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ABSTRACT
A novel synthesis of cyclic ketene dithioacetals through the reaction
between phosphorous-based ketenimines [generated in situ from
Nef-isocyanide-Perkow reaction], cyclic 1,3-dicarbonyl compounds,
and carbon disulfide at room temperature, in moderate to good
yields (65–80%), is described.
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Highlights

The reaction of phosphorous-based ketenimines with cyclic 1,3-dicarbonyl compounds
and carbon disulfide at room temperature leads to the formation of novel cyclic ketene
dithioacetals in moderate to good yields.

1. Introduction

Functionalized ketene dithioacetals have emerged as versatile intermediates in organic syn-
thesis [1–3]. Extensive research, since the last decade, has given rise to new prospects in
their chemistry. Among them, acceptor-substituted ketene dithioacetals have proven to
be especially important in the construction of a diverse array of substituted carbo- and
heterocyclic compounds [4–7]. Ketene dithioacetals can be classified on the basis of their
substitution patterns at theα-position of the ketene dithioacetal functionality. For instance,
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α-oxo ketene dithioacetals, which bear a carbonyl group at theα-C atom, are versatile inter-
mediates in organic synthesis and their preparation and diverse applications, especially
serving as 1,3-electrophilic three-carbon synthones have been reviewed in detail [8–11].

A general method for the synthesis of functionalized ketene dithioacetals involves the
condensation of an active methylene compound with carbon disulfide (CS2) in the pres-
ence of a suitable base followed by S-alkylation. These condensations have been performed
by a variety of base reagents such as sodium hydride, potassium hydroxide, potassium
tert-butoxide, n-butylithium, lithium dialkylamides, and potassium carbonate [12–15].
Moreover, the preparation of ketene dithioacetals containing active methylene groups,
under phase transfer catalysis, has been reported [16]. Geminal dithiolates react readily
with electrophiles such as alkyl halides, 1,2-dibromoethane and 1,3-dibromopropane to
form bis(alkylsulfanyl) derivatives, dithiolanes, and dithianes, respectively [17].

2. Results and discussion

As part of our current studies on the development of new routes to synthesis of keten-
imines, imidoyl chlorides [18–21], and ketene dithioacetals [22]; here we report the
reaction of these intermediates toward phosphorylated hydroxyketenimine, formed via a
Nef-Perkow cascade involving isocyanides as starting material, to provide cyclic ketene
dithioacetals. Herein, we report a method for the synthesis of a variety of five-membered
cyclic ketene dithioacetals 3a–f using condensation of active methylene compounds 2 and
CS2 in the presence of phosphorylated hydroxyketenimine 1.

We started our study in the reaction of phosphorylated hydroxyketenimines (1) and
1,3-indandione (2a) in the presence of carbon disulfide, at room temperature in different
solvent systems, and the results are given in Table 1. The use ofMeCN instead of EtOH and
THF as solvents in the presence of KOH (1 equiv.) at ambient temperature for 4 h, led to

Table 1. Optimization of the reaction conditions.a

Entry Solvent Base (x eq.) Yield (%)b

1 EtOH KOH (1) 20
2 THF KOH (1) 30
3 MeCN KOH (1) 45
4 MeCN DBU (1) 50
5 MeCN Et3N (1) 73
6 MeCN Et3N (2) 80
aReaction conditions: (i) 1 Ref. [23]; (ii) 2a (1mmol), CS2 (1.2mmol), solvent (3mL) and base (1 or 2mmol) at r.t., 4 h.
bIsolated yield.
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an improved 45% yield (Entries 1, 2 and 3). Compound 3a was obtained in a better yield
(73%) using Et3N (Entry 5). These results encouraged us to further optimize the reaction
conditions by increasing the Et3N loading. The conversion proceeded in an improved yield
(80%) with 2 equivalents of Et3N (Entry 6). In the presence of this amount of Et3N, the
reaction was complete after 4 h at room temperature.

With the suitable reaction conditions in hand, we next explored the protocol with
phosphorylated hydroxyketenimines (1), variety of five- and six-membered cyclic of the
1,3-dicarbonyl compounds (2), carbon disulfide in the presence of Et3N with MeCN in
4 h. As shown in Table 2, these reactions led to the formation of ketene dithioacetals in
65–80% yields.

A plausible mechanism for the formation of products 3 is shown in Scheme 1. The addi-
tion of isocyanide to acyl chloride (Nef-isocyanide reaction) leads to imidoyl chlorides,

Table 2. Synthesis of cyclic ketene dithioacetals 3a–f.

