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ABSTRACT: Herein, we report the synthesis of protected 1,2-amino alcohols starting from carbonyl compounds (mostly 
aldehydes) and α-silyl amines. The reaction is enabled by a Cr/photoredox dual catalytic system that allows the in situ generation of 
α-amino carbanion equivalents which act as nucleophiles. The unique nature of this reaction was demonstrated through the 
aminoalkylation of ketones and an acyl silane, classes of electrophiles that were previously unreactive towards addition of alkyl–Cr 
reagents. Overall this reaction broadens the scope of Cr-mediated carbonyl alkylations and discloses an underexplored retrosynthetic 
strategy for the synthesis of 1,2-amino alcohols. 

The 1,2-amino alcohol unit is an important motif in 
various natural products, medicinally active compounds 
and privileged ligands. More than 300,000 compounds 
containing this unit are known, including >2,000 natural 
products, >80 FDA approved drugs and >100 drug 
candidates.1 The formation of these structures has 
therefore received widespread attention from the synthetic 
organic chemistry community.2 Classically, 1,2-amino 
alcohols are prepared via nucleophilic ring-opening of 
epoxides with amines.3 Epoxides are nevertheless highly 
reactive and often difficult to prepare, resulting in 
drawbacks concerning selectivity and (late-stage) 
applicability of this approach. Alternatively, a 
retrosynthetic cut of the connecting C(sp3)–C(sp3) bond can 
also be envisaged, making use of a cornerstone of organic 
synthesis, the addition of carbanion equivalents to 
carbonyls.4 This approach is still underexplored, since it 
involves α-amino carbanions that are challenging to access 
because of the destabilizing interaction between the N lone 
pair and the carbanion.5,6 The most general protocol to form 
these species relies on the transmetalation of the 
corresponding Sn compounds with Li organyls.5c This 
approach, however, has major disadvantages concerning 
the toxicity of the Sn-containing starting materials and 
byproducts, atom-economy and functional group tolerance 
due to the high reactivity of the Li organyls. 

Compared to their Li analogs, Cr organyls have distinct 
advantages as nucleophiles in carbonyl functionalization. 
Most importantly, Cr-mediated additions have an 
unparalleled functional group tolerance in both reaction 
partners.7 In line with this, these reactions are highly 
chemoselective for aldehydes and tolerate other 
electrophilic functional groups such as ketones, esters or 
nitriles. It is therefore no surprise that the addition of in 
situ formed Cr organyls to carbonyls emerged as a 
valuable tool in total syntheses8, which is now known as 
the Nozaki-Hiyama-Kishi (NHK) reaction.9 Although 
various Cr organyls can be formed using classical NHK 
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Figure 1. (a) 1,2-Amino alcohols: Retrosynthetic analysis 
and representative examples. (b) α-Amino carbanions as 
underexplored intermediates. (c) This work: Silyl 
aminoalkylation of carbonyls for the synthesis of protected 
1,2-amino alcohols.
conditions, i.e. the Ni catalyzed reductive metalation of 
organic halides with CrII species, alkyl–Cr reagents have 
remained an exception. This inspired Takai10a and recently 
Shenvi10b and Baran10c to develop elegant methods for 
accessing alkyl–Cr reagents that allowed the 
chemoselective alkylation of aldehydes with alkyl halides, 
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alkenes or activated carboxylic acids, respectively. The key 
to success was a Cr/Co dual catalytic system in Takai’s and 
Shenvi’s protocols, while Baran’s protocol makes use of 
standard NHK conditions to generate the alkyl–Cr 

compounds. Although these protocols expanded the scope 
of Cr-mediated carbonyl functionalizations significantly, the 
need for (super-)stoichiometric quantities of Cr salts is a 
drawback. Importantly, α-aminoalkyl–Cr species cannot be 
accessed using either of these protocols.11a

With this in mind, we sought to develop a catalytic 
protocol to generate α-aminoalkyl–Cr reagents11b, thereby 
establishing a simple and mild alternative to the 
nucleophilic ring-opening of epoxides to access 1,2-amino 
alcohols. Recently, our group12a and Kanai 12b independently 
developed Cr/photoredox13 dual catalytic systems that 
enabled allylations of aldehydes, similar to the NHK 
reaction. We expected that these dual catalytic systems 
would be perfectly suited for the generation of α-
aminoalkyl–Cr species. We initially chose to use α-silyl 
amines as the α-aminoalkyl–Cr precursor for our studies, 
since these do not exhibit regioselectivity issues in the 
radical generation step and are readily prepared in a single 
step.14

