# Journal Pre-proofs

Facial conversion of secondary phosphine oxides  $R^1R^2P(O)H$  to chlorophosphines  $R^1R^2PCl$  by acetyl chloride

Jian-Qiu Zhang, Shangdong Yang, Li-Biao Han

| PII:<br>DOI:<br>Reference:                        | S0040-4039(19)31355-3<br>https://doi.org/10.1016/j.tetlet.2019.151556<br>TETL 151556 |
|---------------------------------------------------|--------------------------------------------------------------------------------------|
| To appear in:                                     | Tetrahedron Letters                                                                  |
| Received Date:<br>Revised Date:<br>Accepted Date: | <ul><li>14 November 2019</li><li>16 December 2019</li><li>19 December 2019</li></ul> |



Please cite this article as: Zhang, J-Q., Yang, S., Han, L-B., Facial conversion of secondary phosphine oxides R<sup>1</sup>R<sup>2</sup>P(O)H to chlorophosphines R<sup>1</sup>R<sup>2</sup>PCl by acetyl chloride, *Tetrahedron Letters* (2019), doi: https://doi.org/10.1016/j.tetlet.2019.151556

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

# **Graphical Abstract**

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

# Facial conversion of secondary phosphine oxides R<sup>1</sup>R<sup>2</sup>P(O)H to chlorophosphines R<sup>1</sup>R<sup>2</sup>PCl by acetyl chloride

Leave this area blank for abstract info.

Jian-Qiu Zhang, Shangdong Yang, and Li-Biao Han

$$\begin{array}{c} O \\ R^{1}-P - H \\ R^{2} \end{array} \xrightarrow{AcCl} AcOH \\ \hline THF, 25-50 \ ^{\circ}C \end{array} \xrightarrow{R^{1}-P-Cl} R^{2} \end{array}$$

 $R^1$ ,  $R^2$  = aryl, alkyl



Tetrahedron Letters journal homepage: www.elsevier.com

# Facial conversion of secondary phosphine oxides R<sup>1</sup>R<sup>2</sup>P(O)H to chlorophosphines R<sup>1</sup>R<sup>2</sup>PCl by acetyl chloride

Jian-Qiu Zhang,<sup>a,b</sup> Shangdong Yang,<sup>c</sup> and Li-Biao Han<sup>a,b\*</sup>

<sup>a</sup>National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan <sup>b</sup>Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan <sup>c</sup>College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

ABSTRACT

high yields under mild conditions.

#### ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

*Keywords:* Chlorophosphines Secondary phosphine oxides Reductive conversion Acyl chloride

#### Introduction

Chlorophosphines are key starting materials for the synthesis of trivalent phosphines, that have broad applications in organic synthesis as reagents and in metal-catalysis as ligands. For example, alkylation of chlorophosphines with organolithium or Grignard reagents was a general method for the preparation of a series of monodentate and bidentate phosphine ligands.<sup>1</sup> On the other hand, the corresponding phosphinoamine and phosphinites can also be easily obtained by the nucleophilic substitution reactions of chlorophosphines with amines<sup>2</sup> and alcohols.<sup>3</sup> Moreover, chlorophosphines can be also converted to the corresponding alkali metal phosphides R<sup>1</sup>R<sup>2</sup>PM, and subsequent substitution reactions with organic halides can generate a wide range of tertiary phosphines.<sup>1c</sup>

Among the chlorophosphines, perhaps diphenylphosphine chloride Ph<sub>2</sub>PCl is one of the most frequently employed reagent for introducing a diphenylphosphino Ph<sub>2</sub>P functionality to a molecular frame to generate the corresponding phosphine ligands. Industrially, Ph<sub>2</sub>PCl is produced from benzene and PCl<sub>3</sub> in the presence of an equivalent of AlCl<sub>3</sub> under heating.<sup>4</sup> However, this process is inefficient because the generation of Ph<sub>2</sub>PCl is accompanied by the formation of a lot of wastes such as HCl, AlCl<sub>3</sub> and a reagent used for deliberating Ph<sub>2</sub>PCl from AlCl<sub>3</sub>.<sup>4a-d</sup> Disproportionation reactions of PhPCl<sub>2</sub> with ZnCl<sub>2</sub> or Ph<sub>3</sub>P also

afford  $Ph_2PCl.^{4e,f}$  However, heating at a very high temperature is required for this transformation. In addition, the preparation of  $PhPCl_2$  also suffers from the same problems as mentioned for  $Ph_2PCl$ . Because of the rather severe conditions required for this disproportionation reaction, this method cannot be readily adopted in the laboratory synthesis.