Cyclic 1,3-dicarbonyl compounds 2a–f

Products 3a–f
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Scheme 1. Proposed mechanism for the formation of products 3.

which can later be treated with triethyl phosphite to afford ketenimines in a Perkow-
type reaction. Then, the reaction of triethylammonium salt 4 with ketenimine gives
intermediate 5, which is converted into intermediate 6 by the proton transfer reaction.
This intermediate undergoes removal of phosphate with intramolecular cyclization and
tautomerization to give product 3.

3. Conclusion

In conclusion, we have described the synthesis of functionalized cyclic ketene dithioac-
etals by a novel multicomponent process, which proceeds under mild conditions and
furnished the products in satisfactory isolated yields. The methodology involves an initial
Nef-isocyanide-Perkow reaction to produce a phosphorous-based ketenimine, which was
then allowed to react with a ‘bis-thiol’ derivative generated in situ from a cyclic 1,3-dioxo
compound and carbon disulfide. The structures of six novel dithioacetals thus prepared
were perfectly described by analytical data.

4. Experimental

4.1. General

All purchased solvents and chemicals were of analytical grade and used without further
purification. Phosphorylated hydroxyketenimines 1 were prepared according to litera-
ture [23]. Melting points: Electrothermal-9100 apparatus. IR Spectra: Shimadzu-IR-460
spectrometer; v̄ in cm−1. 1H NMR and 13C NMR Spectra: Bruker DRX-500 Advance
instrument using CDCl3 as the applied solvent and TMS as the internal standard at
500.1 and 125.7MHz, respectively.; δ in ppm, J in Hz. Mass spectra were recorded on
a Finnigan-MAT-8430EI-MS mass spectrometer; at an ionization potential 70 eV; in m/z
(rel. %). Elemental analyses for C,H, andNwere performed using aHeraeus CHN-O-Rapid
analyzer.
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4.2. General procedure for preparation (3a–3f)

Amixture of 1,3-dicarbonyl compound (1mmol) with carbon disulfide (0.091, 1.2mmol)
and Et3N (0.202 g, 2mmol) in MeCN (4mL) was stirred for 2 h at room temperature. A
solution of ketenimine 1 (1mmol) in MeCN (1mL) was then added. After 4 h, the solvent
was removed under reduced pressure and the residue was purified by preparative TLC
(SiO2; AcOEt/hexane 1:2).

4.2.1. Ethyl 5-(cyclohexylamino)-2-(1,3-dioxo-1H-inden-2(3H)-ylidene)-1,3-dithiole-4-
carboxylate (3a)
Yellow powder. M.p. 227–228°C. Yield: 0.33 g (80%). IR (KBr) (νmax/cm−1): 3452 (NH),
1730 (C=O), 1640 (C=O), 1126 (C−O). 1H NMR (500MHz, DMSO-d6): 1.25–1.29 (2H,
m, CH2); 1.37 (3H, t, J = 7.1, Me); 1.38–1.45 (2H, m, CH2); 1.55–1.65 (2H, m, CH2);
1.79–1.83 (2H,m, CH2); 2.07–2.09 (2H,m, CH2); 3.42 (1H, br s, CH); 4.30 (2H, q, J = 7.1,
CH2O); 7.62–7.64 (2H,m, 2 CH); 7.77–7.80 (2H,m, 2 CH), 8.14 (1H, d, J = 8.3, NH).13C
NMR (125MHz, DMSO-d6): 14.4 (Me); 24.3 (2 CH2); 25.1 (CH2); 33.2 (2 CH2); 57.8
(CH); 60.0 (CH2O); 122.1 (CH); 122.2 (CH); 133.5 (CH); 133.9 (CH); 133.7 (C); 140.2
(C); 140.6 (C); 140.9 (C); 159.5 (C); 159.7 (C); 167 (C=O); 187.7 (C=O); 187.8 (C=O).
MS (EI, 70 eV):m/z (%) = 415 (100,M+), 370 (20), 342 (25), 322 (15), 311 (20), 283 (10),
219 (35), 141 (60), 132 (35), 98 (15), 83 (45), 55 (30). Anal. Calcd (%) for C21H21NO4S2
(415.53): C 60.70, H 5.09, N, 3.37. Found: C 60.86, H 5.11, N 3.40.

