

Tetrahedron 55 (1999) 9933-9946

TETRAHEDRON

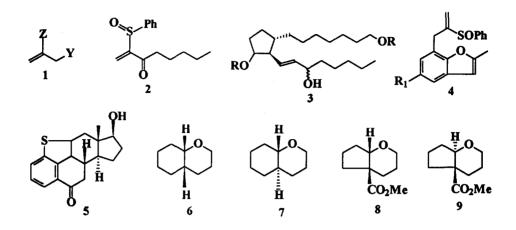
The Stereospecific Synthesis of *cis* and *trans* 1-Oxabicyclo[4,4,0]decanes and 9-Methoxycarbonyl-1-oxabicyclo[4,3,0]nonanes

D. Neville Jones^a, M. Akram Khan^{*,a,b} and Sohail M. Mirza^{a,c}

a-Department of Chemistry. The University of Sheffield, Sheffield S3 7HF, UK

b-current address: Division of Chemistry, Sheffield Hallam University, Sheffield S1 1WB. UK. E-mail m.a.khan@shu.ac.uk

c-current address: Agro Research Computing, Novartis, Basel, Switzerland. E-mail sohail.mirza@cp.novartis.com

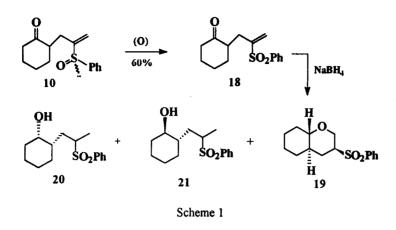

Received 15 April 1999; revised 26 May 1999; accepted 10 June 1999

Abstract: The allylic sulphoxides 1b and 1e reacted with 1-pyrrolidinylcyclohexene and 2ethoxycarbonyl cyclopentanone to yield the 2-substituted keto-sulphoxides 10 and 14 respectively, which on reduction followed by oxidation yielded in each case a mixture of *cis* and *trans* sulphones that were separated by column chromatography. Base induced cyclisation followed by reductive desulphurisation of the cyclised sulphones yielded the corresponding bicyclic compounds 6, 7, 8 and 9 in good yields. © 1999 Elsevier Science Ltd. All rights reserved.

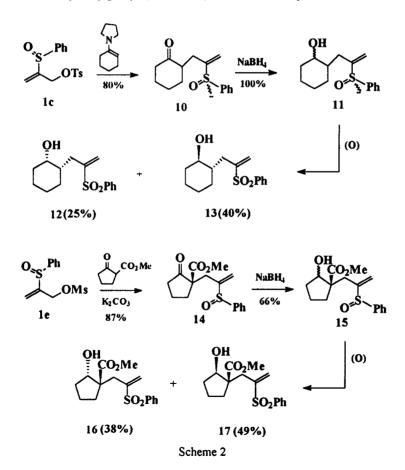
INTRODUCTION

Functionalised allylic organosulphur molecules of the type 1 (a. $Z = t-BuSO_2$, Y = Br;¹ b. Z = PhSO, Y = Br; c. Z = PhSO, Y = OTs,² d. Z = PHSO, Y = OPh)³ and 2⁴ are versatile reagents that have cosiderable potential in organic synthesis. We have used these alkenyl organosulphur reagents to construct prostanoids 3⁴ benzofurans 4³, and steroids 5⁵. We now wish to report a new stereospecific approach to the synthesis of the oxybicyclic systems *cis* 6, *trans* 7, *cis* 8 and *trans* 9 using the allylic sulphoxides 1c and 1e (Z = PhSO, Y = OMs).

The 1-oxadecalins have been obtained by a variety of methods such as the cycloaddition reaction of 2-alkylidenecyclohexanone derivatives with vinyl ethers⁶, intramolecular condensation reactions of 2-alkynylcyclohexanones⁷, cyclisation of 2-(3-hydroxypropyl)cyclohexanols^{8,9} and by the catalytic hydrogenation of chromans¹⁰ and coumarins^{11,12} as a mixture of the two isomers 6 and 7 which have then been separated. Oxidation of 3-cyclohexylpropanol with lead tetraacetate has been reported to yield, amongst other products, a mixture of *cis* and *trans* 1-oxadecalins¹³.

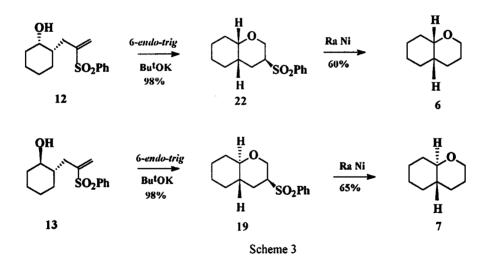


Compounds 8 and 9 are unprecedented in the literature. Our general and stereospecific approach to the synthesis of these bicyclic molecules 6, 7, 8 and 9 is based on the readily obtainable starting materials 1-pyrrolidinylcyclohexene, 2-ethoxycarbonylcyclopentanone and the synthons 1c and 1e

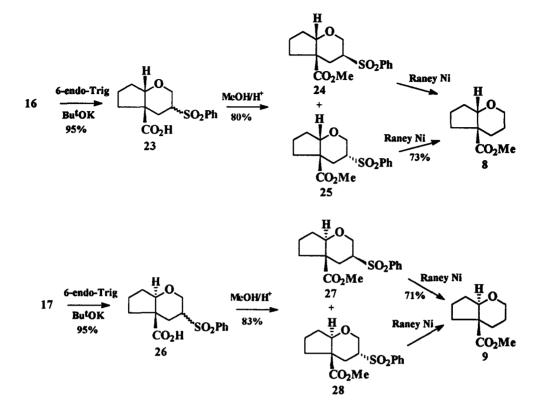

RESULTS AND DISCUSSION

The tosylate 1c and the mesylate 1e were readily prepared in two steps from prop-2-yn-1-ol. The tosylate 1c alkylated 1-pyrrolidinylcyclohexene in DCM to yield the ketone 10 in 50% purified yield. Similarly the adduct 14 was obtained as an inseparable mixture of diastereomers at sulphur in 87% purified yield by the alkylation of 2-ethoxycarbonylcyclopentanone with the mesylate 1e in THF containing K_2CO_3 . Our initial intention was to oxidise the alkenyl keto-sulphoxide 10 to the corresponding alkenyl keto-sulphone 18 and to reduce the latter compound to the epimeric hydroxy sulphones 12 and 13. However, the sulphone 18 obtained by oxidation of the alkenyl keto-sulphoxide 10 with peroxydodecanoic acid, on reduction (NaBH₄ / ⁱPrOH) did not give the anticipated products 12 and 13 but istead yielded a mixture of chromatographically very similar products, which after separation by careful chromatography, were shown to be compounds 19 (6%), 20 and 21 (69% combined yield) (Scheme 1).

