

Article

2H-Azirine-2-carbonyl Azides: Preparation and Use as N-Heterocyclic Building Blocks

Liya D. Funt, Yulia V. Krivolapova, Olesya V. Khoroshilova, Mikhail Sergeevich Novikov, and Alexander F. Khlebnikov

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b03367 • Publication Date (Web): 26 Feb 2020 Downloaded from pubs.acs.org on February 27, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

H-Azirine-2-carbonyl Azides: Preparation and Use as N-Heterocyclic Building

Blocks

Liya D. Funt, Yulia V. Krivolapova, Olesya V. Khoroshilova, Mikhail S. Novikov, Alexander F.

Khlebnikov*

Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab.,

St. Petersburg 199034, Russia

*E-mail: <u>a.khlebnikov@spbu.ru</u>.

ABSTRACT: 2*H*-Azirine-2-carbonyl azides, new reactive heterocyclic building blocks, were synthesized in high yield by the reaction of sodium azide with 2*H*-azirine-2-carbonyl chlorides, generated by Fe(II)-catalyzed isomerization of 5-chloroisoxazoles. 2-(Azidocarbonyl)-1*H*-pyrroles, prepared by the Ni(II)-catalyzed reaction of 2-(azidocarbonyl)-2*H*-azirines with 1,3-diketones easily undergo the Curtius rearrangement in boiling *t*BuOH to give Boc-protected α -aminopyrroles in high yield. Heating of 2-(azidocarbonyl)-1*H*-pyrroles for a short time in inert solvents leads to the high yield formation of benzo- and hetero-fused 1*H*-pyrrolo[2,3-*b*]pyridin-6(7*H*)-ones, which are formed via a 6π electrocyclization involving the vicinal aryl or hetaryl substituent and the N=C bond of isocyanate, generated by the Curtius rearrangement of the azidocarbonyl group. The Pd-catalyzed cross-coupling reaction of 1-acetyl-2-methyl-3*H*-pyrrolo[2,3-*c*]isoquinolin-5-yl triflate, easily

prepared from the corresponding pyrroloisoquinolone, leads to variously 5-substituted 3*H*-pyrrolo[2,3-*c*]isoquinolines in excellent yields.

Introduction

Acyl azides are known as versatile reagents for the synthesis of heterocycles and natural products.^{1,2} The most important reaction of these acyl azides is the Curtius rearrangement leading to isocyanates. The latter can be hydrolyzed to the corresponding amines or used in further reactions, in particular in various cyclizations leading to azaheterocycles.^{1,2} A combination of the acyl azide group with strained small rings provides synthetic building blocks with increased potential by utilizing the reactivity of both components. Examples of such are azidocarbonylcyclopropanes³ and azidocarbonyloxiranes.⁴ We speculated that 2*H*-azirine-2-carbonyl azides **3** could serve as valuable synthetic building blocks for the implementation of orthogonal reactivity, since both the azirine⁵ and carbonyl azide^{1, 2} moieties can be activated in completely different ways using various catalysts and reaction conditions. Recently we found conditions for the generation of the unstable 2*H*-azirine-2-carbonyl chlorides **2** by Fe(II)-catalysed isomerization⁶ of 5-chloroisoxazoles **1** and supposed that the use of this isomerization would allow the synthesis of 2*H*-azirine-2-carbonyl azides by the reaction of chlorides **2** with sodium azide (Scheme 1).⁷ The aim of this work is, therefore, to develop a synthetic method for the preparation of 2*H*-azirine-2-carbonyl azides their orthogonal reactivity.