To test our proposal, we reacted aldehyde 1a (1.0 equiv)  
with α-silyl amine 2a (2.0 equiv) in the presence of catalytic 
amounts of the organic dye 4CzIPN and CrCl2 under visible 
light-mediated photocatalytic conditions. Pleasingly, after 
only 2 h reaction time, we obtained the silyl-protected 1,2-
amino alcohol product 3a in various polar-aprotic solvents 
(81% yield in DMA, Table 1, Entry 1, for further details, see 
the Supporting Information). Ir-based photocatalysts such 
as [Ir(ppy)2(dtbbpy)][PF6] (Ir-1) and 
[Ir(dF(CF3)ppy)2(dtbbpy)][PF6] (Ir-2) performed slightly 
better and improved the yield to 91% (Table 1, Entries 2,3). 
Bench-stable CrCl3 could also be employed as the catalyst 
instead of air-sensitive CrCl2, which greatly improves the 
practicality of our protocol (99% yield, Table 1, Entry 4). 
The reaction can also be conducted using equimolar 
quantities of the starting materials (Table 1, Entry 5), 
although we consistently observed higher yields when the 
α-silyl amine was used in excess. Control experiments 
verified that the photocatalyst, CrCl3 and light are essential 
for the reaction and no product was formed in absence of 
any one of these (Table 1, Entries 6–8). Noteworthy, this 
reaction proceeds catalytically, with perfect atom-
economy15 and without the need for additives. 
Furthermore, we investigated the sensitivity of our 1,2-
amino alcohol synthesis towards operational variations in 
reaction conditions in order to improve the reproducibility 
(Figure 2).16 The reaction is highly sensitive to moisture, but 
other parameters (light intensity, temperature, 
concentration, scale) only have a minor influence on the 
reaction yield.

Having established optimal reaction conditions, we then 
turned our attention towards the substrate scope of this 
aminoalkylation protocol (Table 2). First, we explored the 
scope regarding the amine moiety. Apart from morpholine 
(3a), other important N-heterocycles17 such as 
thiomorpholine (3b), piperidine (3c) and various 
piperazines (3d–3f) were well tolerated. In all cases the 

Table 1. Optimization of the 1,2-amino alcohol synthesis. 

photocatalyst (2 mol%)
Cr source (10 mol%)

DMA (0.20 M), rt, 2 h
blue LEDs (30 W, max = 450 nm)
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Ph
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Ph H

O

NTMS
O

2a (1.0–2.0 equiv)1a (0.10 mmol)

N

N
N

N

CF3

F

F

F

F
CF3
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t-Bu

t-Bu

N

N
N

N

Ir

t-Bu

t-Bu

CN
N
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N
NN

[Ir(dF(CF3)ppy)2(dtbbpy)][PF6] (Ir-2)[Ir(ppy)2(dtbbpy)][PF6] (Ir-1)4CzIPN

[PF6][PF6]

Entry Photocatalyst Cr source 1a/2a Yield

1 4CzIPN CrCl2 1.0/2.0 81%
2 Ir-1 CrCl2 1.0/2.0 86%
3 Ir-2 CrCl2 1.0/2.0 91%
4 Ir-2 CrCl3 1.0/2.0 99%
5 Ir-2 CrCl3 1.0/1.0 95%
6 – CrCl3 1.0/2.0 0%
7 Ir-2 – 1.0/2.0 0%
8a Ir-2 CrCl3 1.0/2.0 0%

Performed on 0.10 mmol scale. Yields were determined by 
GC-FID analysis using mesitylene as internal standard. aIn 
the absence of light. DMA = dimethylacetamide. Ph = phenyl. 
rt = room temperature. TMS = trimethylsilyl. t-Bu = tert-
butyl.
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Figure 2. Sensitivity assessment of the 1,2-amino alcohol 
synthesis. c = concentration. T = temperature. I = light 
intensity.

products were obtained in good to excellent yields, although 
we observed partial decomposition of product 3c during 
isolation (54% isolated yield, 84% NMR yield). Notably, 
other amine moieties or Lewis-basic heteroarenes, both 
common motifs in natural products and drugs,17 did not 
affect the outcome of the reaction. Substituted piperidines 
(3g, 3h) as well as other ring sizes (3i) could also be 
employed without any erosion in yield. The reaction was 
also suitable for functionalization of acyclic amines (3j–3l) 
with different steric properties, including benzyl 
substituents (3l, 3m) that can be easily removed from the 
products (see the Supporting Information for details, 
product S6 and S7) and thus allow the generation of 
primary and secondary 
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Table 2. Scope of the 1,2-amino alcohol synthesis via Cr/photoredox dual catalysis.
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N
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[access to 1° and 2° amines]

robustness screen

TMSO

Me
N

O

3ad (R1 = i-Bu, R2 = i-Bu), 41%b,d
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N

