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An Exploding N-Isocyanide Reagent Formally Com-
posed of Anthracene, Dinitrogen and a Carbon Atom†

Maximilian Joost, Matthew Nava, Wesley J. Transue and Christopher C. Cummins∗

Targeted as an example of a compound composed of
a carbon atom together with two stable neutral leaving
groups, 7-isocyano-7-azadibenzonorbornadiene, CN2A
(1, A = C14H10 or anthracene) has been synthesized and
spectroscopically and structurally characterized. The
terminal C atom of 1 can be transferred: mesityl nitrile
oxide reacts with 1 to produce carbon monoxide, likely
via intermediacy of the N-isocyanate OCN2A. Reaction of
1 with [RuCl2(CO)(PCy3)2] leads to [RuCl2(CO)(1)(PCy3)2]
which decomposes unselectively: in the product mixture,
the carbide complex [RuCl2(C)(PCy3)2] was detected. Upon
heating in the solid state or in solution, 1 decomposes to A,
N2 and cyanogen (C2N2) as substantiated using molecular
beam mass spectrometry, IR and NMR spectroscopy tech-
niques.

Carbon atom transfer (CAT) remains a non-trivial synthetic
problem. CAT chemistry was observed and studied via electric
arc-generated C,1 and is likely commonly occurring in space,2 but
the lack of suitable CAT reagents has hindered the development
of such reactivity in solution chemistry. Notable exceptions exist:
Shevlin reported on the thermal decomposition of a tetrazolyl dia-
zonium salt, proposing C atom generation and unselective trans-
fer reactions to ethylene and ethylene oxide.3 Willis and Bayes
showed that upon irradiation carbon suboxide (C3O2) inserts in
the gas phase into ethylene, propylene and butenes with concomi-
tant CO loss to form the corresponding allenes.4 Hillhouse and
coworkers investigated the coordination chemistry of C3O2 in so-
lution, demonstrating the formal insertion of the central C atom
of C3O2 into a W-phosphine bond, leading to a phosphinocar-
byne complex.5 Heppert and coworkers developed a synthesis
of a ruthenium carbide complex via CAT from a methylenecy-
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Scheme 1 Synthesis of 1.

clopropane.6 Metal carbide complexes have also been obtained
through breakdown of carbon monoxide.7–10

In the present work we set out to synthesize a carbon source
which like carbon suboxide could potentially transfer a C atom
with release of a pair of stable, neutral leaving groups. Incorpora-
tion of a latent anthracene molecule (C14H10, A) which is readily
released upon heating has been shown to be a fruitful strategy
for mild thermal release of reactive fragments.11 Group transfer
reactions and small molecule release coupled with A formation
from 7-pnicta-dibenzonorbornadiene-scaffolds have been shown
to be especially efficient.12 For example, LiNA, ON2A and NCNA
were employed as N-mono-anion, O-atom and NCN-group trans-
fer reagents to transition metal centers, respectively.13 Herein we
present the design and synthesis of a new type of CAT reagent.

7-isocyano-7-azadibenzonorbornadiene CN2A (1) was chosen
as the synthetic target. Compound 1 is the isocyano bonding iso-
mer of NCNA and can be envisioned to fragment into A, dinitro-
gen and a C atom. The synthesis of 1 was achieved by formylation
of Carpino’s hydrazine H2N2A,12a followed by dehydration of the
resulting formohydrazide to yield the N-isocyanide (Scheme 1,
34% from H2N2A).†

Notable spectroscopic features that corroborate the formulated
structure of 1 are the IR- and Raman NC stretching vibration band
(IR: ν̃ = 2098 cm−1 for 1, ν̃ = 2060 cm−1 for 13CN2A, 1-13C;
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N2

N1

C1

Fig. 1 Molecular structure of 1 drawn with thermal ellipsoids at the 50%
probability level and with all H atoms omitted for clarity. Selected
distances [Å] and angles [◦]: N2-N1 1.381(3), N1-C1 1.164(3),
N2-N1-C1 173.3(2).