The derivatives *cis* 20 and *trans* 21 which resulted from the conjugate addition of hydride ions to the olefinic bonds of the initially formed products 12 and 13 were shown by proton nmr to lack olefinic protons. We decided, therefore, to reverse the order in which we operated on the keto group and sulphoxide group, that is to reduce the ketone 10 to the alcohols 11, then to oxidise the sulphoxide to the sulphones 12 and 13. Thus reduction of the keto-sulphoxide 10 proceeded without conjugate reduction of the double bond to yield the expected racemic mixture of hydroxy alkenyl sulphoxides 11 (69% combined yield). Oxidation of 11 afforded the two sulphones 12 and 13(92% combined yield) as a mixture which was separated by column chromatography into 12 (25%) and 13 (40%). Analogously, reduction of 14 (NaBH₄ / ⁱPrOH) gave racemate 15 which on oxidation and separation yielded the sulphones 16 (38%) and 17

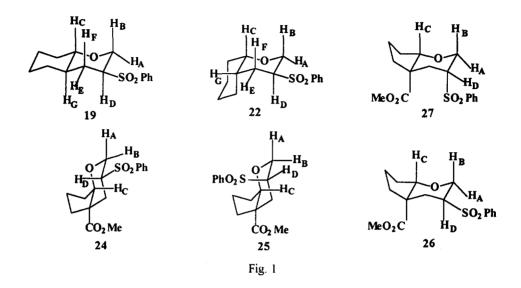


(49%) (Scheme 2). Evidently the reduction reactions of both precursors 10 and 14 were dominated by the sterically preferred formation of the *trans* products (*viz.* 13 and 17). The configuration of the hydroxy groups (*cis* or *trans*) relative to the alkyl substituent at C-2 followed



from the ¹H-NMR spectral characteristics of the geminal proton at C-1. Use was made of the criteria that axial protons resonate at higher field than equatorial protons and signals due to axial protons are significantly broader than those due to equatorial protons¹⁴. In assigning configuration in this way an assumption was made about the preferred conformation of the molecule. It was assumed that alkyl substituents at C-2 always adopted the equatorial orientation. This is most probably valid since the conformational preference of the hydroxy group (2.9 kJ mol⁻¹) is appreciably less than that of alkyl groups roughly comparable in size to that of the alkyl substituent at C-2 (*viz.* the conformational preference of the propyl group is 9 kJmol⁻¹). This criterion was also applied to five membered rings in which the substituents actually exist in pseudo-axial and pseudo-equatorial dispositions rather than pronounced axial and equatorial dispositions as in six membered rings.

The hydroxy sulphones 12, 13, 16 and 17 readily underwent cyclisation by the 6-endo-trig process¹⁶ to give the cyclic adducts 19, 22, 23 and 26 respectively in 95-98% yields. However, in the case of the sulphones 16 and 17 the ring closure reactions gave rise to the formation of carboxylic acids 23 and 26 as reaction products, presumably by transesterification of the intermediate methyl ester products to the t-butyl esters which on subsequent work-up hydrolysed to the corresponding acids 23 and 26. Esterification of the crude products 23 and 26 in acidic methanol afforded after chromatographic separation a pair of the bicyclic esters: *cis* 24 and 25 and *trans* 27 and 28 respectively (Schemes 3 and 4).



That the compound pairs *cis* (24 and 25) and *trans* (27 and 28) were stereoisomers at C-3 was established by proton nmr as well as by reductive desulphurisation, in which each pair of compounds yielded a single product (see later). Thus in the *cis* pair of compounds 24 and 25, the one in which the C-3 (H_D) proton resonated at δ 3.34 was assigned the configuration 24, whilst

Scheme 4

the one in which the C-3 (H_D) resonated at δ 3.46 was allocated the configuration 25. Moreover, the large coupling between (H_B) and (H_D) (J = 11 Hz) in the NMR spectrum of 24 was consistent with an antiperiplanar relationship between them and hence an axial orientation for (H_D) (Fig. 1). Likewise for the *trans* compounds 27 and 28, the proton (H_D) resonated high field at δ 3.33 in the NMR spectrum of 27 and the large coupling between (H_B) and (H_D) (J = 11Hz) was consistent with an anti-periplanar relationship between them and hence an axial orientation for (H_D). The bicyclic adduct in which the proton (H_D) resonated low field at δ 3.45 was assigned the structure 28. The proton assignments for (H_A), (H_B), (H_C), and (H_D) in all the compounds 22- 25, 27 and 28 (Fig. 1) were based on appropriate spin decoupling experiments. That the phenylsulphonyl group at C-3 had adopted the thermodynamically more favourable equatorial orientation in both cyclic adducts *cis* 22 and *trans* 19 was clear from their proton NMR spectra. Thus the NMR of 19 showed the proton (H_D) at C-3 as a triplet of triplets (J = 12 and 3.6 Hz) indicative of an axial relationship with each of the protons (H_B) and (H_F). The bridgehead proton (H_C) at C-9 appeared as a triplet of doublets indicating that it was axially orientated and coupled in an anti-periplanar relationship with the C-10 proton (H_G) and the axial proton at C-8 (J = 12 Hz) (Fig 1). Finally,

reductive desulphurisation (Raney Ni / ethanol) of the sulphones *cis* 22 and *trans* 19 yielded the corresponding parent 1-oxadecalins *cis* 6 (60% yield) and *trans* 7 (65% yield) respectively.