4.2.2. Ethyl 5-(cyclohexylamino)-2-(tetrahydro-1,3-dimethyl-2,4,6-trioxopyrimidin-
5(6H)-ylidene)-1,3-dithiole-4-carboxylate (3b)
Yellow powder. M.p. 205–207°C. Yield: 0.31 g (73%). IR (KBr) (νmax/cm−1): 3452 (NH),
1739 (C=O), 1701 (C=O), 1226 (C−N). 1H NMR (500MHz, DMSO-d6): 1.25–1.30 (2H,
m, CH2); 1.37 (3H, t, J = 7.1, Me); 1.39–1.45 (2H, m, CH2); 1.55–1.65 (2H, m, CH2);
1.79–1.83 (2H, m, CH2); 2.05–2.09 (2H, m, CH2); 3.42 (6H, s, 2 Me); 3.46 (1H, br s, CH);
4.30 (2H, q, J = 7.1, CH2O); 7.98 (1H, d, J = 8.2, NH). 13C NMR (125 MHz, DMSO-d6):
13.9 (Me); 22.5 (2 CH2); 27.1 (CH2); 28.4 (Me); 28.5 (Me); 33.5 (2 CH2); 47.5 (CH); 59.2
(CH2O); 103.8 (C); 121.3 (C); 154.5 (C); 158.3 (C); 160.89 (C=O); 166.42 (C=O); 166.9
(C=O); 170.1 (C=O). MS (EI, 70 eV): m/z (%) = 425 (80, M+), 380 (20), 368 (15), 342
(25), 327 (15), 311 (100), 283 (20), 229 (35), 141 (65), 98 (25), 83 (55), 55 (40). Anal. Calcd
(%) for C18H23N3O5S2 (425.52): C 50.81, H 5.45, N 9.87. Found: C 51.04, H 5.48, N 9.91.

4.2.3. Ethyl 5-(cyclohexylamino)-2-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-
1,3-dithiole-4-carboxylate (3c)
Yellow powder. M.p. 201–204°C. Yield: 0.31 g (77%). IR (KBr) (νmax/cm−1): 3452 (NH),
1670 (C=O). 1H NMR (500MHz, DMSO-d6): 1.25–1.30 (2H, m, CH2); 1.34 (3H, t,
J = 7.1, Me); 1.38–1.44 (2H, m, CH2); 1.60–1.65 (2H, m, CH2); 1.73 (6H, s, 2 Me);
1.77–1.79 (2H,m, CH2); 2.00–2.07 (2H,m, CH2); 3.43 (1H, br s, CH); 4.30 (2H, q, J = 7.1,
CH2O); 7.99 (1H, d, J = 8.4, NH). 13C NMR (125MHz, DMSO-d6): 13.9 (Me); 24.6 (2
CH2); 25.5 (2 Me); 27.4 (CH2); 32.7 (2 CH2); 57.2 (CH); 60.1 (CH2O); 92.8 (C); 94.0 (C);
104.3 (C); 160.6 (C); 161.6 (C); 162.4 (C=O); 163.7 (C=O); 171.8 (C=O). MS (EI, 70 eV):
m/z (%) = 413 (90,M+), 377 (30), 349 (10), 311 (100), 264 (10), 229 (40), 200 (20), 173 (5),
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145 (25), 117 (15), 83 (25), 55 (45). Anal. Calcd (%) for C18H23NO6S2 (413.51): C 52.28,
H 5.61, N 3.39. Found: C 52.53, H 5.64, N 3.42.

4.2.4. Ethyl 5-(cyclohexylamino)-2-(4,4-dimethyl-2,6-dioxocyclohexylidene)-
1,3-dithiole-4-carboxylate (3d)
Yellow powder. M.p. 156–158°C. Yield: 0.28 g (70%). IR (KBr) (νmax/cm−1): 3450 (NH),
1689 (C=O), 1659 (C=O), 1118 (C−O). 1H NMR (500MHz, DMSO-d6): 1.12 (6H, s, 2
Me); 1.20–1.30 (2H,m, CH2); 1.35 (3H, t, J = 7.1, Me); 1.36–1.45 (2H,m, CH2); 1.63–1.65
(2H, m, CH2); 1.76–1.78 (2H, m, CH2); 2.06–2.08 (2H, m, CH2); 2.53 (4H, s, 2 CH2);
3.48 (1H, br s, CH); 4.30 (2H, q, J = 7.1, CH2O); 7.96 (1H, d, J = 8.3, NH). 13C NMR
(125MHz, DMSO-d6): 14.4 (Me); 24.3 (2 CH2); 25.1 (C); 28.4 (Me); 28.5 (Me); 30.8 (CH2);
33.2 (2 CH2); 50.6 (2 CH2); 56.8 (CH); 60.8 (CH2O); 116.6 (C); 140.3 (C); 161.2 (C); 164.1
(C); 167.1 (C=O); 193.7 (C=O); 193.8 (C=O). MS (EI, 70 eV):m/z (%) = 409 (100,M+),
364 (20), 326 (35), 311 (85), 283 (15), 267 (40), 214 (35), 195 (10), 141 (55), 126 (25), 98
(15), 83 (50), 54 (65). Anal. Calcd (%) for C20H27NO4S2 (409.56): C 58.65, H 6.64, N 3.42.
Found: C 58.51, H 6.66, N 3.44.