Raman: ν̃ = 2093 cm−1for 1) and the 13C NMR resonance corre-
sponding to the terminal carbon (δ = 135.5 ppm). These data are
typical of other known N-isocyanides.14 The metrical parameters
of the molecular structure of 1 obtained from an X-ray diffraction
analysis (Fig. 1) compare well with those reported for structurally
characterized N-isocyanides.15

CAT reactivity of 1 was studied: we targeted the release of car-
bon monoxide from 1 by its oxidation, as the expulsion of a CO
molecule should favor the transfer process. CO formation from
elemental, electric arc-generated carbon was previously investi-
gated by Skell and coworkers.1a Our group previously performed
an in-depth study of the oxidation of phosphines and carbenes
with mesityl nitrile oxide (MesCNO) showing that this compound
acts as an efficient and mild O-atom transfer agent.16 1 was thus
subjected to reaction with MesCNO in benzene solution at 25 ◦C
(Equation 1).17

MesCNO+1→MesCN+A+N2 +CO (1)

Monitoring the reaction for several hours by 1H NMR spec-
troscopy indicated the formation of A over time, together with
unidentified species. Gas evolution was observed and analysis
of the headspace gases by gas IR spectroscopy revealed the pres-
ence of CO. By employing 1-13C we confirmed the origin of C
in the produced CO in solution by its characteristic 13C NMR
resonance (δ (13C) = 184.5 ppm, benzene-d6), and in the gas
phase by a redshifted IR vibration band (12CO: ν̃ = 2132 cm−1,
13CO: ν̃ = 2101 cm−1).18 Quantification of CO gas by using
[RuCl(Cp∗)(PCy3)] (Cp∗ = C5Me5

−) as a chemical trap indicated
a yield of 27% for CO generation from 1.19 The precise path-
way for CO generation is unclear, but the oxidation of 1 likely in-
volves an intermediate N-isocyanate, as the reaction of the model
N-isocyanide iPr2N-NC with MesCNO yields a triazolidinone,20

stemming from the expected dimerization of the corresponding
isocyanate, i.e. iPr2N-NCO.†

Direct observation of OCN2A was not realized: monitoring the
reaction of MesCNO with 1 at low temperature (–60 ◦C to 25 ◦C)
in THF-d8 by 1H NMR spectroscopy indicated that formation of
A and MesCN started at 0 ◦C. No intermediate species was de-
tected, suggesting that the oxidation is the rate-determining step
and subsequent A, N2 and CO formation occurs rapidly. The inter-
mediacy of the N-isocyanate OCN2A upon oxidation of 1 is how-

ever further supported by a trapping experiment with tBuNH2 to
yield the corresponding mixed urea (Equation 2).

MesCNO+1+ tBuNH2→

MesCN+ tBuNHC(O)NHNA
(2)

Additional backing for transient OCN2A is given by oxidation of 1
with DMSO and catalytic trifluoroacetic anhydride, an established
method for the synthesis of isocyanates from isocyanides.21 Sub-
sequent mechanistic steps remain obscure: DFT computations
(B3LYP-D3BJ/Def2-TZVP) indicate that unimolecular, concerted
fragmentation of OCN2A on the singlet surface to CO, N2 and A is
linked to a high barrier (ca. 37 kcal·mol−1) which does not con-
form with the experimental ease of reaction at ambient temper-
ature.† The detection of the fleeting triplet OCN2 which readily
decomposes to CO and N2 was claimed,22 and this species may
be involved in a radical mechanism. A different potential route,
in analogy to the commonly observed N-isocyanate chemistry,20

is the occurrence of fast dimer formation and its subsequent col-
lapse to yield A, N2 and CO. Due to concurrent decomposition
pathways, performing a kinetic analysis on the reaction of 1 with
MesCNO proved unsuccessful.