Scheme 1. Retrosynthetic Scheme for the Preparation of 2*H*-Azirine-2-carbonyl Azides 3 via Isomerization of Chloroisoxazoles 1

Results and discussion

3-Phenyl-2*H*-azirine-2-carbonyl chloride **2a**, generated by the Fe(II)-catalyzed isomerization of 5chloro-3-phenylizoxazole **1a** according to the earlier described procedure,^{6c} was reacted with 1 equiv of sodium azide in acetone to give target 3-phenyl-2*H*-azirine-2-carbonyl azide **3a** in 56% yield. An

increase in the amount of NaN₃ to 1.6 equiv improved the yield of azide **3a** to 91%. In order to evaluate the scope of the reaction substituted isoxazoles **1a-m** were reacted with catalytic amounts of anhydrous FeCl₂ and then with sodium azide under the optimized conditions mentioned above. We failed to isolate pure samples of azides **3h** and **3j** due to their low stability, and these compounds were used in further reactions without prior isolation. Meanwhile azides **3a-g, i, k-m** with various *p-, m*and *o*-substituted aryl and hetaryl groups were prepared mostly in excellent yields (Table 1). An attempt to perform the reaction with 5-chloro-4-(4-nitrophenyl)isoxazole failed, possibly due to specific reactions of the nitro-group, promoted by FeCl₂, leading to complete tarring of the reaction mixture at the 3-(4-nitrophenyl)-2*H*-azirine-2-carbonyl chloride preparation step. All new compounds were characterized by ¹H, ¹³C NMR and HRMS. The structure of azide **3d** was confirmed by X-ray analysis (see the Supporting Information). Azides **3a-g, i, k-m** are non-hygroscopic crystalline solids, which are stable under an air atmosphere for a long time at rt.

Table 1. Synthesis of 3-Aryl/hetaryl-2H-Azirine-2-carbonyl Azides 3a-m^a

^{*a*} Isolated yields. ^{*b*} Not isolated in pure form.

Attempts to carry out the Curtius rearrangement of azides **3** under various conditions to obtain 2amino-2*H*-azirines failed. Heating azide **3a** in MeOH or *tert*-BuOH in order to obtain the corresponding azirin-2-ylcarbamate led to extensive tarring. On the other hand, the reactions of the azirine moiety of compounds **3** with the retention of the azidocarbonyl group turned out to be much more successful. Thus, the Ni(II)-catalyzed reaction of azides **3** with acetyl acetone **4a** under the conditions similar to those used for the reaction of azirine-2-carboxylic acid derivatives^{6b, 8} provides 2-(azidocarbonyl)pyrroles **5** in good to excellent yields (Table 2).

Table 2. Synthesis of 4-Acetyl-3-aryl-5-methyl-1H-pyrrole-2-carbonyl Azide 5a-k^a

^{*a*} Isolated yields. ^{*b*} For 3 step, starting from isoxazole 1.

Pyrroles **5h** and **5j** were prepared without intermediate isolation of azides **3h** and **3j**. The structure of azide **5d** was confirmed by X-ray analysis (see the Supporting Information). The Ni(II)-catalyzed reaction of azide **3a** with benzoylacetone **4b** gave a *ca*. 1:1 mixture (¹H NMR) of regioisomers **5l** and **5m** in *ca*. 92% (Scheme 2). 2-(Azidocarbonyl)pyrrole **5l** was isolated in pure form by chromatography, in contrast to isomer **5m**, which turned out to be unstable like other pyrroles **5** with

an aryl substituent in the 5 position (*vide infra*). Ethyl acetoacetate did not react with azide **3a** under the same reaction conditions

the same reaction conditions.

Scheme 2. Reaction of Azide 3a with Nonsymmetrical 1,3-Diketone

In contrast to azirine-2-carbonyl azides **3**, 1*H*-pyrrole-2-carbonyl azides **5a-i**, **k** easily undergo the Curtius rearrangement in boiling *tert*-BuOH to give Boc-protected α -aminopyrroles **6a-i**, **k** (Table 3).

Table 3. Synthesis of Boc-Protected α-Aminopyrroles 6a-i, k^a

^a Isolated yields.

4-Benzoyl-substituted azidocarbonylpyrrole 5n was synthesized by the Ni(II)-catalyzed reaction of azide 3a with dibenzoylmethane 4c, but due to its instability, it was not fully characterized. It easily decomposed when kept in air at rt to give urea 8a. Heating crude azidocarbonylpyrrole 5n in *tert*-BuOH led to Boc-protected α -aminopyrrole 6n in 59% yield (Scheme 3).

