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ABSTRACT: Aminofutalosine synthase (MqnE) 
catalyzes an important rearrangement reaction in 
menaquinone biosynthesis by the futalosine pathway. In 
this letter, we report the identification of previously 
unreported  inhibitors of MqnE using a mechanism-
guided approach. The best inhibitor shows efficient 
inhibitory activity against H. pylori (IC50 = 1.8 ± 0.4 μM) 
and identifies MqnE as a promising target for antibiotic 
development. 

KEYWORDS: Radical SAM enzyme, MqnE, bi-
substrate inhibitor, Helicobacter pylori, antibiotic

Menaquinone is a lipid-soluble, redox-active cofactor 
involved in the transmembrane electron transport chain of 
the majority of microbes.1 Humans use menaquinone 
(Vitamin K) as an essential blood clotting vitamin,2-4 and 
acquire it from dietary sources and from its biosynthesis in 
the gut microbiome.5 Menaquinone biosynthesis is therefore 
an attractive target for antibiotic development6 and inhibitors 
against gram-positive organisms such as Mycobacterium 
tuberculosis and Staphylococcus aureus have been 
identified.7 The recent discovery of a new, futalosine-
dependent, menaquinone biosynthesis pathway has 
presented new opportunities for antibacterial development8-

9 because important human pathogens including 
Helicobacter pylori (causes gastric ulcers and cancer), 
Campylobacter jejuni (causes diarrhea), Chlamydia strains 
(cause urethritis and respiratory tract infections), 
Spirochetes (cause syphilis and Lyme disease) utilize this 
pathway.10 The absence of this pathway in humans and in 
most of the human gut bacteria potentially provides the 
required selectivity for targeting this pathway without 
affecting the commensal bacteria. Potent, transition-state 
analog inhibitors against the 5′-methylthioadenosine 
nucleosidase (MTAN) from H. pylori11-13 and C. jejuni14 
have been developed and long chain fatty acids and 
macrolides targeting the later steps of the pathway have been 

reported.15-19 The antibiotic potential of the other enzymes 
on the futalosine pathway, including the two radical SAM 
enzymes – MqnE and MqnC – has not been explored. In this 
letter, we report the identification of a mechanism-based 
inhibitor of MqnE and demonstrate its antibacterial activity 
against H. pylori and C. jejuni.

Figure 1: Mechanistic proposal for the MqnE-catalyzed 
conversion of 1 to 8.

MqnE is a radical SAM enzyme20-21 in the futalosine-
dependent menaquinone biosynthesis pathway that catalyzes 
a key C-C bond formation.22 We have previously reported 
mechanistic studies on this enzyme with successful trapping 
of the captodative radical 3 and the aryl radical anion 7 
(Figure 1).23-24 

Figure 2: Mechanistic proposal for the MqnE reaction with 
9.

High throughput screening for inhibitors of radical SAM 
enzymes is technically demanding because these enzymes 
are extremely oxygen sensitive and have low turnover. We 
therefore undertook a mechanism guided approach for the 
development of an inhibitor of MqnE. The captodative 
radical intermediate 3 is expected to be the most stable 
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radical intermediate in the conversion of 1 to 8. We therefore 
anticipated that a structural analog of this intermediate might 
act as a substrate or transition state mimic and form bi-
substrate inhibitor of MqnE. A bi-substrate inhibitor is a 
molecule that is chemically synthesized or enzymatically 
generated by covalent linking of two substrates of a bi-
substrate enzyme reaction and mimics the ternary enzyme 
substrate complex25. This inhibitor design strategy has been 
demonstrated to be effective in achieving enhanced potency 
and selectivity and has led to the development of FDA 
approved therapeutics such as finasteride, mupirocin and 
isoniazid25.

We hypothesized that replacing the bridging oxygen of the 
native substrate 1 with a methylene group (compound 9) 
would block the conversion of 11 to 13/14 due to the 
instability of a primary carbanion (or radical). This would 
allow the accumulation of 10 which after hydrogen atom 
abstraction would result in the formation of the shunt 
product 12 – a potential bi-substrate inhibitor (Figure 2).

