: 0.20 g (54%), colourless crystalline product; mp 205–206 °C (EtOAc–Et₂O). This compound was identified using the ¹H and ¹³C NMR chemical shift values known from the literature.¹⁰

Bis(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)carbodiimide (13). Prepared from 7 (0.30 g, 1.00 mmol) according to General Procedure A; Yield: 0.18 g (65%), colourless crystalline product; mp 133–134 °C (*i*Pr₂O), lit.¹¹ mp 139 °C; $[\alpha]_D$ – 69.9° (*c* 1.0, CHCl₃); lit.¹¹ $[\alpha]_D$ – 116.9° (*c* 1.0, CHCl₃); *v* (KBr): 2153 (N=C=N) and 1760 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 5.10 (dd, 1H, $J_{3,4}$ 9.5 Hz, H-3), 4.93 (ddd, 1H, $J_{4,5}$ 5.1 Hz, H-4), 4.82 (dd, 1H, $J_{2,3}$ 9.0 Hz, H-2), 4.65 (d, 1H, $J_{1,2}$ 8.4 Hz, H-1), 4.10 (dd, 1H, $J_{5,5a}$ 11.5 Hz, H-5a), 3.33 (dd, 1H, $J_{4,5b}$ 10.0 Hz, H-5b), 2.00, 1.98, 1.97 (s, 9H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 169.8, 169.5, 169.1 (acetyl CO), 137.2 (N=C=N), 84.4 (C-1), 72.0, 71.8, 68.3 (C-2, C-3, C-4), 64.1 (C-5), 20.4 (acetyl CH₃); ¹⁵N NMR (CDCl₃): δ 77.2 (N=C=N).

 $Bis(2,3,4-tri-O-acetyl-\alpha-D-arabinopyranosyl)carbodi$ imide (14). Prepared from 8 (0.30 g, 1.00 mmol) according to General Procedure A; Yield: 0.21 g (76%), colourless crystalline product; mp 162-163 °C (EtOH $i Pr_2 O$), $[\alpha]_D - 35.8^\circ$ (c 1.1, CHCl₃); v (KBr): 2151 (N=C=N) and 1748 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 5.88 (d, 1H, J_{1.2} 8.4 Hz, H-1), 5.33 (ddd, 1H, J_{4.5b} 1.5 Hz, H-4), 5.14 (dd, 1H, J_{3.4} 3.2 Hz, H-3), 5.10 (dd, 1H, J_{2.3} 10.0 Hz, H-2), 3.97 (dd, 1H, J_{4.5a} 2.0 Hz, H-5a), 3.80 (dd, 1H, J_{5.5b} 13.2 Hz, H-5b), 2.15, 2.08, 2.02 (s, 9H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 170.9, 170.2, 169.9 (acetyl CO), 140.7 (N=C=N), 79.8 (C-1), 70.9, 68.2, 68.1 (C-2, C-3, C-4), 65.3 (C-5), 20.5, 20.4, 20.2 (acetyl CH₃). Anal. Calcd for $C_{23}H_{30}N_2O_{14}$ (558.50): C, 49.46; H, 5.41; N, 5.02. Found: C, 49.55; H, 5.30; N, 4.92.

General Procedure B for the preparation of N,N'bis(glycopyranosyl)cyanamides (21, 23, 25, 27, 30, 31). — To a solution of peracetylated aldoses (15–20) (2 mmol) in dry CH_2Cl_2 (10 mL) 0.24 mL (0.2 mmol) of SnCl₄ and 0.54 mL (2.4 mmol) of bis(trimethylsilyl)carbodiimide were added and stirred at room temperature for 12 h (pentopyranosyl derivatives) and 48 h (hexopyranosyl derivatives). Then the reaction mixture was diluted with 18 mL of CH_2Cl_2 , washed with cold saturated NaHCO₃ solution and water. After drying of the CH_2Cl_2 layer and evaporation of the solvent the crude product was separated by column chromatography using 1:1 EtOAc-hexane as eluent. The fractions were monitored by TLC (2:1 EtOAc-hexane).