O

R1
R2

3ac, 56%b,d 3aj, 81%b

S
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N

O

3ap, 59%b

TMSO
N

O

Me
Me

Me

TMSO
N

O

Ph
TMS

3ar, 65%b,d

>95/5 dr [from acyl silane]

3ak, 75%b,d

TMSO
N

O

F

F

3al, 79%b,d

TMSO
N

O

O

O
3ao, 86%b,d

TMSO
N

O

Me

3am (R = Ph), 73%b,d, >95/5 dr
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N

O

R

3an (R = t-Bu), 85%b,d, >95/5 dr >95/5 dr

TMSO
N

O

3af, 70%d,e

TMSO
N

X

n

3ag (n = 1, X = NBoc), 36%b,d

3ah (n = 3, X = O), 58%b,d

3ai (n = 5, X = O), 46%b,d

TMSO
N

O

3aq, 49%b,d

3ae (R1 = Cy, R2 = Me), 44%b,d

Standard reaction conditions: 1 (0.20 mmol, 1.0 equiv), 2 (2.0 equiv), [Ir(dF(CF3)ppy)2(dtbbpy)][PF6] (2.0 mol%), CrCl3 (10 
mol%), DMA (0.20 M), rt, 2 h. Diastereomeric ratios were determined by GC-MS analysis of the crude reaction mixture. See 
the Supporting Information for full experimental details. aNMR yield using CH2Br2 as an internal standard. b16 h reaction time. 
c5 h reaction time. d2 (3.0 equiv). e40 h reaction time. Boc = tert-butyloxycarbonyl. Bn = benzyl. Cy = cyclohexyl. DMA = 
dimethylacetamide. DMPS = dimethylphenylsilyl. i-Bu = iso-butyl. i-Pr = iso-propyl. Me = methyl. n-Bu = n-butyl. Ph = phenyl, 
rt = room temperature. TBS = tert-butyldimethylsilyl. TMS = trimethylsilyl. t-Bu = tert-butyl.
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amines as well as subsequent functionalization of the amine 
moiety. Furthermore, a complex Fluoxetine (Prozac®) 
derivative (3n) was observed to be reactive under the 
conditions, showing potential application of this 
methodology in late-stage functionalizations. One limitation 
of this method is currently the use of secondary α-
aminoalkyl–Cr reagents. For these substrates we did not 
observe any product formation, consistent with previous 
reports of Takai and Baran, in which secondary alkyl–Cr 

species did not show reactivity towards carbonyl 
addition.10a,10c 

Next, we investigated the scope of the carbonyl coupling 
partner. Primary (3o, 3p), secondary (3q, 3r) and even 
tertiary (3s) aldehydes can be employed, although the 
reaction time had to be increased for sterically hindered 
substrates (e.g. 5 h reaction time for substrate 3s). In 
classical Cr-mediated alkylations, tertiary aldehydes are 

Mechanistic Analysis

a) Solely Photoredox Catalysis

b) Radical Chain Mechanism
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 quantum yield inconsistent with solely photoredox catalysis: Φ = 12.5 indicates chain mechanism
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Figure 3. Mechanistic studies. (a) Determination of the 
reaction quantum yield. (b) Comparison of redox potentials to 
exclude a radical-chain mechanism. (c) Proposed σ-bond 
metathesis pathway. DMF = dimethylformamide. Ph = phenyl. 
SET = single electron transfer. TMS = trimethylsilyl.

sluggish substrates, underlining the unique nature of our 
reaction.18 For aromatic aldehydes, diminished yields were 
observed compared to aliphatic substrates (3t–3v) and the 
pinacol coupling product was obtained as the major 
byproduct, presumely caused by radical-radical coupling 
after reduction by the photocatalyst.19 Pleasingly, the 
reaction also tolerated a variety of functional groups, which 
all provide a handle for subsequent functionalization. 
Protected (3d, 3w) and tertiary amines (3e, 3f), (thio-
)ethers (3a, 3b, 3m, 3x), alkenes (3y), acetals (3z, 3ab) and 
(hetero-)aryl halides (3f, 3u) can all be employed under this 
protocol. As expected for alkyl–Cr intermediates, this 
reaction is chemoselective for aldehyde functionalization.7–