Molecular terminal metal carbido complexes remain com-
paratively rare and their syntheses limited to only a few
routes.6,9,10,23–25 We reasoned that 1 bound to a transition
metal fragment might be a suitable precursor for accessing
carbido complexes by thermal loss of A and N2. We iden-
tified first a precursor complex to access the known car-
bido complex [RuCl2(C)(PCy3)2].6 To this end, 1 was treated
with [RuCl2(CO)(PCy3)2] in THF,26 leading to formation of
[RuCl2(1)(CO)(PCy3)2] (2). An X-ray diffraction analysis of crys-
tals grown from a chloroform/pentane solution of 2 revealed
the structure of this compound featuring an all-trans octahe-
dral arrangement (Figure 2). The NNC angle in 2 deviates by
ca. 15 ◦from the quasi-linear geometry found in 1. The ori-
gin of this effect is certainly the backbonding from Ru to C1,27

although concomitant rehybridization at N1 must be minimal
as the bond distances of the N-isocyanide group in 2 do not
change significantly compared to 1, i.e. the C1-N1 linkage re-
mains a triple bond. The Ru-C1 distance is slightly longer than in
the single structurally characterized Ru(II) N-isocyanide complex
[RuCl2(C6H2Me4)(CNNiPr2)] [2.035(2) Å vs. 1.947(7) Å].28

Heating a toluene solution of 2 to 100 ◦C for 3 h led to complete
disappearance of the 31P NMR signal corresponding to the start-
ing material and to the appearance of signals due to several new
species, among them the previously reported carbide complex
[RuCl2(C)(PCy3)2], as identified by its characteristic 13C NMR
resonance at δ = 473 ppm.6 Although this reaction was unse-
lective and low-yielding (ca. 15% by 31P NMR spectroscopy) due
to the harsh reaction conditions required to induce the carbide
complex formation, this route presents an initial demonstration
for the rational installation of a single C atom onto a transition
metal complex using 1.

The thermal stability of 1 and the potential release of A and
CN2 or fragments thereof was studied by thermogravimetric anal-
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Fig. 2 Molecular structure of 2 with thermal ellipsoids drawn at the 50%
probability level and with all H atoms and solvent molecules of
crystallization omitted for clarity. Selected distances [Å] and angles [◦]:
Ru1-C2 1.933(3), Ru1-C1 2.035(2), Ru1-P1 2.4221(5), Ru1-Cl1
2.4236(6), Ru1-Cl2 2.4339(6), Ru1-P2 2.4464(5), C2-O1 1.089(3),
C1-N1 1.160(3), N1-N2 1.385(2), C1-N1-N2 158.6(2), C2-Ru1-C1
174.85(10), Cl1-Ru1-Cl2 176.16(2), P1-Ru1-P2 175.45(2).

ysis (TGA). A rapid, very significant mass loss, suggestive of
explosive behavior of the compound, was observed at around
80 ◦C.† Following this process visually by heating a sample of
1 (5 mg) to 80 to 120 ◦C under air, under N2 or under vacuum
in a transparent flask indeed resulted in observation of a mild
blast, rocketing solid material through the entire volume of the
container. Although energetic materials containing only C, H and
N are not uncommon,29 the decomposition behavior of 1, despite
its low N content (12.7%) is remarkable. While we experienced
no hazards in the course of working with compound 1 (at least
up to a scale of 500 mg), and it did not exhibit shock-sensitivity,
we recommend the exercise of due caution if working with this
heat-sensitive explosive reagent. The remaining recovered solid
residue was shown by NMR spectroscopic means to be predomi-
nantly composed of A next to minor unidentified species (C,H,N-
microanalysis revealed that the residue contained about 4.6% of
N). By measuring the pressure increase upon decomposition in a
closed vessel, the amount of released gases per mole of employed
1 was determined to be 0.61 mol.†