Similarly, desulphurisation of the two sulphones *cis* 24 and *cis* 25 afforded the *cis* heterocycle 8 (70% yield). Likewise the reductive removal of the phenylsulphonyl group from the precursors *trans* 27 and *trans* 28 provided the parent ester *trans* 9 (73% yield). The fact that both compounds 24 and 25 yielded one product and likewise both 27 and 28 yielded also one product proved that the stereochemistry in each of the compound in the pairs (24 and 25) and (27 and 28) differed at C-3 only, as was earlier confirmed from their proton NMR spectra. The proton NMR spectra of the 1-oxadecalins showed that the signals due to the proton at C-9 in the *cis* isomer 6 was narrower ($W_{1/2} = 8$ Hz) and at lower field (3.58 ppm) than that due to the C-9 proton in the *trans* isomer 7 (2.90 ppm, $W_{1/2} = 22$ Hz), which was indicative of its equatorial orientation (with respect to the cyclohexane ring) in the former and its axial orientation in the latter. No such dramatic changes in the chemical shifts of the bridgehead protons at C-8 were observed in the *cis* and *trans* 1-oxahydrindanes 8 and 9.

CONCLUSION

A general method for the stereoselective synthesis of the bicyclic systems *cis* and *trans* 1oxadecalins 6 and 7 and 9-methoxycarbonyl-1-oxahydrindanes 8 and 9 from readily obtainable and reactive organosulphur reagents 1c and 1e has been successfully demonstrated.

EXPERIMENTAL

General Methods. Mps are uncorrected and were determined on a Kofler hot stage micro melting point apparatus. Infrared spectra were measured on either a Pekin-Elmer model 137 or 157G or 457 double beam spectrophotometer as solutions in chloroform unless otherwise stated. ¹H-NMR spectra were recorded in CDCl₃ using either Perkin-Elmer R-34 (220 MHz) or Brucker 360 MHz or 400 MHz spectrometers. ¹³C-NMR spectra (¹H-coupled and decoupled) were recorded in CDCl₃ using a JEOL PFT-100 spectrometer. Chemical shifts (δ) are in ppm downfield from tetramethylsilane as internal standard, J values are given in Hz. Mass spectra were recorded with AEI M12 mass spectrometer. Analytical GLC was performed on Perkin-Elmer F11 instrument and preparative GLC was performed on Pye 105 with a FID detector and employing a glass column of 2.13m length and internal diameter (9.5mm) packed with 7% OV17 by weight on 60-80 mesh chromosorb G or W with N_2 as carrier gas. Column chromatography was performed using the short path technique with Whatman silica gel SOTLC without additives. Microanalyses were performed by the University of Sheffield microanalytical laboratory. All solvents were dried and distilled by standard techniques. All organic solutions were dried over anhydrous MgSO4 unless othrwise stated. Light petroleum refers to the fraction boiling in the range 40-60°C. All the 1-oxadecalin and 1-oxahydrindane derivatives were obtained as racemic modifications. For clarity the steroid convention α and β is used for the naming of 1-oxahydrindane derivatives to designate the orientation of the substituents and configuration at ring junctions.

2-Phenylsulphinyl-3-methanesulphonyloxyprop-1-ene (1e)

A solution of methanesulphonyl chloride (0.69 g, 0.47 mL, 6.02 mmol) in DCM (3 mL) was added dropwise over 10 min. to a stirred mixture of 2-phenylsulphinyl-3-hydroxyprop-1-ene² (1.0g, 5.50 mmol) and Et₃N (0.84 g, 1.15 mL, 8.28 mmol) in DCM (25 mL) at -15°C. After that the reaction mixture was allowed to warm to 0°C, diluted with DCM and washed with ice cold water, cold dilute HCl, saturated NaHCO₃ solution and brine respectively. The organic phase after drying over anhydrous Na₂SO₄ was evaporated to give an oil which was purified by column chromatography (ether) to afford pure compound 1e as a pale-brown oil (0.79g, 55%); v_{max} (neat)/cm⁻¹ 1351 and 1174 (OSO₂), 1041 (SO); $\delta_{\rm H}$ 2.85 (3H, s, OSO₂CH₃), 4.69 (2H, AB system, *J* 13, OCH₂), 6.68 (1H, s, HC=C, *treats* to SOPh), 6.33 (1H, s, HC=C, *cis* to SOPh), 7.48-7.57 (3H, m, Ph), 7.61-7.73 (2H, m, Ph); m/z 260 (M⁺); Found: C, 46.4; H, 4.85; S, 24.8. C₁₀H₁₂O₄S₂ requires C, 46.15; H, 4.6; S, 24.6 %.

Cis-(9SR),(10SR)-1-Oxabicyclo[4,4,0]decane (6)

To a solution of the cyclic adduct 22 (956 mg, 3.41 mmol) in EtOH (20 mL) was added Raney nickel (10 g) and the resultant mixture was stirred and refluxed under nitrogen for 9 h. The cooled reaction mixture was filtered through hyflo supercell at the pump and washed with more ethanol. The ethanol was removed by distillation using a 40 cm fractionating column leaving a colourless residue which still contained a little ethanol. Examination of the residue by TLC (petroleum ether: ether 12:1) revealed two visual products (R_f 0.74; 0.97). Analysis by GLC (6 Harflex) showed a major peak (t_R , 12 min, 60%) and two minor peaks (t_R , 16.5 min, 3%; t_R , 17.5 min, 2%). The compound (t_R , 12 min) was isolated by preparative GLC (7 Harflex, 60-190°C) as a colourless liquid and identified as the *cis* 1-oxadecalin 6; δ_H 1.11-1.98 (13H, m, aliphatic ring), 3.40-3.62 (2H, m, axial 2-H, 9-H), 4.02 (1H, m, equatorial 2-H); GCMS: m/z 140 (M⁺); Found

C, 77.35;H, 11.6. C₉H₁₆O requires C, 77.1; H, 11.4%.