N,N-Bis(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)cyanamide (21) and N¹,N³-bis(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)-N²-cyanoguanidine (22). Prepared from 15 (0.78 g, 2.00 mmol) according to General Procedure B; The first fraction (R_f 0.56) gave 0.12 g (20%) of cyanamide 21 (with 90% conversion) as colourless crystalline product. Mp 187–190 °C, $[\alpha]_D$ -47.4° (c 1.0, CHCl₃); v (KBr): 2230 (N-C=N) and 1752 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 5.30 (dd, 1H, J_{3,4} 9.5 Hz, H-3), 5.11 (dd, 1H, J_{4,5} 10.0 Hz, H-4), 5.09 (dd, 1H, J_{2.3} 8.9 Hz, H-2), 4.64 (d, 1H, J_{1.2} 9.5 Hz, H-1), 4.24-4.15 (m, 2H, H-6a, H-6b), 3.76 (ddd, 1H, J_{5.6a} 3.1 Hz, J_{5.6b} 3.6 Hz, H-5), 2.11, 2.06, 2.04, 2.02 (s, 12H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 170.3, 170.0, 169.0, 168.8 (acetyl CO), 108.3 (CN), 88.6 (C-1), 73.9, 72.6, 69.7, 67.3 (C-2, C-3, C-4, C-5), 61.4 (C-6), 20.5, 20.3, 20.2 (acetyl CH₃). Anal. Calcd for $C_{29}H_{38}N_2O_{13}$ (702.63): C, 49.57; H, 5.45; N, 3.99. Found: C, 49.52; H, 5.49; N, 3.84.

The second fraction (R_f 0.41) gave 0.17 g (26%) of cyanoguanidine **22**. Mp 240–242 °C, $[\alpha]_D$ – 19.8° (*c* 1.1, CHCl₃); ν (KBr): 3409 (NH), 2195 (CN), 1749 (OAc) and 1610 (C=N) cm⁻¹. ¹H NMR (CDCl₃): δ 6.68 (m, 1H, NH), 5.33 (Ψt, 1H, $J_{4,5}$ 9.5 Hz, H-4), 5.06 (Ψt, 1H, $J_{2,3}$ 9.5 Hz, H-2), 4.92 (Ψt, 1H, $J_{3,4}$ 8.9 Hz, H-3), 4.80 (dd, 1H, $J_{1,2}$ 10.0 Hz, $J_{NH,1}$ 6.8 Hz, H-1), 4.30 (dd, 1H, $J_{5,6a}$ 4.7 Hz, $J_{5,6b}$ 2.6 Hz, H-5), 2.14, 2.12, 2.05, 2.04 (s, 12H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 171.1, 170.3, 169.7, 169.3 (acetyl CO), 159.4 (guanidine), 115.0 (CN), 80.5 (C-1), 73.0, 72.2, 70.5, 67.4 (C-2, C-3, C-4, C-5), 61.5 (C-6), 20.5, 20.4 (acetyl CH₃). Anal. Calcd for C₃₀H₄₀N₄O₁₈ (744.67): C, 48.39; H, 5.41; N, 7.52. Found: C, 48.23; H, 5.49; N, 7.44.

N,N-*Bis*(2,3,4,6-*tetra*-O-*acetyl*- β -D-*galactopyrano-syl*)-*cyanamide* (**23**) and N¹,N³-*bis*(2,3,4,6-*tetra*-O-*ace-tyl*- β -D-*galactopyranosyl*)-N²-*cyanoguanidine* (**24**). Prepared from **16** (0.78 g, 2.00 mmol) according to General Procedure B; the first fraction (R_f 0.30) gave 0.29 g (42%) of cyanamide **23** as colourless crystalline product; mp 156–157 °C, [α]_D + 18.0° (*c* 1.0, CHCl₃); ν (KBr): 2232 (N-C=N) and 1748 (OAc) cm⁻¹. ¹H NMR

(CDCl₃): δ 5.41 (m, 1H, H-4), 5.37 (dd, 1H, $J_{2,3}$ 10.0 Hz, H-2), 5.12 (dd, 1H, $J_{3,4}$ 2.7 Hz, H-3), 4.54 (d, 1H, $J_{1,2}$ 9.5 Hz, H-1), 4.15 (dd, 1H, $J_{5,6a}$ 6.3 Hz, $J_{6a,6b}$ 11.6 Hz, H-6a), 4.09 (dd, 1H, $J_{5,6b}$ 6.8 Hz, H-6b), 3.95 (ddd, 1H, $J_{4,5}$ 1.6 Hz, H-5), 2.21, 2.08, 2.06, 2.00 (s, 12H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 169.9, 169.8, 169.6, 168.5 (acetyl CO), 108.7 (CN), 88.7 (C-1), 72.5, 70.8, 66.9, 66.6 (C-2, C-3, C-4, C-5), 61.0 (C-6), 20.2 (acetyl CH₃). Anal. Calcd for C₂₉H₃₈N₂O₁₃ (702.63): C, 49.57; H, 5.45; N, 3.99. Found: C, 49.62; H, 5.58; N, 3.87.