2009 Elsevier Ltd. All rights reserved.

A practically useful protocol for the reductive transformation of secondary phosphine oxides

R<sup>1</sup>R<sup>2</sup>P(O)H to chlorophosphines R<sup>1</sup>R<sup>2</sup>PCl using acetyl chloride was disclosed. Various

secondary phosphine oxides could be readily reduced to the corresponding chlorophosphines in



Scheme 1. Preparation of chlorophosphines from secondary phosphine oxides.

Unlike tertiary phosphines  $R_3P$  that are easily oxidized under air, secondary phosphine oxides  $R_2P(O)H$  can be easily handled under air without the need to pay attention to oxygen and moisture. Moreover, they are relatively easily prepared chemicals.<sup>5</sup> In particular, we very recently reported that

1

<sup>\*</sup> Corresponding author. Tel.: +81-29-861-4855; fax: +81-29-861-6344; e-mail: libiao-han@aist.go.jp

#### Journal Pre-proof

#### chemical waste Ph<sub>3</sub>P(O) at room temperature.<sup>5d</sup>

In this sense, using  $R_2P(O)H$  as the substrate for  $R_2PCl$  preparation should be a convenient alternative laboratory method. Quin et al. reported that secondary phosphine oxides  $R_2P(O)H$  could be converted into  $R_2PCl$  using  $PCl_3$  as the chlorination reagent,<sup>6</sup> which has been widely used in the preparation of phosphine ligands.<sup>7</sup> However, this method has drawbacks such as the requirement of a large excess amount of  $PCl_3$  (10 equivalents to P(O)H) and the difficult purification of the products (Scheme 1 (1)).

During our studies on the reactivity of secondary phosphine oxides, we accidently found that  $Ph_2PCl$  could be quantitatively generated by simply treating  $Ph_2P(O)H$  with MesC(O)Cl (Mes: 2,4,6-trimethylphenyl). Eventually, we realized that, instead of the expensive MesC(O)Cl, the cheap and readily accessible acetyl chloride AcCl was an efficient reagent for this transformation. Herein, we disclose a facial transformation of secondary phosphine oxides  $R^1R^2P(O)H$  to chlorophoshpines  $R^1R^2PCl$  by using acetyl chloride as the reductive chlorination reagent (Scheme 1 (2)). Compared to the literature method using  $PCl_3$ , this method using acetyl chloride AcCl possesses advantages such as low toxicity, corrosiveness and less amounts of the chlorination reagents as well as easy purification and high yield of the products.

### **Results and discussion**

Initially, a mixture of diphenylphosphine oxide **1a** (0.05 mmol) and mesityl chloride (0.06 mmol) in THF (0.5 mL) in a sealed NMR tube was heated at 100 °C overnight. As indicated by <sup>31</sup>P NMR spectroscopy, a new signal at 82.8 ppm assignable to Ph<sub>2</sub>PCl was observed and 85% yield of Ph<sub>2</sub>PCl was generated (Table1, run 1). Under similar conditions, when we increased the amount of mesityl chloride to 0.1 mmol (2.0 equivalents to **1a**) (Table1, runs 2 and 3), Ph<sub>2</sub>PCl was obtained in 94% yield. At low temperatures, however, only low yields of the product were obtained (Table1, runs 4–7). Then we decided to investigate the

| Table 1. Reaction condition optimization | ona |
|------------------------------------------|-----|
|------------------------------------------|-----|