Trans (9SR),(10SR)-1-Oxabicyclo[4,4,0]decane (7)

In a similar manner to above sulphone 19 (403 mg, 1.44 mmol) and Raney nickel (5 g) in EtOH (20 mL) after refluxing for 10 h gave a residue which on TLC (petroleum ether: ether 12:1) consisted of two visual spots (R_f 0.80, 0.98).GLC analysis (6 Harflex) showed a major peak (t_R 12 min, 65%) which was isolated by preparative GLC as a colourless liquid and identified as the *trans* 1-oxadecalin 7; δ_{H} 1.08-2.0 (13H, m, aliphatic ring), 2.82-2.98 (1H, broad m, 9-H), 3.45 (1H, td, J 2, 11, axial 2-H), 3.98 (1H, qd, J 11, 2, equatorial 2-H); GCMS: m/z 140 (M⁺); Found C, 77.35; H, 11.6. C₉H₁₆O requires C, 77.1; H, 11.4%.

9β-Methoxycarbonyl-8β-1-oxabicyclo[4,3,0]nonane (8)

In a similar manner to above the sulphone 24 or 25 (290 mg, 0.90 mmol) in ethanol (20 mL) containing Raney nickel (3 g) after an overnight reflux under argon yielded an oil which on purification by GLC (7' OV, 150°C) afforded ester 8 as a colourless oil (t_R 9.5 min, 120 mg, 73%); v_{max} (neat)/cm⁻¹ 1722 (CO); δ_{11} 1.34-2.20 (10H, m, aliphatic ring), 3.42 (1H, dt, J 11, 2, axial 2-H), 3.67 (3H, s, OMe), 3.87 (1H, m, equatorial 2-H), 4.10 (1H, d, J 3, 8-H); HRMS Found: M⁺, 184.1105 C₁₀H₁₆O₃ requires M⁺, 184.1099.

9β-Methoxycarbonyl-8α-1-oxabicyclo[4,3,0]nonane (9)

Similarly the sulphone 27 or 28 (320 mg, 0.99 mmol) in ethanol (20 mL) containing Raney nickel (4 g) after an overnight reflux under argon yielded an oil which was purified by GLC (7' OV, 150°C) to give ester 9 as a colourless oil (t_R 7.4 min, 129 mg, 71%); v_{max} (neat)/cm⁻¹ 1722 (C=O); δ_H 1.38-2.14 (10H, m, aliphatic ring), 3.38 (1H, dt, J 11, 2, axial 2-H), 3.66 (3H, s, OMe), 3.86 (1H, m, equatorial 2-H), 4.08 (1H, d, J 3, 8-H); HRMS Found: M⁺, 184.1110 C₁₀H₁₆O₃ requires M⁺, 184.1099.

2-(2'-Phenylsulphinylprop-2'-enyl)cyclohexanone (10)

To a stirred solution of 2-phenylsulphinyl-3-p-toluenesulphonyloxyprop-1-ene 1c² (20.28 g, 60.4 mmol) in dry DCM (150 mL) was added dropwise 1-pyrrolidinyl cyclohexene (9.10 g, 60.4 mmol). After the addition was complete and the exothermic reaction had subsided, stirring was continued for 1.75 h. The solvent was evaporated and to the residue was added MeOH (150 mL) and H₂O (10 mL) and refluxed on a steam bath for 3.5 h. After evaporation of MeOH the residue was neutralised with dil.HCl. Normal ether work-up gave crude product 10 as a dark brown oil (12.68g, 80%) which was purified by column chromatography using ether to afford pure product 10 as a light brown oil (7.90g, 50%); v_{max} (neat)/cm⁻¹ 1712 (CO), 1045, 1080 (SO); δ_{H} 1.10-2.42 (9H, m, aliphatic ring), 2.43-2.71 (2H, m, allylic CH₂), 5.63 (1H, d, J 4.8 , CH=C trans to SOPh), 6.11 (1H, s, CH=C cis to SOPh), 7.46-7.55 (3H, m, Ph), 7.58-7.68 (2H, m, Ph); m/z 263 (M⁺+1); Found: C, 68.4; H, 6.75; S, 12.4. C₁₅H₁₈O₂S requires C, 68.75; H, 6.9; S, 12.2 %.

Cis-(1RS)-1α-Hydroxy-2α- (2'-phenylsulphonylprop-2'-enyl)cyclohexane (12) and trans-(1RS)-1β-Hydroxy-2α-(2'-phenylsulphonylprop-2'-enyl)cyclohexane (13)

To a stirred solution of sulphoxide 10 (6.97 g, 26.6 mmol) in PrOH (280 mL) was added sodium borohydride (3.0 g, 79.8 mmol). After stirring overnight the solvent was removed on the rotary evaporator and to the residue was added water (5 mL) followed by the dropwise addition of 2M aq.HCl to destroy the excess sodium borohydride. After adding benzene, the residual mixture was refluxed under a Dean-Stark water separator until all the water had been transferred. The benzene solution was evaporated to yield a mixture of the hydroxy vinyl sulphoxides 11 as an oil (7.0 g, quantitative yield) which showed as three spots on TLC (ether, Rr 0.78, 0.46 and 0.37). To a well cooled and stirred solution of the crude mixture 11 (7.0 g, 26.6 mmol) in DCM (150 mL) was added peroxydodecanoic acid (83% pure, 7.2 g, 27.7 mmol) and the mixture stirred overnight at RT. After evaporation, the residue was passed through a column of alumina using ether to give an oil (6.8 g, 92%) which showed two spots on TLC (ether-light petroleum, 4:1). Elution of the mixture on a column of silica yielded firstly the cis hydroxy sulphone 12 as a white solid (1.8g, 25%) which was recrystallised (ether-light petroleum), mp 68-69°C; v_{max} (CHCl₃)/cm⁻¹ 3600 (OH, hydrogen bonded), 3520 (OH, non-hydrogen bonded), 1154, 1136, 1078 (SO2); 8H 1.05-1.85 (9H, m, aliphatic ring), 2.03 (1H,s, OH), 1.95-2.20 (1H, m, allylic), 2.26-2.48 (1H, m, allylic), 3.83 (1H, broad s, 1-H), 5.80 (1H, s, trans >C=CH), 6.43 (1H, s, cis >C=CH), 7.48-7.70 (3H, m, Ph), 7.88 (2H, d, J 7.2, Ph); m/z 279, 262 (M-OH); Found: C, 64.6; H, 7.3; S, 11.4. C₁₅H₂₀O₃S requires C, 64.3; H, 7.15; S, 11.4%, followed by secondly the trans hydroxy sulphone 13 as an oil (3.0 g, 40%); v_{max} (neat)/ cm⁻¹ 3595 (OH, hydrogen bonded), 3519 (OH, non-hydrogen bonded), 1078, 1135 (SO2), S_H 0.95-1.80 (8H, m, aliphatic ring), 1.96 (2H, dd, J 4.8, 9.6, allylic and 2-H), 2.04 (1H, broad s, OH), 2.81 (1H, broad m, allylic), 3.05-3.23 (1H, broad m, 1-H), 5.78 (1H, s, trans >C=CH), 6.42 (1H, s, cis >C=CH), 7.5-7.7 (3H, m, Ph), 7.91 (2H, d, J 7.2, Ph); m/z 280 (M⁺), 263 (M⁺-OH); Found: C, 64.5; H, 7.4; S, 11.2. C₁₅H₂₀O₃S requires C, 64.3; H, 7.1; S, 11.4%.