The second fraction (R_f 0.20) gave 0.14 g (20%) of cyanoguanidine 24. Mp 168–170 °C, $[\alpha]_D$ – 32.5° (*c* 1.0, CHCl₃); ν (KBr): 3411 (NH), 2186 (CN), 1749 (OAc) and 1615 (C=N) cm⁻¹. ¹H NMR (CDCl₃): δ 6.74 (m, 1H, NH), 5.42 (dd, 1H, $J_{4,5}$ 1.0 Hz, H-4), 5.13 (dd, 1H, $J_{3,4}$ 3.2 Hz, H-3), 5.07 (dd, 1H, $J_{1,2}$ 8.9 Hz, $J_{2,3}$ 10.0 Hz, H-3), 4.75 (m, 1H, H-1), 4.20–4.05 (m, 3H, H-5, H-6a, H-6b), 2.11, 2.09, 2.04, 1.97 (s, 12H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 171.3, 170.2, 169.7, 169.5 (acetyl CO), 159.8 (guanidine), 115.2 (CN), 81.0 (C-1), 72.2, 70.2, 67.9, 66.9 (C-2, C-3, C-4, C-5), 61.0 (C-6), 20.6, 20.5, 20.4, 20.3 (acetyl CH₃): Anal. Calcd for C₃₀H₄₀N₄O₁₈ (744.67): C, 48.39; H, 5.41; N, 7.52. Found: C, 49.46; H, 5.33; N, 7.60.

N,N-Bis(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)cyanamide (25) and N¹,N³-bis(2,3,4-tri-O-acetyl- β -D-xylopyranosyl)-N²-cyanoguanidine (26). Prepared from 17 (0.64 g, 2.00 mmol) according to General Procedure B; The first fraction (R_f 0.67)gave 0.24 g (43%) of cyanamide 25 as colourless crystalline product. Mp: $170-172 \,^{\circ}C, \, [\alpha]_{D} - 62.8^{\circ} (c \, 1.1, \, CHCl_{3}); \, v \, (KBr): 2232$ (N-C=N) and 1758 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 5.24 (t, 1H, J_{3,4} 9.0 Hz, H-3 or H-2), 5.06 (t, 1H, J_{2,3} 9.0 Hz, H-2 or H-3), 4.96 (ddd, 1H, H-4), 4.51 (d, 1H, J_{1,2} 9.0 Hz, H-1), 4.15 (dd, 1H, J_{4.5a} 5.3 Hz, H-5a), 3.35 (dd, 1H, J_{5.5b} 11.6 Hz, J_{4.5b} 9.7 Hz, H-5b), 2.04, 2.03 (s, 9H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 169.8, 169.4, 168.7 (acetyl CO), 108.4 (CN), 87.7 (C-1), 71.7, 69.1, 67.9 (C-2, C-3, C-4), 64.0 (C-5), 20.3, 20.2 (acetyl CH₃); ¹⁵N NMR (CDCl₃): δ 196.3, 45.8 (N-CN). MALDI-TOF MS (558.50): 597.07 [M + K]⁺, 581.10 [M + Na]⁺ . Anal. Calcd for $C_{23}H_{30}N_2O_{14}$ (558.50): C, 49.46; H, 5.41; N, 5.02. Found: C, 49.35; H, 5.35; N, 4.87.