0

|     |                        | $\mathbf{p}_{\mathbf{b}} = \mathbf{p}_{\mathbf{b}} = \mathbf{U}$ | RC(0)CI<br>> $Dh - P - CI$ |           |                     |  |
|-----|------------------------|------------------------------------------------------------------|----------------------------|-----------|---------------------|--|
|     |                        | Pn-P-H<br>Ph                                                     | overnight                  | Ph        |                     |  |
|     |                        | 1a                                                               |                            | 2a        |                     |  |
| Run | R                      | RC(O)Cl<br>(equiv.)                                              | Solvent                    | Tempt./°C | Yield/%             |  |
| 1   | Mes                    | 1.2                                                              | THF                        | 100       | 85                  |  |
| 2   | Mes                    | 1.6                                                              | THF                        | 100       | 87                  |  |
| 3   | Mes                    | 2.0                                                              | THF                        | 100       | 94                  |  |
| 4   | Mes                    | 2.0                                                              | THF                        | 80        | 73                  |  |
| 5   | Mes                    | 2.0                                                              | THF                        | 70        | 48                  |  |
| 6   | Mes                    | 2.0                                                              | THF                        | 60        | 30                  |  |
| 7   | Mes                    | 2.0                                                              | THF                        | 50        | 8                   |  |
| 8   | Ph                     | 2.0                                                              | THF                        | 100       | 25                  |  |
| 9   | <sup><i>i</i></sup> Pr | 2.0                                                              | THF                        | 100       | 90                  |  |
| 10  | Me                     | 2.0                                                              | THF                        | 100       | 97                  |  |
| 11  | Me                     | 2.0                                                              | Dioxane                    | 100       | 99                  |  |
| 12  | Me                     | 2.0                                                              | Toluene                    | 100       | 92                  |  |
| 13  | Me                     | 2.0                                                              | $CH_2Cl_2$                 | 100       | 77                  |  |
| 14  | Me                     | 2.0                                                              | Dioxane                    | 25        | 95                  |  |
| 15  | Me                     | 2.0                                                              | THF                        | 25        | 95                  |  |
| 16  | Me                     | 1.5                                                              | THF                        | 25        | 82(95) <sup>b</sup> |  |
| 17  | Me                     | 1.2                                                              | THF                        | 25        | 81(94) <sup>b</sup> |  |
| 18  | Me                     | 1.0                                                              | THF                        | 25        | 66(92) <sup>b</sup> |  |

was dissolved in 0.5 mL solvent in an NMK tube. RC(O)CI was added and the mixture was heated overnight at the temperature indicated. Yield refers to <sup>31</sup>P NMR yield based on **1a** used (Mes: 1,3,5-trimethylphenyl). <sup>b</sup>The yields in parenthesis were obtained at 50 °C.

reactivity of other acyl chlorides (Table1, runs 8-10), and found that the simplest acetyl chloride showed highest reactivity for this reductive chlorination reaction (Table1, run 10). The effect of solvent was also investigated (Table1, runs 11-13). Solvents like 1,4-dioxane and toluene could also be used in this transformation. Dichloromethane gave 77% yield of the product under similar conditions (Table1, run 13). To avoid potential safety problems at high temperatures, we then tried to conduct the above reaction again under mild conditions. To our surprise, such a reductive transformation smoothly proceeded even at room temperature by using acetyl chloride AcCl (Table1, runs 14-15). The reaction could also take place smoothly with less loadings of acetyl chloride (Table1, runs 16-18) under room temperature. However, in order to obtain a high yield (over 90%) of the desired product Ph<sub>2</sub>PCl, the use of a slightly higher temperature 50 °C was preferred. Therefore, after the above comprehensive evaluation on the reaction conditions, the reaction conditions by using THF as solvent and 2.0 equivalents of acetyl chloride were chosen as the optimized parameters for this reaction.

As shown in Table 2, to explore its generality, a variety of representative secondary phosphine oxides (SPOs) were used as

**Table 2.** Ready conversion of secondary phosphine oxides by acetylchloride to chlorophosphines. $^{a}$ 



dissolved in 2.0 mL 1HF, and then MeC(O)CI (2.0 mmo1) was added to the solution. The mixture was stirred at room temperature overnight, and volatiles were removed under vacuum. Yields were based on 1 used.  $^{b}50$  °C.  $^{c}$  A diastereomeric pure (-)menthylphenylphosphine oxide R(p)-1e was used. 1 hour. 2e obtained as a 74/26 mixture of diastereomers (SI).  $^{d}0$ °C, 1 h.  $^{e}$ Treating 2f with  $^{n}$ BuMgCl and then H<sub>2</sub>O<sub>2</sub>.