Heating of azide **5a** in boiling aq AcOH (v/v, 1:1), in an attempt to prepare unprotected α -aminopyrrole **9a**, led to the quantitative formation of urea **8b** (Scheme 3). α -Aminopyrroles **9** can be prepared, however, by deprotection of *N*-Boc-aminopyroles **6** using TFA (Scheme 4).

Scheme 4. Synthesis of Urea 8b and Unprotected a-Aminopyrroles 9a and 9f

It was found that azidocarbonylpyrroles **5h** and **5i**, containing an *m*-MeO-substituted phenyl group under Curtius rearrangement conditions, afforded, in addition to Boc-protected α -aminopyrroles **6h** and **6i**, 3,4-dihydro-5*H*-pyrrolo[2,3-*c*]isoquinolin-5-ones **7h** and **7i** as byproducts. (Table 3). Compounds **7** are most likely the products of the electrocyclization of the intermediate isocyanates **10** (Scheme 5).

[6 π]-Electrocyclization involving the N=C bond of the isocyanates, generated via the Curtius rearrangement, with formation of fused pyridin-2(1*H*)-ones derivatives, occurs normally at high temperatures: 240 °C in diphenyl ether,⁹ 180 °C in *o*-dichlorobenzene (°DCB),¹⁰ 170 °C in *p*-cymene,¹¹ 180 °C in °DCB in the presence of Hg(OAc)₂ as a catalyst,¹² 170 °C in °DCB in the presence of Hg(OAc)₂ as a catalyst,¹² 170 °C in °DCB in the presence of I₂ as a catalyst.¹³ The mentioned electrophilic cyclization is characteristic of electron-rich azoles (Scheme 6).^{9-11, 13} When a substituted phenyl ring is involved in the cyclization, a donor substituent accelerates the reaction.^{12a}

Scheme 6. $[6\pi]$ -Electrocyclization Involving the N=C bond of the Isocyanates

We speculated, therefore, that the electron-donating *m*-MeO group in the 3-aryl substituent of pyrroles **5** plays a crucial role in facilitating their electrophilic cyclization into compounds **7** and thus the cyclization of intermediate isocycanates **10h** and **10i** can occur already at 82 $^{\circ}$ C.

To check this hypothesis a calculation of model isocyanates **10a** and **10i** and the transition states (TS) for their 1,6- π -cyclization were performed at the DFT B3LYP/6-311+G(d,p) level (PCM model for ^oDCB) (Scheme 7, for details of the calculations see the Supporting information).

Scheme 7. Relative Gibbs Free Energies of Isocyanates 10a and 10i and the Transition States (TS) for Their 1,6-π-Cyclization at the DFT B3LYP/6-311+G(d,p) level^{*a*}

^a In kcal/mol, 298 K, PCM model for ^oDCB.

According to the calculations, the barrier for the cyclization of the MeO-substituted compound **10i** is lower by 3.2 kcal/mol than the barrier for the cyclization of the unsubstituted compound **10a**. The value of the energy barrier for the cyclization of 25.4 kcal/mol indicates why the cyclization of compound **10i** can occur already at 82 °C. The value of the energy barrier for the cyclization of the unsubstituted analog **10a** (28.6 kcal/mol) means that this cyclization would occur at higher temperature, but obviously lower than the boiling point of °DCB. One more conclusion follows from the calculation: the pyridone tautomer of product **7** is much more stable than pyridol tautomer **12**. Based on this analysis, it was decided to search for conditions for the high yield transformation of acyl azides **5** into 5*H*-pyrrolo[2,3-*c*]isoquinolin-5-one derivatives **7**, which, to the best of our knowledge, have not yet been synthesized.

It was found that heating a ^oDCB solution of synthesized azides **5** (Table 2) at 150 °C for 0.5 h without any catalyst is sufficient to obtain 5H-pyrrolo[2,3-c]isoquinolin-5-ones **7** in high yields (Table 4). Moreover no chromatographic purification is required to isolate these products from their reaction mixtures.