2β-Ethoxycarbonyl-2α -(2'-phenylsulphinylprop-2'-enyl)cyclopentanone (14)

Potassium carbonate (1.8 g, 12.8 mmol) was added to a vigorously stirred mixture of 2-ethoxy carbonyl- cyclopentanone (4.0 g, 25.6 mmol) and the mesylate 1e (7.3 g, 28.1 mmol) in THF (50 mL). The resulting mixture was stirred overnight and subjected to normal ether-work-up to yield an oily residue which was chromatographed (ether:light petroleum, 1:1) to give pure compound 14 as an oil (7.1 g, 87%); v_{max} (neat)/cm⁻¹ 1752 (CO), 1628 (C= C), 1048 (SO); δ_{H} 1.14-1.26 (3H, td, J 7, OCH₂), 1.78-2.66 (7H, m, ring CH₂ and allylic CH), 2.84 (1H, d, J 15, allylic CH of AB system), 4.06-4.24 (2H, q, J 7, OCH₂), 5.67 (0.35H, s, HC=C, *trans* to SOPh), 5.69 (0.65H, s, HC=C, *trans* to SOPh), 6.20 (0.35H, s, HC=C, *cis* to SOPh), 6.23 (0.65H, s, HC=C, *cis* to SOPh), 7.43-7.55 (3H, m, Ph), 7.60-7.73 (2H, m, Ph); m/z 320 (M⁺); Found: C, 63.9; H, 6.5; S, 10.0. C₁₇H₂₀O₄S requires C, 63.8; H, 6.3; S, 10.0 %.

1α -Hydroxy-2 β -ethoxycarbonyl- 2α -(2'-phenylsulphonylprop-2'-enyl)cyclopentane (16) and 1 β -Hydroxy-2 β -ethoxycarbonyl- 2α -(2'-phenylsulphonylprop-2'-enyl) cyclopentane (17)

Sodium borohydride (1.2 g, 31.6 mmol) was added to a stirred solution of the keto-sulphoxide 14 (4.0 g, 12.5 mmol) in EtOH (50 mL) maintained at 0°C and the resulting mixture stirred for 2 h allowing it to warm to RT. The solvent was evaporated and the residue was partitioned between ether and sat. NaCl solution. A normal ether work-up afforded the mixture of hydroxy alkenyl subhoxides 15 as an oil which showed up as four overlapping spots on TLC (ether). To the crude mixture 15 in DCM (50 mL) at 0°C was added m-chloroperbenzoic acid (2.1 g, 12.2 mmol) and stirred for 2 h. The reaction mixture, after dilution with DCM and washing with sat. NaHCO3 solution, was dried and evaporated to yield an oil which according to TLC (ether-light petroleum, 1:1) consisted of two products. Column chromatography afforded firstly the hydroxy sulphone 16 as an oil (1.6 g, 38%); v_{max} (neat)/ cm⁻¹ 3490 (OH), 1721 (CO), 1300, 1161 (SO₂); δ_{H} 1.14 (3H. t. J 7, Me), 1.45-2.30 (6H, m, aliphatic ring), 2.72 (2H, AB system, J 17, allylic), 3.32 (1H, broad s, 2-H), 4.08 (2H, q, J 7, O-CH2-), 4.38 (1H, m, 1-H), 5.80(1H, s, trans >C=CH), 6.43 (1H, s, cis >C=CH), 7.50-7.74 (3H, m, Ph), 7.95-7.85 (2H, m, Ph); m/z 338 (M⁺); Found: C, 60.5; H, 6.7; S, 9.45. C₁₇H₂₂O₅S requires C, 60.35; H, 6.5; S, 9.45%; followed by the hydroxy sulphone 17 as an oil (2.1 g, 49%); v_{max} (neat)/cm⁻¹ 3496 (OH), 1718 (CO), 1310, 1160 (SO₂); δ_H 1.14 (3H, t, J 7, Me), 1.40-2.46 (7H, m, aliphatic ring and allylic), 2.85 (1H, d, J 7, allylic), 3.28 (1H, broad, OH), 3.99 (1H, t, J 5, 1-H) 4.11 (2H, q, J 7, O-CH2-), 5.82 (1H, s, trans >C=CH), 6.44 (1H, s, cis >C=CH), 7.72-7.50 (3H, m, Ph), 7.83-7.94 (2H, m, Ph); m/z 338 (M⁺); Found: C, 60.4; H, 6.5; S, 9.3. C₁₇H₂₂O₅S requires C, 60.35; H, 6.5; S, 9.45%.