The second fraction (R_f 0.51) gave 0.17 g (29%) of cyanoguanidine **26**. Mp: 122–123 °C, $[\alpha]_D - 40.6^\circ$ (*c* 1.0, CHCl₃); ν (KBr): 3406 (NH), 2190 (CN), 1756 (OAc) and 1614 (C=N) cm⁻¹. ¹H NMR (CDCl₃): δ 6.73 (d, 1H, $J_{NH,1}$ 8.2 Hz, NH), 5.24 (Ψ t, 1H, $J_{2,3}$ 9.2, Hz $J_{3,4}$ 9.7 Hz, H-3), 4.92 (ddd, 1H, $J_{4,5ab}$ 5.5 Hz, $J_{4,5b}$ 10.0 Hz, H-4), 4.88 (t, 1H, $J_{1,2}$ 9.0 Hz, H-2), 4.80 (t, 1H, H-1), 4.05 (dd, 1H, $J_{5,5b}$ 11.7 Hz, H-5a), 3.46 (Ψ t, 1H, H-5b), 2.04, 2.00, 1.99 (s, 9H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 171.0, 169.7 (acetyl CO), 159.5 (guanidine), 115.2 (CN), 80.8 (C-1), 71.5 (C-3), 70.3 (C-2), 68.3 (C-4), 63.7 (C-5), 20.6, 20.5, 20.5 (acetyl CH₃). MALDI-TOF MS (600.54): 623.05 [M + Na]⁺. Anal.

Calcd for $C_{24}H_{32}N_4O_{14}$ (600.54): C, 48.00; H, 5.37; N, 9.33. Found: C, 48.15; H, 5.43; N, 9.21.

N,N-Bis(2,3,4-tri-O-acetyl- β -D-ribopyranosyl)cyanamide (27) and N¹, N³-bis(2,3,4-tri-O-acetyl- β -D-ribopyranosyl)-N²-cyanoguanidine (28). Prepared from 18 (0.64 g, 2.00 mmol) according to General Procedure B; The first fraction (R_f 0.60) gave 0.28 g (51%) of cyanamide 27 as colourless crystalline product. Mp: 175–177 °C, [α]_D – 35.1° (*c* 1.0, CHCl₃); *ν* (KBr): 2228 (N-C=N) and 1752 (OAc) cm $^{-1}.$ $^1\mathrm{H}$ NMR (CDCl_3): δ 5.73 (m, 1H, H-3), 5.46 (m, 1H, H-4), 5.03 (dd, 1H, J_{2.3} 2.4 Hz, H-2), 4.50 (d, 1H, J_{1.2} 8.9 Hz, H-1), 3.99 (dd, 1H, J_{4.5a} 5.3 Hz, J_{5.5b} 11.0 Hz, H-5a), 3.80 (Ψt, 1H, J_{4.5b} 10.5 Hz, H-5b), 2.21, 2.07, 2.03 (s, 9H, acetyl CH_3); ¹³C NMR (CDCl₃): δ 169.5, 169.1, 168.6 (acetyl CO), 109.4 (CN), 84.3 (C-1), 67.8, 67.0, 65.3 (C-2, C-3, C-4), 62.8 (C-5), 20.5, 20.3, 20.2 (acetyl CH₃). Anal. Calcd for $C_{23}H_{30}N_2O_{14}$ (558.50): C, 49.46; H, 5.41; N, 5.02. Found: C, 49.33; H, 5.52; N, 4.89.

The second fraction (R_f 0.46) was 0.06 g (11%) of cyanoguanidine **28**. Mp: 215–217 °C, $[\alpha]_D$ – 16.6° (*c* 1.0, CHCl₃); ν (KBr): 3400 (NH), 2188 (CN), 1759 (OAc) and 1616 (C=N) cm⁻¹. ¹H NMR (CDCl₃): δ 6.71 (bs, 1H, NH), 5.68 (Ψt, 1H, $J_{2,3}$ 2.8 Hz, $J_{3,4}$ 2.7 Hz, H-3), 5.03 (m, 1H, H-1), 4.99 (m, 1H, H-4), 4.94 (dd, 1H, $J_{1,2}$ 9.2 Hz, H-1), 3.90–3.80 (m, 2H, H-5a, H-5b), 2.10, 2.05, 2.00 (s, 9H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 170.6, 169.7, 169.4 (acetyl CO), 160.5 (guanidine), 115.5 (CN), 78.3 (C-1), 68.1 (C-2), 68.0 (C-3), 66.0 (C-4), 62.3 (C-5), 20.8, 20.7, 20.5 (acetyl CH₃). Anal. Calcd for C₂₄H₃₂N₄O₁₄ (600.54): C, 48.00; H, 5.37; N, 9.33. Found: C, 47.88; H, 5.32; N, 9.21.