Table 4. Synthesis of 5H-Pyrrolo[2,3-c]isoquinolin-5-one Derivatives 7a-d, f-k^a

^a Isolated yields.

Some unstable azidocarbonylpyrroles **5**, without prior isolation from the reaction mixtures of azidocarbonylazirines **3** with diketones **4**, were rearranged to 5H-pyrrolo[2,3-*c*]isoquinolin-5-one derivatives **7** (Table 5). The structure of compound **7n** was confirmed by X-ray analysis (see the Supporting Information).

Table 5. Synthesis of 5*H*-Pyrrolo[2,3-*c*]isoquinolin-5-one Derivatives 70-q^{*a*}

^{*a*} Isolated yields on two steps.

The cyclizations of isocyanates, derived from azidocarbonylpyrroles **5r** and **5s**, involving an electron rich furan and thiophene ring, proceed so easily that it is possible to perform these transformations in boiling acetonitrile (Scheme 8).

Scheme 8. Synthesis of Compounds 71, m

Moreover, preparation of these new heterocyclic backbones, 5,6-dihydro-4*H*-furo[2,3-*d*]pyrrolo[2,3*b*]pyridin-4-one and 5,6-dihydro-4*H*-pyrrolo[2,3-*b*]thieno[2,3-*d*]pyridin-4-one, can be implemented as one-pot process in up to 90% yield over two steps. Thus, various 1,2,7,8-substituted 3*H*pyrrolo[2,3-*c*]isoquinolin-5(4*H*)-ones and their benzo[*g*] and hetero-analogs can be prepared from the

appropriate 2-(azidocarbonyl)-2*H*-azirines **3**. However, 2-aryl-2-(azidocarbonyl)-2*H*-azirines with *ortho*-substituted aryl ring cannot be used for the preparation of 9-substituted derivatives, probably due to steric hindrance, preventing the isocyanate **10e** adopting the conformation required for cyclization. Thus, heating of azidocarbonylpyrrole **5e** does not lead to pyrroloisoquinolinone **7e**, although it is obvious that the formation of isocyanate **10e** does occur, since the treatment of the reaction mixture with wet DCM gave urea **8c** (Scheme 9).

Scheme 9. Transformation of Azidocarbonyl Pyrrole 5e

It is easy to introduce a substituent into the 5 position of the pyrrolo[2,3-*c*]isoquinoline skeleton via *O*-triflation of 3*H*-pyrrolo[2,3-*c*]isoquinolin-5(4*H*)-one 7, followed by various cross-coupling reactions. The reaction of compound 7**a** with triflic anhydride in the presence of DBU afforded triflate 13 in 86% yield (Scheme 10). The structure of 13 was confirmed by X-ray analysis (see Supporting Information). The Stille reaction of triflate 13 with 2-(tributylstannyl)pyridine afforded the modified 2,2'-bipyridyl ligand 14 in 94% yield. The Sonogashira reaction of 13 with ethynyltrimethylsilane gave 5-ethynyl-substituted 3*H*-pyrrolo[2,3-*c*]isoquinoline 15 in 92% yield. The Heck reaction of triflate 13 with acrylonitrile led to 5-(2-cyanovinyl)-substituted 3*H*-pyrrolo[2,3-*c*]isoquinoline 16 in 98% yield and its Suzuki reaction with boronic acids afforded 5-aryl-substituted 3*H*-pyrrolo[2,3-*c*]isoquinolines 17**a-c** in 77-95% yield.