2-(2'-Phenylsulphonylprop-2'-enyl)cyclohexanone (18)

To a well cooled solution of sulphoxide 10 (4.50 g, 17.4 mmol) in dry DCM (90 mL) was added peroxydodecanoic acid (83% pure, 5.0 g) and the mixture stirred at RT for 2 h. After evaporation of the solvent the residue was chromatographed on a column of alumina (Et₂O) to yield compound 18 as an oil (2.70 g, 60%) which crystallised on keeping. Recrystallisation (Et₂O/light petroleum) afforded pure sulphone 18 (2.31g, 51%), mp 73.5-74.5°C; v_{max} (CHCl₃)/cm⁻¹ 1708 (CO), 1160, 1140, 1083 (SO₂); δ_{H} 1.10-2.50 (9H, m, ring CH), 2.54-2.96 (2H, m, allylic CH₂), 5.78 (1H, s, CH=C *trans* to SO₂Ph), 6.40 (1H, s, CH=C *cis* to SO₂Ph), 7.45-7.68 (3H, m, Ph), 7.80-7.97 (2H, m, Ph); δ_C {H¹} 211.14 (s, CO), 148.04 (s, olefinic carbon bearing SO₂Ph), 138.75 (s, Ar carbon adjacent to SO₂-), 133.48 (d, *para* Ar carbon), 129.17 (d, *ortho* and *meta* Ar carbons), 128.20 (d, *ortho* and *meta* Ar carbons), 125.95 (t, primary olefinic carbon), 48.72 (d, tertiary carbon adjacent to CO), 42.17 (t, allylic), 33.79 (t, aliphatic C-6), 25.12-30.03 (remaining aliphatics); m/z 279 (M'+1); Found: C, 64.4; H, 6.6; S, 11.7 %. C₁₅H₁₈O₃S requires C, 64.7; H, 6.5; S, 11.5 %.

Trans-(3SR),(9SR),(10SR)-3β-Phenylsulphonyl-1-oxabicyclo[4,4,0]decane (19)

To a solution of *trans* hydroxy vinyl sulphone 13 (572 mg, 2.04 mmol) in dry 'BuOH 24 mL) was added 'BuOK (228 mg, 2.04 mmol) and the mixture was heated under N_2 at 56°C for 2.5 h. The solvent was evaporated and the residue acidified with aq. 2M HCl. Normal ether work-up gave

the crude product which was purified by column chromatography (ether-light petroleum, 3:1) to give pure 19 as a white solid (560 mg, 98%) and recrystallised (ether-light petroleum), mp 74-75.5°C. v_{max} (CHCl₃)/cm⁻¹ 1140, 1076 (SO₂); $\delta_{\rm H}$ 0.95-1.95 (10H, m, aliphatic ring), 2.04 (1H, broad dq, J 12, 2.4, equatorial 4-H), 2.76-2.89 (1H, broad dt, J 9.8, 3, 9-H), 3.19-3.36 (1H, tt, J 12.2, 3.6, 3-H), 3.54 (1H, t, J 10.6, axial 2-H), 4.14 (1H, dq, J 9.8, 2.4, equatorial 2-H), 7.53-7.70 (3H, m, Ph), 7.50 (2H,d, J 7.2, Ph); $\delta_{\rm C}$ {¹H } 24.70-31.85 (aliphatic), 40.77 (t, 4-C), 60.85 (d, 9-C), 65.83 (t, 2-C), 81.54 (d, 3-C), 133.84,128.56, 129.23 (d, Ph), 137.42 (s, Ph); m/z 280 (M⁺); Found: C, 64.5; H, 7.4; S, 11.2. C₁₅H₂₀O₃S requires C, 64.3; H, 7.1; S, 11.4%.

Cis-(3SR),(9SR),(10SR)-3β-Phenylsulphonyl-1-oxabicyclo[4,4,0]decane (22)

Similar to 19 above treatment of the corresponding *cis* alkenyl sulphone 12 (524 mg, 1.87 mmol) with Bu¹OK (210 mg, 1.87 mmol) in ¹BuOH (22 mL) afforded crude 22 (532 mg, >100%) which was chromatographed (ether-light petroleum, 3:1) to give pure product 22 as a white solid (515.5 mg, 98%) that recrystallised (ether-light petroleum), mp 92-95°C; v_{max} (CHCl₃)/cm⁻¹ 1083, 1070 (SO₂); δ_{H} 1.12-1.43 (5H, m, aliphatic ring), 1.45-1.58 (1H, qd, axial 5-H),1.64-1.76 (2H, m, 8-H), 1.79-1.87 (1H, m, 10-H), 1.89-2.03 (2H, AB system, 4-H), 3.34-3.43 (1H, m, 3-H), 3.46 (1H, d, *J* 2, 9-H), 3.52 (1H, t, *J* 11, axial 2-H), 4.09 (1H, dd, *J* 11,2, equatorial 2-H), 7.63-7.70 (3H, m, Ph), 7.78-7.90 (2H, m, Ph); δ_{C} {¹H } 19.96-31.25 (t, aliphatic ring), 34.34 (d, 10-C), 59.48 (d, 9-C), 69.56 (t, 2-C), 75.17 (d, 3-C), 129.17, 129.56 (d, Ph), 133.94 (d, Ph), 137.42 (s, Ph); m/z 281(M⁺+1); Found: C, 64.3; H, 7.4; S, 11.3. C₁₅H₂₀O₃S requires C, 64.3; H, 7.1; S,11.4%.

3αβ-Phenylsulphonyl-9β-carboxy-8β-1-oxabicyclo[4,3,0]nonane (23)

By the above procedure the hydroxy sulphone 16 (540 mg, 1.59 mmol) in dry 'BuOH (8 mL) containing 'BuOK (207 mg, 1.86 mmol) produced crude acid 23 as a solid (471mg, 95%) which was recrystallised (' Pr_2O -DCM) to give pure 23 as white needles, mp 184.5-185.5°C; v_{max} (CHCl₃)/cm⁻¹ 3655-3020 (OH), 1703 (CO), 1302, 1144 (SO₂); δ_{H} 1.65-2.14 (6H, m, aliphatic ring), 2.31 (2H, d, *J* 10.5, 4-H), 3.34 (1H, m, 3-H), 3.49 (1H, t, *J* 11, axial 2-H), 4.01 (1H, d, *J* 4, 8-H), 4.09 (1H, m, equatorial 2-H), 7.60 (2H, m, Ph), 7.72 (1H, m, Ph), 7.87 (2H, m, Ph); m/z 310 (M⁺); Found: C, 58.1; H, 6.1; S, 10.45. C₁₅H₁₈O₅S requires C, 58.05; H, 5.8; S, 10.3%.