Molecular beam mass spectrometry (MBMS) allowed for the
identification of the evolved, volatile compounds during the ther-
mal decomposition of 1. In line with the TGA, copious amounts of
gases were detected upon heating 1 in the MBMS source vacuum
chamber (to ca. 110 ◦C). These gases were primarily composed
of cyanogen (NC–CN) or an isomer of identical mass, and dini-
trogen.† No evidence for formation of CN2 or any C allotrope was
found. This result is in line with gas-phase free energy of forma-
tion calculations using a modified ccCA procedure,30 predicting
that fragmentation of 1 into either CN2 and A (Equation 3) or C,
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Fig. 3 a) Molecular beam mass spectrometry (MBMS) of 1-15N: ion
count of 14N15N as a function of temperature; b) Scheme depicting the
observed major products with their isotope distributions upon thermal
decomposition of 1-15N. c) Integrated mass spectrum of the evolved
gases from 1-15N during thermolysis.

N2 and A (Equation 4) are endergonic processes.†

1→ A+CN2 (∆Gg,298.15K = 22.57 kcal ·mol−1) (3)

1→ A+C+N2 (∆Gg,298.15K = 42.39 kcal ·mol−1) (4)

The formation of NC–CN was confirmed by heating a sample of 1
in a gas IR cell and subsequent detection in the IR spectrum on the
basis of its diagnostic vibrations (ν̃ = 2662, 2562, 2158 cm−1)
and hence excluding isocyanogen as the ultimate product, al-
though it may be involved, like thermally unstable diisocyanogen,
as an intermediate species.31 Like the primary explosive mercury
fulminate, N-isocyanide 1 is a rare example of a compound able
to detonate with evolution of cyanogen gas.32

In order to gain insight into the mechanism of NC–CN forma-
tion, we conducted the MBMS analysis employing 1 with a 13C-
labeled isonitrile (13CN2A, 1-13C), and featuring a 15N-labeled
bridge (C14N15NA, 1-15N). Unsurprisingly, the source of carbon
of formed cyanogen was the terminal isocyanide carbon. Though
rather unexpected was that the evolved gas mixture from 1-15N
contained almost exclusively 14N,15N cyanogen and 14N,15N dini-
trogen (Figure 3).

This finding eliminates several mechanistic scenarios for the
formation of cyanogen such as homolytic N–N bond cleavage and
subsequent recombination of cyano-radicals or a rearrangement
involving two molecules of 1 via a cyclic intermediate or tran-
sition state to account for the observed products. The precise
pathway for 14N,15N cyanogen and 14N,15N dinitrogen formation
demands cleavage of a C≡N bond of 1, but remains otherwise

Journal Name, [year], [vol.], 1–4 | 3
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speculative. An intuitive pathway involves fragmentation of 1 to
A and CN2. CAT from 1 to CN2 and subsequent rearrangement to
cyanogen may account for the observed isotopic distribution.

The decomposition of 1 was studied as well in solution: Heat-
ing a solution of 1 in benzene-d6 to 70 ◦C over ca. 3 h led to
complete disappearance of the starting material. Kinetic anal-
ysis by 1H NMR spectroscopy indicated that the decomposition
occurs via a bimolecular mechanism, as a second-order depen-
dence on the concentration of 1 was found. No intermediate was
observed. 1H and 13C NMR analysis of the products revealed for-
mation of minor amounts of unidentified species, together with A
and cyanogen (δ (13C) = 95.2 ppm) as the major products.33

In conclusion, synthesis and reactivity studies of N-isocyanide
1 allowed establishment of a proof of concept for the transfer of
a lone carbon atom. Thermal decomposition of 1 led to cyanogen
formation.

This material is based on research supported by the National
Science Foundation under CHE-1362118. M.J. thanks the Alexan-
der von Humboldt foundation for a Feodor Lynen postdoctoral
fellowship.
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An anthracene-based N-isocyanide was synthesized and its reactivity studied. This 
sensitive compound was structurally characterized as a free species and as a ligand
in a ruthenium complex, and underwent C-atom transfer upon treatment with an O-atom
donor to evolve CO.
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