the reagents for this transformation. Both aromatic and aliphatic SPOs were all readily reduced to the corresponding phosphine chlorides with excellent yields under similar reactions. For example, in addition to Ph<sub>2</sub>P(O)H 1a (Table 2, run 1), aromatic SPOs bearing an electron-denoting group (p-MeO-C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>P(O)H **1b** and an electron-withdrawing group  $(p-CF_3-C_6H_4)_2P(O)H$  **1c**, all were reduced to the corresponding phosphine chlorides in high yields (Table 2, runs 2-3). The conversion of an alkylarylphosphine oxide like Pht-BuP(O)H 1d also could proceed smoothly to produce the corresponding P-Cl products in a nearly quantitative yield (Table 2, run 4). Similarly, a chiral  $(R_{\rm P})$ -(-)menthylphenylphosphine oxide 1e could also efficiently produce the corresponding chlorophosphine 2e as a mixture of diastereomers (run 5) (SI ref. 10). Moreover, dioctyl phosphine oxide n-Oct<sub>2</sub>P(O)H also reacted with MeC(O)Cl quickly to give *n*-Oct<sub>2</sub>PCl (Table1, run 6). Since the high reactivity of *n*-Oct<sub>2</sub>PCl, the confirmation of its formation was carried out by quenching the reaction mixture using n-BuMgCl, following oxidation with hydrogen peroxide to produce the corresponding stable butyldioctylphosphine oxide 2f (66% isolated yield). However, diethyl phosphite (EtO)<sub>2</sub>P(O)H and ethyl phenylphosphinate Ph(EtO)P(O)H sluggishly reacted with AcCl even at a high temperature (120 °C).

Although treating  $Ph_2P(O)H$  with 2 equivalents of  $PCl_3$  and AcCl in THF all can lead to the formation of  $Ph_2PCl$  (Scheme 2), the reaction with AcCl is cleaner than that of  $PCl_3$  which is accompanied by the formation of a few phosphorus by-products. In addition, AcOH generated using AcCl, if necessary, can be easily pumped off from the chlorophosphines under vacuum to give highly pure chlorophosphines (Scheme 1 (2)).



Scheme 2. <sup>31</sup>P NMR spectroscopies of the reaction mixture of  $Ph_2P(O)H$  with  $PCl_3$  (A) and AcCl (B), respectively.

To further demonstrate the utility of the current reaction, as shown in Scheme 3, a gram-scale transformation of  $Ph_2P(O)H$  to  $Ph_2PCI$  was conducted by stirring 1.01 g  $Ph_2P(O)H$  with 2 equivalents of AcCl in 10 mL THF at room temperature overnight. After the reaction, volatiles were removed under a reduced pressure (100 Pa) to afforded spectroscopically pure  $Ph_2PCI$  in 95% yield.<sup>8</sup>



**Scheme 3.** Gram-scale preparation of Ph<sub>2</sub>PCl from Ph<sub>2</sub>P(O)H and AcCl.

#### Conclusions

In summary, we have developed a convenient method for the synthesis of chlorophosphines from secondary phosphine oxides and acetyl chloride under mild conditions. After the reaction, a simple removal of the volatiles under vacuum affords the target  $R_2PCl$  in spectroscopically pure form as confirmed by <sup>31</sup>P and <sup>1</sup>H NMR spectroscopies. Various secondary phosphine oxides, diarylphosphine oxides, alkyl(aryl)phosphine oxides and dialkylphosphine oxides, all could be used as the substrates, and were reduced readily to the corresponding phosphine chlorides in high yields.

#### Acknowledgments

L.-B.H. thanks a visiting professorship from Lanzhou University.

#### **Supplementary Material**

Supplementary data was associated with this article.