 $N-(2,3,4-Tri-O-acetyl-\alpha-D-arabinopyranosyl)cyana$ mide (29) and N,N-bis(2,3,4-tri-O-acetyl-a-D-arabinopyranosyl)cyanamide (30). Prepared from 19 (0.64 g, 2.00 mmol) according to General Procedure B; The first fraction (R_f 0.63) gave 0.11 g (18%) of cyanamide **29** as colourless crystalline product. Mp 189–190 °C $[\alpha]_{\rm D}$ $+30.9^{\circ}$ (c 1.1, CHCl₃); v (KBr): 3400 (NH), 2196 (CN) and 1749 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 5.29 (bs, 1H, NH), 5.27 (m, 1H, H-4), 5.08 (dd, 1H, J₂, 10.0 Hz, J_{3,4} 3.4 Hz, H-3), 5.04 (dd, 1H, J_{1,2} 10.1 Hz, H-2), 4.40 (t, 1H, J_{NH,1} 8.5 Hz, H-1), 4.03 (dd, 1H, J_{4,5a} 2.2 Hz, J_{5,5b} 13.5 Hz, H-5a), 3.72 (dd, 1H, J_{4,5b} 1.3 Hz, H-5b), 2.12, 2.10, 1.99 (s, 9H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 170.8, 170.1, 169.8 (acetyl CO), 112.6 (CN), 85.9 (C-1), 70.1 (C-3), 68.2 (C-2), 67.6 (C-4), 65.7 (C-5), 20.7, 20.6, 20.5 (acetyl CH₃). Anal. Calcd for $C_{12}H_{16}N_2O_7$ (300.24): C, 48.00; H, 5.37; N, 9.33. Found: C, 48.12; H, 5.42; N, 9.27.

The second fraction (R_f 0.41) was 0.30 g (53%) of bis(glycosyl)cyanamide **30**, colourless crystalline product; mp 203–205 °C (EtOH–*i*Pr₂O), [α]_D + 59.8° (*c* 1.1, CHCl₃); *v* (KBr): 2230 (N-C=N) and 1742 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 5.46 (t, 1H, $J_{2,3}$ 8.9 Hz, H-2), 5.23 (m, 1H, H-4), 5.11 (dd, 1H, $J_{3,4}$ 3.2 Hz, H-3),

4.50 (d, 1H, $J_{1,2}$ 8.9 Hz, H-1), 4.06 (dd, 1H, $J_{4,5a}$ 2.6 Hz, $J_{5,5b}$ 13.2 Hz, H-5a), 3.67 (m, 1H, H-5b), 2.21, 2.07, 2.04 (s, 9H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 170.0, 169.7, 168.6 (acetyl CO), 109.6 (CN), 88.0 (C-1), 70.4, 67.5, 67.1 (C-2, C-3, C-4), 65.2 (C-5), 20.6, 20.3 (acetyl CH₃). Anal. Calcd for C₂₃H₃₀N₂O₁₄ (558.50): C, 49.46; H, 5.41; N, 5.02. Found: C, 49.68; H, 5.55; N, 4.96.

N,N-*Bis*(2,3,4-*tri*-O-*acetyl*-α-D-*lyxopyranosyl*)*cyanamide* (**31**).—Prepared from **20** (0.64 g, 2.00 mmol) according to General Procedure B; Yield: 0.32 g (58%), colourless crystalline product; mp 195–197 °C, [α]_D – 51.5° (*c* 1.0, CHCl₃); *v* (KBr): 2228 (N-C=N) and 1752 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 5.49 (t, 1H, $J_{2,3}$ 3.3 Hz, H-2), 5.35 (dd, 1H, $J_{3,4}$ 9.5 Hz, H-3), 4.82 (d, 1H, $J_{1,2}$ 3.3 Hz, H-1), 4.79 (dd, 1H, $J_{4,5a}$ 5.0 Hz, $J_{5a,5b}$ 13.0 Hz, H-5a), 4.01 (dd, 1H, $J_{4,5b}$ 10.5 Hz, H-5b), 3.93 (m, 1H, H-4), 2.21, 2.16, 2.04 (s, 9H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 169.5, 168.8, 168.7 (acetyl CO), 110.7 (*C*N), 84.5 (C-1), 68.0, 67.4, 66.0 (C-2, C-3, C-4), 64.8 (C-5), 20.7, 20.5, 20.3 (acetyl CH₃). Anal. Calcd for C₂₃H₃₀N₂O₁₄ (558.50): C, 49.46; H, 5.41; N, 5.02. Found: C, 49.52; H, 5.31; N, 5.15.