4.2.5. Ethyl 5-(cyclohexylamino)-2-(2,6-dioxocyclohexylidene)-1,3-dithiole-
4-carboxylate (3e)
Yellow powder. M.p. 202–205°C. Yield: 0.24 g (65%). IR (KBr) (νmax/cm−1): 3450 (NH),
1689 (C=O), 1659 (C=O), 1118 (C−O). 1H NMR (500MHz, DMSO-d6): 1.28–1.32 (2H,
m, CH2); 1.35 (3H, t, J = 7.1, Me); 1.36–1.48 (2H, m, CH2); 1.62–1.65 (2H, m, CH2);
1.75–1.78 (2H,m, CH2); 1.79–1.92 (2H,m, CH2); 1.99–2.09 (2H,m, CH2); 2.62–2.65 (4H,
m, 2CH2); 3.47 (1H, br s, CH); 4.30 (2H, q, J = 7.1, CH2O); 7.95 (1H, d, J = 8.2, NH).
13C NMR (125MHz, DMSO-d6): 14.4 (Me); 19.7 (CH2); 24.3 (2 CH2); 25.2 (CH2); 33.2
(2 CH2); 36.9 (CH2); 37.1 (CH2); 57.8 (CH); 61.2 (CH2O); 93.0 (C); 117.9 (C); 161.3 (C);
164.1 (C); 167.5 (C=O); 193.6 (C=O); 194.0 (C=O). MS (EI, 70 eV):m/z (%) = 381 (100,
M+), 336 (20), 298 (30), 283 (70), 239 (25), 195 (15), 185 (15), 141 (55), 83 (30), 55 (50).
Anal. Calcd (%) for C18H23NO4S2 (381.51): C 56.67, H 6.08, N 3.67. Found: C 56.89, H
6.10, N 3.70.

4.2.6. Ethyl 5-(cyclohexylamino)-2-(2,5-dioxocyclopentylidene)-1,3-dithiole-
4-carboxylate (3f)
Yellow powder. M.p.: 239–241°C. Yield: 0.27 g (67%). IR (KBr) (νmax/cm−1): 3434 (NH),
1675 (C=O), 1628 (C=O), 1182 (C−O). 1H NMR (500MHz, DMSO-d6): 1.28 (3H, t,
J = 7.0, Me); 1.38–1.46 (2H, m, CH2); 1.49–1.55 (2H, m, CH2); 1.65–1.68 (2H, m, CH2);
1.94–1.96 (2H,m, CH2); 2.42–2.43 (2H,m, CH2); 2.58 (4H, s, 2 CH2); 3.49 (1H, br s, CH);
4.27 (2H, q, J = 7.0, CH2O); 8.10 (1H, d, J = 9.3, NH). 13C NMR (125 MHz, DMSO-
d6): 14.4 (Me); 24.2 (2 CH2); 25.1 (CH2); 33.1 (CH2); 34.1 (CH2); 34.0 (2 CH2); 57.8
(CH); 61.2 (CH2O); 116.2 (C); 160.4 (C); 163.4 (C); 163.7 (C); 199.3 (C=O); 199.4 (C=O);
200.0 (C=O). MS (EI, 70 eV): m/z (%) = 367 (100,M+), 344 (5), 320 (20), 285 (35), 256
(20), 234 (5), 210 (15), 173 (10), 141 (70), 113 (20), 83 (25), 55 (65). Anal. Calcd (%) for
C17H21NO4S2 (367.48): C 55.56, H 5.76, N 3.81. Found: C 55.71, H 5.79, N 3.83.
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