The methylene analog 9 was synthesized as shown in 
Figure S126-27 and tested with the Thermus thermophilus 
ortholog of MqnE. HPLC analysis of the reaction mixture 
indicated the formation of one major product that was absent 
in the controls (Figure S2). This product had a molecular ion 
m/z of 456 Da consistent with the mass of the shunt product 
12 (Figure S3). This structure was confirmed using MS 
fragmentation and NMR analysis (Figure S4-S9). On 
running the reaction in 95% D2O buffer, this peak showed 
one deuterium incorporation implying that the abstracted 
proton in 12 originated from solvent or a solvent 
exchangeable protein residue (Figure S3).

The T. thermophilus MqnE enzyme catalyzed >25 
turnovers under our in vitro conditions with the native 
substrate (Figure S10). The MqnE reaction was slow with 
the methylene analog 9, providing a single turnover (Figure 
S10). Encouraged by this result, we used competitive 
inhibition experiments in which MqnE-[4Fe-4S]2+ was 
preincubated with variable concentrations of the methylene 
analog 9 in the presence of excess SAM and substrate 1. 
Reactions were then initiated by reducing the enzyme with 
Ti(III) citrate and the rate of aminofutalosine 8 formation 
was followed by a discontinuous HPLC analysis. The 
normalized relative initial reaction rates were plotted as a 
function of inhibitor concentration to generate a dose-
response curve and an IC50 value of 38.7 ± 3.4 μM was 
obtained. (Figure S11). Since this IC50 value was within 5-
fold of the enzyme concentration used, the dose-response 
curve data was fitted to the Morrison equation for tight-
binding inhibition28 which gave an inhibition constant Ki of 
3.1 ± 0.1 µM (Figure 3). Irreversible inhibition was 
eliminated by demonstrating full restoration of enzyme 
activity after the enzyme was preincubated with 9 for one 
hour, followed by removal of the inhibitor by gel filtration 
(Figure S12).

The bi-substrate analog 12 was enzymatically synthesized 
and also tested as a competitive inhibitor. This compound 

was a weaker inhibitor of MqnE with an IC50 value of 839 ± 
187 μM (Figure S13). This suggests that the enzyme 
undergoes a major conformational change after the 
formation of 10 resulting in reduced affinity of the enzyme 
for 12 and avoiding product inhibition by 8.

Figure 3: Inhibition kinetics with the methylene analog 9

The human pathogens H. pylori and C. jejuni were 
selected to test the antibiotic activity of the methylene analog 
9 and the bi-substrate analog 12. The effect of these 
inhibitors on C. jejuni and H. pylori growth was measured 
using the 96-well plate liquid culture method.29-31 As shown 
in Table 1, the IC50 for the methylene analog 9 and the bi-
substrate analog 12 on C. jejuni were 13.6 ± 1.5 µM and 83.3 
± 3.4 µM, respectively. Gentamicin was used as a control 
and had an IC50 value of 1.9 ± 0.2 µM (Table 1). The 
measured IC50 values for methylene analog 9 and bi-
substrate analog 12 on H. pylori were 1.8 ± 0.4 μM and 16.1 
± 3.9 μM, respectively. BTDIA, a transition state analog of 
the H. pylori MTAN (Figure S14),12 was tested as a control 
and displayed an IC50 of 0.012 ± 0.001 and 1.4 ± 0.3 M for 
H. pylori and C. jejuni,14 respectively (Table 1).

Table 1: IC50 values for the inhibitors tested against H. 
pylori and C. jejuni  

*Literature reported value32

Radical SAM enzymes are widespread in cofactor 
biosynthesis pathways.21 While these enzymes are 
reasonable targets for antibiotic development, technical 
difficulties working with highly oxygen sensitive low 
turnover enzymes has retarded the development of inhibitors 
against this family of enzymes. The methylene analog 9 is a 
potential lead compound as an antibiotic against H. pylori. It 
has comparable antibacterial activity to amoxicillin and 
clarithromycin, currently approved antibiotics in the 
treatment of H. pylori infections.33 In addition, this 
compound is resistant to acid hydrolysis making it a suitable 
lead compound for the development of an orally available 
antibiotic against an acidophile like H. pylori.
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H. pylori 16.1  3.9 1.8  0.4 0.26* 0.012  0.0001
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In summary, we have identified methylene analog 9 as an 
inhibitor of MqnE and have demonstrated its antibacterial 
activity against H. pylori (IC50 = 1.8 ± 0.4 μM). These 
studies set the stage for the future development of antibiotics 
against H. pylori with MqnE as the target.
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The procedures for the overexpression and purification of 
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