Scheme 10. Synthesis of Triflate 13 and Its Cross-Coupling Reactions

In conclusion: a synthetic method was developed for the high yielding preparation of 2*H*-azirine-2carbonyl azides through reaction of sodium azide with 2*H*-azirine-2-carbonyl chlorides, generated by Fe(II)-catalyzed isomerization of 5-chloroisoxazoles. Attempts to prepare 2-amino-2*H*-azirines by the Curtius rearrangement of 2-(azidocarbonyl)-2*H*-azirines under various conditions were unsuccessful. However, 2-(azidocarbonyl)-1*H*-pyrroles, prepared by the Ni(II)-catalyzed reaction of 2-(azidocarbonyl)-2*H*-azirines with 1,3-diketones, easily undergo the Curtius rearrangement in boiling *t*BuOH to give Boc-protected α -aminopyrroles in high yield and these could be deprotected by TFA. Short-term heating of 3-aryl-2-(azidocarbonyl)-1*H*-pyrroles in *o*-dichlorobenzene at 150 °C leads to the high yield formation of substituted 3*H*-pyrrolo[2,3-*c*]isoquinolin-5(4*H*)-ones via a [6 π]electrocyclization of isocyanates, generated by the Curtius rearrangement. The cyclizations of

activated 3-methoxyphenyl, furyl and thienyl groups occur already at 82 °C. Thus, various 1,2,7,8substituted 3*H*-pyrrolo[2,3-*c*]isoquinolin-5(4*H*)-ones and their benzo[*g*] and hetero analogs can be prepared from the appropriate 2-(azidocarbonyl)-2*H*-azirines. The Pd-catalyzed cross-coupling reaction of 1-acetyl-2-methyl-3*H*-pyrrolo[2,3-*c*]isoquinolin-5-yl triflate, easily prepared from the corresponding pyrroloisoquinolone, lead to variously 5-substituted 3*H*-pyrrolo[2,3-*c*]isoquinolines in excellent yields. **EXPERIMENTAL SECTION General Information and Methods.** Melting points were determined on a melting point apparatus. ¹H (400 MHz), ¹³C (100 and 125 MHz) and ¹⁹F (376 and 470 MHz) NMR spectra were recorded on a NMR spectrometer in CDCl₃ or DMSO-*d*₆. Chemical shifts (δ) are reported in parts per million downfield from tetramethylsilane (TMS $\delta = 0.00$). ¹H NMR spectra were calibrated to the residual

General Information and Methods. Melting points were determined on a melting point apparatus. ¹H (400 MHz), ¹³C (100 and 125 MHz) and ¹⁹F (376 and 470 MHz) NMR spectra were recorded on a NMR spectrometer in CDCl₃ or DMSO-*d*₆. Chemical shifts (δ) are reported in parts per million downfield from tetramethylsilane (TMS δ = 0.00). ¹H NMR spectra were calibrated to the residual peak of CHCl₃ (7.26 ppm) or DMSO-*d*₅ (2.50 ppm). For all new compounds, ¹³C {¹H} and ¹³C DEPT-135 spectra were recorded and calibrated according to the peak of CDCl₃ (77.00 ppm) or DMSO-*d*₆ (39.51 ppm). ¹⁹F NMR spectra were calibrated according to a CFCl₃ external standard (δ = 0 ppm). Electrospray ionization (ESI) mass spectra were recorded on a mass spectrometer, HRMS-ESI-QTOF, electrospray ionization. Single crystal X-ray data were collected by means of diffractometer. Crystallographic data for the structures **3d**, **5d**, **7n** and **13** (CCDC 1956380, 1956383, 1956381 and 1956382 correspondingly) have been deposited with the Cambridge Crystallographic Data Centre. Thin-layer chromatography (TLC) was conducted on aluminum sheets with 0.2 mm silica gel with fluorescent indicator.

3-Aryl/heteryl-5-chloroimidazoles **1a-d**, **f-h**, **k**, **m**,¹⁴ **1e**¹⁵ were prepared according to the published procedures. Physical and spectral data of 5-chloroisoxazoles **1a**, **c**, **d**, **f-h**, **k**,¹⁶ **1b**,¹⁷ **1e**,¹⁵ **1l**, **m**,^{6b} were in agreement with previously reported values.