3αβ-Phenylsulphonyl-9β-carboxy-8α-1-oxabicyclo[4,3,0]nonane (26)

Similar 23 to above the hydroxy sulphone 17 (495 mg, 1.47 mmol) and 'BuOK (183 mg, 1.62 mmol) in dry 'BuOH (8 mL) produced 26 (432 mg, 95%) as a solid which was recrystallised (' Pr_2O -DCM) to give pure 26 as white needles, mp 182.5-183.5°C; v_{max} (CHCl₃)/cm⁻¹ 3655-3020 (OH), 1697 (CO), 1303, 1144 (SO₂); δ_{11} 1.62-2.16 (6H, m, aliphatic ring), 2.33 (2H, d, J 10, 4-H), 3.35 (1H, m, 3-H), 3.50 (1H, t, J 11, axial 2-H), 4.01 (1H, d, J 4, 8-H), 4.09 (1H, m, equatorial 2-H), 7.63 (2H, m, Ph), 7.72 (1H, m, Ph), 7.89 (2H, m, Ph); Found: C, 57.85; H, 5.8; S, 10.3. C₁₅H₁₉O₅ S requires C, 58.05; H, 5.8; S, 10.3%.

3 β -Phenylsulphonyl-9 β -methoxycarbonyl-8 β -1-oxabicyclo[4,3,0]nonane (24) and 3 α -Phenylsulphonyl-9 β -methoxycarbonyl-8 β -1-oxabicyclo[4,3,0]nonane (25)

To a stirred solution of the crude carboxylic acid 23 obtained from sulphone 16 (1.2 g, 3.55 mmol) in the above described manner, in dry MeOH (10 mL) was added concentrated H_SO. (1drop) and the resulting mixture refluxed overnight. The solvent was evaporated and the residue partitioned between ether and H₂O. The organic phase was washed with sat. NaHCO₂ solution, dried (Na SO,) and evaporated to yield an oil which was chromatographed (light petroleum-ether, 3:2) to afford firstly the ester 24 (405 mg, 35%) as a solid. Recrystallisation (ether-light petroleum) produced 24 as white needles, mp 107-108°C; v_{max} (CHCl₃)/cm⁻¹ 1725 (CO), 1300, 1145 (SO₂); 8_H 1.56-2.13 (6H, m, aliphatic ring), 2.27 (2H, d, J 10, 4-H), 3.34 (1H, m, 3-H), 3.49 (1H, dt, J 11, 1.5, axial 2-H), 3.70 (3H, s, OMe), 4.00 (1H, d, J 4, 8-H), 4.06 (1H, m, equatorial 2-H), 7.59 (2H, m, Ph), 7.70 (1H, m, Ph), 7.87 (2H, m, Ph); m/z, 324 (M⁺); Found: C, 59.2; H, 6.2; S, 9.85. C₁₆H₂₀O₅S requires C, 59.25; H, 6.15; S, 9.9%; further elution afforded the isomeric ester ester 25 as a white solid (320 mg, 28%); v_{max} (CHCl₃)/cm⁻¹ 1725 (CO), 1302, 1145 (SO₂); δ_H 1.58-1.93 (6H, m, aliphatic ring), 2.03 (1H, m, axial 4-H), 2.32 (1H, dd, J 13,7, equatorial 4-H), 3.46 (1H, m, 3-H), 3.64 (1H, dd, J 13,7, axial 2-H), 3.65 (3H, s, OMe), 4.20 (1H, t, J 7, 8-H), 4.15 (1H, dd, J 13,7, equatorial 2-H), 7.60 (2H, m, Ph), 7.68 (1H, m, Ph), 7.80 (2H, m, Ph); m/z 324 (M^{*}); Found: C, 59.2; H, 6.2; S, 9.9 C₁₆H₂₀O₅S requires C, 59.25; H, 6.15, S, 9.9%.

$3\beta-Phenylsulphonyl-9\beta-methoxycarbonyl-8\alpha-1-oxabicyclo[4,3,0]nonane (27) and 3\alpha-Phenylsulphonyl-9\beta-methoxycarbonyl-8\alpha-1-oxabicyclo[4,3,0]nonane (28)$

The crude acid 26 obtained from the precursor 17 (1.60 g, 4.73 mmol) was esterified in dry MeOH (10 mL) containing a drop of conc. H₂SO₄ in the above described manner to give after chromatography firstly the ester 27 (660 mg, 43%) as a white solid which recrystallised (etherlight petroleum) as white needles, mp 98-99°C; v_{max} (CHCl₃)/cm⁻¹ 1725 (CO), 1305, 1148 (SO₂); $\delta_{\rm H}$ 1.58-2.14 (6H, m, aliphatic ring), 2.29 (2H, d, J 10, 4-H), 3.33 (1H, m, 3-H), 3.50 (1H, dt, J 11, 1, axial 2-H), 3.70 (3H, s, OMe), 4.01 (1H, d, J 4, 8-H), 4.06 (1H, m, equatorial 2-H), 7.59 (2H,m, Ph), 7.69 (1H, m, Ph), 7.86 (2H, m, Ph); m/z 324 (M⁺); Found: C, 59.4; H, 6.2; S, 9.8 C₁₆H₂₀O₅S requires C, 59.25; H, 6.15; S, 9.9%; further elution gave the isomeric ester 28 (390 mg, 26%); v_{max} (CHCl₃)/cm⁻¹ 1725 (CO), 1304, 1145 (SO₂); $\delta_{\rm H}$ 1.62-1.94 (6H, m, aliphatic ring), 2.03 (1H, m, axial 4-H), 2.31 (1H, dd, J 13,5, equatorial 4-H), 3.45 (1H, m, 3-H), 3.66 (3H, s, OMe), 3.67(1H, dd, J 13, 7, axial 2-H), 4.16 (1H, dd, J 13,7, equatorial 2-H), 4.22 (1H, t, J 6, 8-H), 7.60 (2H,m, Ph), 7.71 (1H, m, Ph), 7.91 (2H, m, Ph); m/z 324 (M⁺); Found: C, 59.4; H, 6.4; S, 9.8. C₁₆H₂₀O₅S requires C, 59.25; H, 6.15; S, 9.9%.