#### **References and notes**

- (a) Humbel, S.; Bertrand, C.; Darcel, C.; Bauduin, C.; Jugé, S. Inorg. 1 Chem. 2003, 42, 420-427; (b) Sprinz, J; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769-1772; (c) Clark, P. W. Org. Prep. Proced. Int. 1979, 11, 103-106; (d) Tomori, H.; Fox, J. M.; Buchwald, S. L. J. Org. Chem. 2000, 65, 5334-5341; (e) Hoshiya, N.; Buchwald, S. L. Adv. Synth. Catal. 2012, 354, 2031-2037; (f) Budnikova, Y.; Kargin, Y.; Nédélec, J. Y.; Périchon, J. J. Organomet. Chem. 1999, 575, 63-66; (g) Wu, W. Q.; Peng, Q.; Dong, D. X.; Hou, X. L.; Wu, Y. D. J. Am. Chem. Soc. 2008, 130, 9717-9725; (h) Wang, A. E.; Xie, J. H.; Wang, L. X.; Zhou, Q. L. Tetrahedron 2005, 61, 259-266; (i) Hillebrand, S.; Bruckmann, J.; Krüger, C.; Haenel, M. W. Tetrahedron Lett. 1995, 36, 75-78; (j) Bergbreiter, D. E.; Yang, Y. C. J. Org. Chem. 2010. 75, 873-878; (k) Russell, M. G.; Warren, S. Tetrahedron Lett. 1998, 39, 7995-7998; (1) Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem. Int. Ed. 2012, 51, 936-940; (m) Yip, John H. K.; Prabhavathy, J. Angew. Chem. Int. Ed. 2001, 40, 2159-2162; (n) Hessler, A.; Stelzer, O.; Dibowski, H.; Worm, K.;Schmidtchen, F. P. J. Org. Chem. 1997, 62, 2362-2369; (o) Hirata, G.; Satomura, H.; Kumagae, H.; Shimizu, A.; Onodera, G.; Kimura, M. Org. Lett. 2017, 19, 6148-6151.
- (a) Necas, M.; Novosad, J. Phosphorus Research Bull. 2001, 12, 73–76;
   (b) Prashanth, B.; Singh, S. J. Chem. Sci. 2001, 127, 315–325;
   (c) Broomfield, L. M.; Wu, Y.; Martin, E.; Shafir, A. Adv. Synth. Catal. 2015, 357, 3538–3548;
   (d) Aguirre, P. A.; Lagos, C. A.; Moya, S. A.; Zúñiga, C.; Vera-Oyarce, C.; Sola, E.; Bayón, J. C. Dalton Trans. 2007, 46, 5419–5426;
   (e) Broomfield, L. M.; Wu, Y.; Martin, E.; Shafir, A. Adv. Synth. Catal. 2015, 357, 3538–3548;
   (f) Saha, D.; Ghosh, R.; Sarkar, A. Tetrahedron 2013, 69, 3951–3960.
- (a) Otto, N.; Opatz, T. Beils. J. Org. Chem., 2012, 8, 1105–1111; (b) Khan, S. R.; Bhanage, B. M. Tetrahedron Lett. 2013, 54, 5998–6001; (c) Grünanger, C. U.; Breit, B. Angew. Chem. Int. Ed. 2008, 47, 7346–7349; (d) Ma, Y.; Chen, F.; Bao, J.; Wei, H., Shi; M.;Wang, F. Tetrahedron Lett. 2016, 57, 2465–2467.
- (a) Buchner, B.; Lockhart, L. B. Org. Synth. 1963, 88; (b) Weinberg, K.
   G. J. Org. Chem. 1975, 40, 3586–3589; (c) Miles, J. A.; Beeny, M. T.; Ratts, K. W. J. Org. Chem. 1975, 40, 343–347; (d) Buchner, B.; Lockhart Jr, L. B. J. Am. Chem. Soc. 1951, 73, 755–756; (e) Heinz, N. U.S. Patent 3078304, 1963; (f) Petrov, K. A.; Agafonov, S. V.; Pokatun, V. P.; Chizhov, V. M. Zh. Obshch. Khim, 1987, 57, 299–302.
- (a) Berlin, K. D.; Butler, G. B. Chem. Rev. 1960, 60, 243–260; (b) Emmick, T. L.; Letsinger, R. L. J. Am. Chem. Soc. 1968, 90, 3459–3465;

Journal Pre-proofs 250, //1-803; (d) Znang, J. Q.; Ye, J.; Huang, I.; Sninonara, H.; Fujino, H.: Han, L. B. Commun. Cham. 2010 in a COL 10 10000 (1010) H.; Han, L.-B. Commun. Chem. 2019 in press (DOI: 10.1038/s42004-019-0249-6 COMMSCHEM-19-0264-T).

6.

- Montgomery, R. E.; Quin, L. D. J. Org. Chem. 1965, 30, 2393–2395.
  (a) Tan, X.; Gao, S.; Zeng, W.; Xin, S.; Yin, Q.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 2024–2027; (b) Casalnuovo, A. L.; RajanBabu, T. V.; Ayers, T. A.; Warren, T. H. J. Am. Chem. Soc. 1994, 116, 9869–9882; (c) Liu, T.; Sun, X.; Wu, L. Adv. Synth. Catal. 2018, 360, 2005–2012; (d) 7. Stankevič, M. Org. Biomol. Chem. 2015, 13, 6082-6102; (e) Stankevič, M.; Włodarczyk, A.; Nieckarz, D. Eur. J. Org. Chem. 2013, 20, 4351-4371.
- A bulb to bulb distillation of the resulted pale yellow oil (160 8. °C, 160 Pa) gave pure Ph2PCl as a colorless oil in 70% yield (0.77 g, 3.50 mmol).