CAUTION: Although azides **3** *and* **5** *were found to be safe in our hands, they are potentially explosive and should be handled with care.*

5-Chloro-3-(3,4-dimethoxyphenyl)isoxazole (1i). Compound **1i** was prepared following the published procedure^{6a} from 3-(3,4-dimethoxyphenyl)isoxazol-5(4*H*)-one (2.5 g, 11.31 mmol), POCl₃ (17.36 g, 113.12 mmol, 10 equiv) and Et₃N (913 mg, 9.04 mmol, 0.6 equiv) in 1.84 g (68% yield, after flash chromatography on silica gel using hexanes/EtOAc (5:1 v/v) as eluent) as a beige solid: mp 68-70 °C (hexane/ EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 3.93 s (2H), 3.94 s (3H), 6.44 s (1H), 6.93 d (1H, *J* = 8.3 Hz), 7.24 dd (1H, *J* = 8.3, 2.0 Hz), 7.36 d (1H, *J* = 1.9 Hz). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 55.9 (CH₃), 56.0 (CH₃), 99.4 (CH), 108.9 (CH), 111.1 (CH), 120.0 (CH), 120.8 (C), 149.4 (C), 151.1 (C), 154.8 (C), 163.9 (C).). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₁H₁₀ClNNaO₃⁺ 262.0241; Found 262.0249.

5-Chloro-3-(4-(trifluoromethyl)phenyl)isoxazole (1j). Compound 1j was prepared following the published procedure^{6a} from 3-(4-(trifluoromethyl)phenyl)isoxazol-5(4*H*)-one (1.84 g, 8.05 mmol), POCl₃ (12.35 g, 80.52 mmol, 10 equiv) and Et₃N (488 mg, 4.83 mmol, 0.6 equiv) in 1.72 g (86% yield, after flash chromatography on silica gel using hexanes/EtOAc (5:1 v/v) as eluent) as a beige solid: mp 93-95 °C (hexane/ EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 6.53 (s, 1H), 7.68-7.79 (m, 2H), 7.85-7.96 (m, 2H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 99.8 (CH), 123.9 (q, *J*_{C-F} = 270.6 Hz, q), 126.2 (q, *J*_{C-F} = 3.7 Hz, CH), 127.2 (CH), 131.8 (C), 132.6 (q, *J*_{C-F} = 33.0 Hz, C), 156.0 (C), 163.2 (C). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₆ClF₃NO⁺ 248.0085; Found 248.0085.

General Procedure A for the Preparation of 2*H*-Azirine-2-carbonyl azides (3a-m).

Anhydrous iron(II) chloride (1.40 mmol, 20 mol%) was added to a solution of 5-chloroisoxazole 1 (7.00 mmol, 1 equiv) in dry acetonitrile (50 mL) under argon atmosphere and the reaction mixture was stirred for around 2 h (TLC control). After the reaction was completed, the solvent was evaporated, the residue was diluted with dry diethyl ether (50 mL) and the precipitated iron chloride

was filtered off through Celite. The ether was also evaporated, anhydrous acetone (40 mL) was added and the resulting solution was cooled to 0 °C in an ice bath. Sodium azide (0.011 mol, 1.6 equiv) was added and the reaction mixture was stirred for additional 20 minutes at 0 °C and then for 1 h at rt. After the reaction was completed, the solvent was evaporated and the residue was partitioned between water and dichloromethane, water layer was extracted three times with dichloromethane, the combined organic phases were washed with water, dried over Na₂SO₄, filtered, concentrated in vacuo and the residue was purified by column chromatography on silica gel (hexanes or petroleum ether/ethyl acetate, 3:1 v/v).

3-Phenyl-2H-azirine-2-carbonyl azide (3a). Compound **3a** was prepared following general procedure A from 5-chloro-3-phenylisoxazole **1a** (1.26 g, 7.00 mmol), FeCl₂ (178 mg, 1.40 mmol) and NaN₃ (729 mg, 0.011 mol) in 1.19 g (91% yield, after flash chromatography on silica gel using hexanes/EtOAc (3:1 v/v) as eluent) as a beige solid: mp 56-58 °C (hexanes/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 2.87 (s, 1H), 7.57-7.63 (m, 2H), 7.65-7.71 (m, 1H), 7.86-7.92 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 32.1 (CH), 121.7 (C), 129.6 (CH), 130.7 (CH), 134.4 (CH), 158.1 (C), 178.7 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₉H₆N₄NaO⁺ 209.0434; Found 209.0435.