3,4,6-tri-O-acetyl-2-deoxy-2-(N'-methylth-Methyl ioureido)-β-D-glucopyranoside (34).—Methyl 3,4,6-tri-O-acetyl-2-amino-2-deoxy-β-D-glucopyranoside (32,0.96 g, 3 mmol) and 0.22 g (3 mmol) of methylisothiocyanate were stirred at 80 °C in 6 mL EtOAc for 2 h. After evaporation of the solvent, the crude product (0.94 g) was purified by crystallisation (benzene-hexane). Yield: 0.70 g (60%), mp 157-158 °C, colourless crystalline product, $[\alpha]_{\rm D}$ + 43.7° (c 1.0, CHCl₃); v (KBr): 3358, 1504, 1372 (thiourea) and 1748 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 6.86 (m, 1H, NH), 6.20 (m, 1H, NH), 5.15 (dd, 1H, J_{3,4} 7.9 Hz, H-4), 5.11 (dd, 1H, J_{2.3} 9.0 Hz, H-3), 4.36 (d, 1H, J_{1.2} 8.4 Hz, H-1), 4.31 (dd, 1H, J_{5,6a} 4.7 Hz, J_{6a,6b} 12.6 Hz, H-6a), 4.14 (dd, 1H, J_{5.6b} 2.6 Hz, H-6b), 3.70 (ddd, 1H, J_{4.5} 9.5 Hz, H-5), 3.67 (m, 1H, H-2), 3.57 (s, 3H, OCH₃), 3.07 (d, 3H, J_{NH.Me} 3.3 Hz, NHMe), 2.10, 2.05 (s, 9H, acetyl CH_3); ¹³C NMR (CDCl₃): δ 180.8 (thiourea), 170.9, 170.4, 169.1 (acetyl CO), 104.6 (C-1), 75.0, 71.4, 67.9 (C-3, C-4, C-5), 61.9 (C-6), 58.6 (C-2), 57.0 (OCH₃), 55.6 (NCH₃), 20.5, 20.4 20.3 (acetyl CH₃). Anal. Calcd for C₁₅H₂₄N₂O₈S (392.43): C, 45.91; H, 6.16; N, 7.14. Found: C, 46.34; H, 6.14; N: 6.81.

Methyl 3,4,6-*tri*-O-*acetyl*-2-*deoxy*-2-[N'-(2,3,4,6*tetra*-O-*acetyl*-β-D-*glucopyranosyl*)*thioureido*]-β-D-*glucopyranoside* (**35**).—Prepared from **32** (1.60 g, 5 mmol) and **33** (1.94 g, 5 mmol) according to the previous procedure. Yield: 2.96 g (84%), colourless crystalline product, mp 191–192 °C (dry EtOH), $[\alpha]_D$ + 5.9° (*c* 1.0, CHCl₃); *v* (KBr): 3372, 1562, 1366 (thiourea) and 1754 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 6.53 (m, 1H, N*H*), 5.81 (m, 1H, N*H*), 5.35 (dd, 1H, $J_{3',4'}$ 8.9 Hz, $J_{4',5'}$ 10.0 Hz, H-4'), 5.20–5.05 (m, 4H, H-3, H-4, H-2', H-3'), 5.01 (t, 1H, $J_{1',2'}$ 9.5 Hz, H-1'), 4.45–4.25 (m, 3H, H-1, H-6a, H-6a'), 4.20–4.05 (m, 2H, H-6b, H-6b'), 3.84 (m, 2H, H-5, H-5'), 3.61 (m, 1H, H-2), 3.55 (s, 3H, OCH₃), 2.11, 2.08, 2.04, 2.03 (s, 21H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 184.6 (thiourea), 170.9, 170.6, 170.5, 169.7, 169.5 169.2 (acetyl CO), 101.9 (C-1), 82.9 (C-1'), 73.2, 72.7, 71.6, 70.5, 68.0, 67.8 (C-3, C-4, C-5, C-2', C-3', C-4', C-5'), 61.7, 61.5 (C-6, C-6'), 58.2 (C-2), 57.9 (OCH₃), 20.5, 20.4 (acetyl CH₃). Anal. Calcd for C₂₈H₄₀N₂O₁₇S (708.70): C, 47.45; H, 5.69; N, 3.95. Found: C, 47.52; H, 5.55; N, 3.89.

Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-(N'-methylcarbodiimido)- β -D-glucopyranoside (36).—Compound 34 (1.99 g, 5.1 mmol) and 3.25 g (1.5 mmol) of HgO were stirred in a mixture of 69 mL of CHCl₃ and 69 mL of water for 30 min at room temperature. The organic layer was separated from the water, dried on CaCl₂ and filtrated. After evaporation of the solvent, the crude product was purified by crystallisation (EtOAc-hexane). Yield: 1.14 g (63%), colourless crystalline product, mp 72–73 °C, [α]_D + 2.9° (*c* 1.0, CHCl₃); *ν* (KBr): 2148 (N=C=N) and 1754 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 4.97 (t, 1H, J₃₄ 9.5 Hz, H-3), 4.90 (t, 1H, J₄₅ 9.5 Hz, H-4), 4.22 (dd, 1H, J_{5,6a} 4.7 Hz, H-6a), 4.17 (d, 1H, J_{1,2} 7.9 Hz, H-1), 4.04 (dd, 1H, J_{5,6b} 1.6 Hz, J_{6,6b} 12.1 Hz, H-6b), 3.62 (ddd, 1H, H-5), 3.50 (s, 3H, OCH₃), 3.36 (dd, 1H, J_{2,3} 9.5 Hz, H-2), 2.88 (s, 3H, NCH₃), 1.99, 1.93 (s, 9H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 170.4, 169.9, 169.4 (acetyl CO), 139.8 (N=C=N), 103.0 (C-1), 73.9, 71.5, 68.3 (C-3, C-4, C-5), 62.0 (C-6), 60.0 (C-2), 57.3 (OCH₃), 32.1 (NCH₃), 20.5, 20.4 (acetyl CH₃). Anal. Calcd for C₁₅H₂₂N₂O₈ (358.35): C, 50.28; H, 6.19; N, 7.82. Found: C, 50.35; H, 6.05; N, 7.76.

Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-[N'-(2,3,4,6-glucopyranoside (37).—Prepared from 35 (1.42 g, 2.0 mmol) according to the previous procedure. Yield: 1.02 g (76%), colourless crystalline product, mp 141–142 °C, $[\alpha]_{D}$ + 6.1° (*c* 1.0, CHCl₃); *v* (KBr): 2148 (N=C=N) and 1750 (OAc) cm⁻¹. ¹H NMR (CDCl₃): δ 5.16 (Ψ t, 1H, J_{4'.5'} 8.5 Hz, H-4'), 5.10 (t, 1H, J_{4.5} 9.5 Hz, H-4), 5.06 (dd, 1H, J_{3,4} 9.5 Hz, H-3), 4.96 (t, 1H, J_{3',4'} 9.5 Hz, H-3'), 4.91 (Ψt, 1H, J_{2',3'} 9.5 Hz, H-2'), 4.69 (d, 1H, J_{1,2} 8.9 Hz, H-1'), 4.32 (d, 1H, J_{1,2} 8.4 Hz, H-1), 4.28 (dd, 1H, $J_{5,6}$ 4.5 Hz, $J_{6a,6b}$ 12.3 Hz, H-6a), 4.21 (dd, 1H, J_{5',6a'} 2.1 Hz, J_{6a',6b'} 12.1 Hz, H-6a'), 4.16 (dd, 1H, J_{5',6b'} 4.5 Hz, H-6b'), 4.11 (dd, 1H, J_{5.6b} 2.1 Hz, H-6b), 3.73 (ddd, 2H, H-5, H-5'), 3.57 (s, 3H, OCH₃), 3.50 (dd, 1H, J_{2.3} 10.0 Hz, H-2), 2.09, 2.07, 2.06, 2.02, 2.00, 1.99 (s, 21H, acetyl CH₃); ¹³C NMR (CDCl₃): δ 170.4, 169.9, 169.8, 169.4, 169.1 (acetyl CO), 137.6 (N=C=N), 102.4 (C-1), 84.2 (C-1'), 73.7, 71.5, 68.3 (C-3, C-4, C-5), 73.3, 72.7, 72.3, 67.8 (C-2', C-3', C-4', C-5'), 61.7, 61.3 (C-6, C-6'), 59.8 (C-2), 57.1 (OCH₃), 20.5, 20.4 (acetyl CH₃). Anal. Calcd for C₂₈H₃₈N₂O₁₇ (674.62): C, 49.85; H, 5.68; N, 4.15. Found: C, 50.01; H, 5.52; N, 4.17.