Reduction of 2-(2'-Phenylsulphonylprop-2'-enyl)cyclohexanone (18) with sodium borohydride:

To a stirred solution of keto-sulphone 18 (2.85 g, 10.2 mmol) in ⁱPrOH was added NaBH₄ (1.45 g, 38.4 mmol) and the mixture after overnight stirring was acidified with aq.HCl. Benzene was added and the mixture was heated under azeotropic reflux using a Dean-Stark apparatus to remove all the water after which it was filtered. Evaporation of the solvent yielded a residue

(3.15 g, > quantitative yield) which according to TLC (ether-light petroleum, 3:1) showed four products of very close R_f values. The residue was chromatographed to give firstly adduct trans 19 (171 mg, 6%) which was identical with the sample previously reported; followed by compound cis 20 (316 mg, 11%); v_{max} (CHCl₃)/cm⁻¹ 3440 (OH), 1078, 1180 (SO₂); δ_{H} 1.0 (3H, d, J 7.2 ,Me), 0.90-2.06 (11H, m, 9 ring H's and 1-H), 3.10-4.0 (3H, m, OH, 1-H and 2-H), 7.42-7.72 (3H, m, Ph), 7.94 (2H, m, Ph); m/z 280 (M^+ -2); Found: C, 64.2;H, 7.4; S, 11.6. C, H $_{\sim}$ O, S requires C, 63.8;H, 7.8; S, 11.35%; followed by an inseparable mixture of compounds cis 20 and trans 21 (1.26g, 44%) as a solid mp 90-92°C, v_{max} (CHCl₃)/cm⁻¹ 3500 (OH), 1080, 1135 (SO₂); δ_H 1.25 (3H, dd, J 6.8, 2.5, Me), 1.06-1.96 (10H, m, ring H's and 1'-H), 2.08-2.32 (1H, m, 2-H), 2.47 (1H, sharp s, OH), 3.08-3.30 (1H, m, trans isomer 0.5H 1-H, 0.5H 2'-H), 3.64 (0.5H, m, cis isomer 2'-H), 3.80 (0.5H, bm, cis isomer 1-H), 7.50-7.70 (3H, m, Ph), 7.88 (2H, m, Ph); m/z 283 (M⁺+1), 282 (M⁺); Found: C, 63.55;H, 7.75; S, 11.3. C₁₅H₂₂O₃S requires C, 63.8; H, 7.8; S, 11.35%; followed by the isomeric trans product 21 (397 mg, 14%) as a solid mp 90-92°C; v_{max} $(CHCl_3)/cm^{-1}$ 3510 (OH), 1083, 1138 (SO₂); δ_H 1.23 (3H, fine d, J 6.8, Me), 1.10-1.39 (5H, m, ring H's), 1.55-2.0 (6H, m, 1-H, 2-H and ring H's), 1.97 (1H, s, OH), 3.09-3.28 (2H, m, axial 1-H and 2 -H), 7.50-7.70 (3H, m, Ph), 7.88 (2H, m, Ph) ; m/z 280 (M⁺-2); Found: C, 63.7; H, 8.0; S, 11.2. C, H₂O₃S requires C, 63.8; H, 7.8; S, 11.35%.

ACKNOWLEDGEMENTS

We are grateful to SERC for financial support (to M.A.K.and S.M.M.).

REFERENCES

- Knochel, P.; Normant, J. F.; *Tetrahedron Lett.*, 1985, 26(4), 425; Auvray, P.; Knochel P.; Normant, J. F.; *ibid*, 1985, 26(19), 2329; Auvray, P.; Knochel P.; Normant, J. F.; *ibid*, 1985, 26(37), 4455.
- Khan, M. A.; J. Chem. Research (S), 1991, 62; Khan, M. A.; J. Chem. Research (M), 1991, 601.
- 3. Khan, M. A.; Bull. Chem. Soc. Jpn., 1991, 64, 3682.
- Brown, P. J.; Jones, D. N.; Khan, M. A.; Meanwell, N. A.; Richards, P. J.; J. Chem. Soc. Perkin 1, 1984, 2049.
- Adams, J. P.; Bowler, J.; Collins, M. A.; Jones, D. N.; Swallow, S.; Tetrahedron Lett., 1990, 31(30), 4355.
- Emmerson, W. S.; Birum, G. H.; Longley, Jr., R. I.; J. Am. Chem. Soc., 1953, 75, 1312.
- 7. Normant-Chefney, P. M. C.; Maitte, R. P.; Bull. Soc. Chim. Fr., 1974, 1090.
- 8. Turecek, F.; Collect. Czech. Chem. Commun., 1982, 47(3), 858.
- Tsunodo, T.; Ozaki, F.; Shirakata, N.; Tamaoka, Y.; Yamamoto, H.; Ito, S.; *Tetrahedron Lett.*, 1996, 37(14), 2463.
- 10. Albert, A.; Heterocyclic Chemistry, Athlone press, 1968, ch.9, p. 343.
- 11. Cologne, P. J.; Dreux, J.; Thiers, M.; Bull. Soc. Chim. Fr., 1959, 1459.
- 12. Benneville, P. L.; Connor, R.; J. Am. Chem. Soc., 1940, 62, 283.

- Jeremic, D.; Konstantinovic, S.; Milovanovic, A.; Cekovic, Z.; Mihailovic, M.L.; Glas. Hem. Drus., (Beograd.); 1975, 40(7-8), 421.
- 14. Jackman, L. M.; Sternhill, S.; Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd edn., Pergamon, London, **1969**, p.238.
- 15. Eliel, E.; Allinger, N.L.; Angyal, S. J.; Morrison, E. A.; Conformational Analysis., Interscience, London, 1966, p.44.
- 16. Baldwin, J. E.; J. Chem. Soc. Chem. Commun., 1976, 734.