9 In the presence of a ketone moiety, we exclusively 
observed functionalization at the aldehyde group and no 
difunctionalization (3aa). Interestingly, when a 
glyerinaldehyde derivative was employed in the reaction, 
the anti-product 3ab was obtained selectively, consistent 
with a Felkin-Anh-addition of the α-aminoalkyl–Cr species 
to the aldehyde.20

To our great surprise, our protocol could also be used for 
the alkylation of ketones. This is especially noteworthy, as 

it was previously shown that alkyl–CrIII species do not react 
with carbonyl electrophiles other than aldehydes, further 
distinguishing our catalytic system from classical Cr-
mediated approaches.21 Acyclic (3ac–3af) and cyclic (3ag–
3ar) ketones containing functional groups such as 
thioethers (3ah), difluoromethylene groups (3ai) or 
spirocyclic acetals (3aj) were all compatible with this 
reaction. Additionally, for unsymmetrical cyclohexanones 
we observed selective formation of one diastereomer 
(3am–3ap), independent of the position of the substituent. 
Steric hindrance did not affect the outcome of the reaction 
(3ap) and also in this case, the product was obtained as a 
single diastereomer. Astonished about the high reactivity of 
our catalytic system, we evaluated other electrophiles in 
this aminoalkylation. Acyl silanes22 were also observed to 
be reactive under the optimized conditions and yielded the 
1,2-amino alcohol 3ar in 65% yield. 3ar contains the 
synthon of a Brook rearrangement and thus enables further 
elaboration of the product. The outstanding functional 
group tolerance as well as an additive-based robustness 
screen23 (Table 2; see the Supporting Information for 
details) clearly highlight the advantages of our methodology 
and the unmatched mildness of Cr organyls for carbonyl 
functionalizations. 

Finally, insight into the mechanism was gained by 
performing various experiments (see the Supporting 
Information for details). Stern-Volmer luminescence 
quenching studies revealed that both starting materials and 
the product quench the excited state photocatalyst, but the 
quenching constant of the α-silyl amine substrate is around 
fifty times larger. These results would be consistent with a 
reductive quenching pathway of the photocatalyst by the α- 
silyl amine, similar to our previous studies and various 
other metalaphotoredox protocols.12,13 The quantum yield 
of this protocol, however, was determined to be 12.5, 
inconsistent with a solely photoredox mechanism and 
implying a chain mechanism (Figure 3a).24 Considering the 
redox potentials of the different species involved, a radical 
chain mechanism is unlikely, since the α-silyl amine 2 
((E1/2(2∙+/2) = 0.4 – 0.8 V vs SCE in MeCN)14g,25a would have 
to reduce a LnCrIII species (E1/2(CrIII/CrII) = −0.51 V vs SCE in 
DMF)25b, thermodynamically a highly unfavorable step 
(Figure 3b). The reaction should therefore primarily 
proceed according to another mechanism that is 
independent of redox-steps. One possible explanation 
involves σ-bond metathesis between a putative Cr-alkoxide 
II and either a TMS-amine adduct III or the α-silyl amine 2 
(Figure 3c).26 In the first case, the σ-bond metathesis would 
generate a Cr-amine species IV, which could regenerate the 
catalytically active α-aminoalkyl–Cr species I after loss of 
TMS+. In the second case, the σ-bond metathesis would 
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5

generate the α-aminoalkyl–Cr species I directly. These 
mechanisms proceed exclusively via LnCrIII intermediates 
and are consistent with the experimental data, but are 
speculative at this point. Further studies on the elucidation 
the mechanism of this aminoalkylation protocol are 
ongoing.

In conclusion, we have disclosed a mild and 
chemoselective silyl aminoalkylation of carbonyls for the 
synthesis of protected 1,2-amino alcohols. The reaction is 
enabled by a Cr/photoredox dual catalytic system, which 
allows the in situ generation of α-aminoalkyl-Cr reagents 
that react as carbanion equivalents. This methodology 
represents a catalytic and atom-economic alternative to 
traditional 1,2-amino alcohol preparations and enables a 
different retrosynthetic strategy, e.g. when the 
corresponding epoxides are not easily accessible. The 
reactions is chemoselective for aldehydes and can be used 
with complex structures in both coupling partners. The 
unique nature of our dual catalytic system was 
demonstrated by the functionalization of ketones and acyl 
silanes, classes of electrophiles that were previously shown 
not to react with alkyl–CrIII reagents. More broadly, 
considering the ubiquity of amines, we believe further 
developments in the generation of α-amino carbanion 
equivalents will enable alternative syntheses of important 
building blocks and thus allow unusual retrosynthetic 
strategies.
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