Acknowledgements

This research was supported by a grant from the National Science Research Foundation (no. OTKA T32124) in Hungary.

References

- 1. Kobayashi Y. Carbohydr. Res. 1999, 315, 3-15.
- 2. Berecibar A.; Grandjean C.; Siriwardena A. Chem. Rev. 1999, 99, 779-844.
- Ellestad G. A.; Cosulich D. B.; Broschard R. W.; Martin J. H.; Kunstmann M. P.; Morton G. O.; Lancaster J. E.; Fulmor W.; Lovell F. M. J. Am. Chem. Soc. 1978, 100, 2515–2524.
- Dobashi K.; Nagaoka K.; Watanabe Y.; Nishida M.; Hamada M.; Naganawa H.; Takita T.; Takeuchi T.; Umezawa H. J. Antibiot. 1985, 38, 1166–1170.
- 5. Várki A. Glycobiology 1993, 3, 97-130.
- 6. Goodman I. Adv. Carbohydr. Chem. 1958, 13, 215-236.
- Pérez V. M. D.; Mellet C. O.; Fuentes J.; Fernández J. M. G. Carbohydr. Res. 2000, 326, 161–175.
- Rockendorf N.; Lindhorst T. K. Top. Curr. Chem. 2001, 217, 201–238.
- 9. Bognár R.; Somogyi L. Chem. Ber. 1966, 99, 1033-1039.
- Kovács J.; Pintér I.; Messmer A.; Tóth G.; Duddeck H. Carbohydr. Res. 1987, 166, 101–111.
- 11. Messmer A.; Pintér I.; Szegő F. Angew. Chem. 1964, 76, 227–228.

- Fernández J. M. G.; Mellet C. O.; Pérez V. M. D.; Fuentes J.; Kovács J.; Pintér I. *Carbohydr. Res.* 1997, 304, 261–270.
- Fernández J. M. G.; Mellet C. O.; Pérez V. M. D.; Fuentes J.; Kovács J.; Pintér I. *Tetrahedron Lett.* 1997, 38, 4161–4164.
- Györgydeák Z.; Szilágyi L.; Paulsen H. J. Carbohydr. Chem. 1993, 12, 139–163.
- Kovács L.; Ösz E.; Domokos V.; Holzer W.; Györgydeák Z. *Tetrahedron* 2001, *57*, 4609–4621.
- Mészáros P.; Kovács J.; Pintér I. Carbohydr. Lett. 1997, 2, 355–361.
- 17. de las Heras F. G.; Fernández-Resa P. J. Chem. Soc., Perkin. Trans. 1 1982, 903–908.
- Paulsen H.; Györgydeák Z.; Friedmann M. Chem. Ber. 1974, 107, 1568–1578.
- Györgydeák, Z.; Pelyvás, F. I. In Monosaccharide sugars, chemical synthesis by chain elongation, degradation and epimerization; Academic Press: San Diego, 1998; pp 316– 331.
- 20. Mai K.; Patil G. J. Org. Chem. 1987, 52, 275-276.
- 21. Kamijo S.; Jin T.; Yamamoto Y. J. Am. Chem. Soc. 2001, 123, 9453–9454.
- 22. Fodor G.; Ötvös L. Liebigs Ann. 1957, 29-33.
- 23. Witanowski L.; Stefaniak L.; Januszewski H.; Peksa S. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1972, 20, 921–923.
- 24. Durette P. L.; Horton D. Carbohydr. Res. 1971, 18, 389-401.
- 25. Györgydeák Z.; Szilágyi L. Liebigs Ann. 1986, 1393-1397.
- 26. Györgydeák Z.; Szilágyi L. Liebigs Ann. 1987, 235-241.