3-(4-Fluorophenyl)-2H-azirine-2-carbonyl azide (3b). Compound **3b** was prepared following general procedure A from 5-chloro-3-(4-fluorophenyl)isoxazole **1b** (850 mg, 4.33 mmol), FeCl₂ (110 mg, 0.87 mmol) and NaN₃ (448 mg, 6.89 mmol) in 810 mg (92% yield, after flash chromatography on silica gel using hexanes/EtOAc (3:1 v/v) as eluent) as a beige solid: mp 59-60 °C (hexanes/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 2.87 (s, 1H), 7.25-7.34 (m, 2H), 7.86-7.98 (m, 2H). ¹⁹F{¹H} NMR (CDCl₃, 376 MHz): δ -101.54. ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 32.2 (CH), 117.3 d (CH, *J*_{C-F} = 22.9 Hz), 118.2 d (C, *J*_{C-F} = 3.5 Hz), 133.3 d (CH, *J*_{C-F} = 9.7 Hz), 157.1 (C), 166.4 d (C, *J*_{C-F} = 258.1 Hz), 178.5 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₉H₃FN₄NaO⁺ 227.0340; Found 227.0345.

3-(4-Chlorophenyl)-2H-azirine-2-carbonyl azide (3c). Compound 3c was prepared following general procedure A from 5-chloro-3-(4-chlorophenyl)isoxazole 1c (642 mg, 3.00 mmol), FeCl₂ (76 mg, 0.60 mmol) and NaN₃ (312 mg, 4.80 mmol) in 602 mg (91% yield, after flash chromatography on silica gel using hexanes/EtOAc (3:1 v/v) as eluent) as beige solid: mp 96-98 $^{\circ}$ C (hexanes/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 2.87 (s, 1H), 7.55-7.63 (m, 2H), 7.80-7.88 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 32.2 (CH), 120.3 (C), 130.1 (CH), 131.9 (CH), 141.1 (C), 157.5 (C), 178.4 (C). HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₉H₅ClN₄NaO⁺ 243.0044; Found 243.0036. 3-(4-Bromophenvl)-2H-azirine-2-carbonyl azide (3d). Compound 3d was prepared following general procedure A from 3-(4-bromophenyl)-5-chloroisoxazole 1d (864 mg, 3.34 mmol), FeCl₂ (85 mg, 0.67 mmol) and NaN₃ (262 mg, 4.02 mmol) in 650 mg (73% yield, after flash chromatography on silica gel using hexanes/EtOAc (3:1 v/v) as eluent and recrystallization from benzene) as a beige solid: mp 110-112 °C (benzene). ¹H NMR (CDCl₃, 400 MHz): δ 2.88 (s, 1H), 7.72-7.79 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 32.2 (CH), 120.7 (C), 129.7 (C), 131.9 (CH), 133.1 (CH), 157.7 (C), 178.4 (C). HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₉H₅⁷⁹BrN₄NaO⁺ 286.9539; Found 286.9548.

3-(2-Bromophenyl)-2H-azirine-2-carbonyl azide (3e). Compound **3e** was prepared following general procedure A from 3-(2-bromophenyl)-5-chloroisoxazole **1e** (1.02 g, 3.94 mmol), FeCl₂ (100 mg, 0.79 mmol) and NaN₃ (409 mg, 6.30 mmol) in 977 mg (94% yield, after flash chromatography on silica gel using hexanes/EtOAc (3:1 v/v) as eluent) as a beige solid: mp 68-70 °C (hexanes/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 2.94 (s, 1H), 7.47-7.58 (m, 2H), 7.74-7.81 (m, 1H), 7.83-7.92 (m, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 33.4 (CH), 122.4 (C), 126.0 (C), 128.2 (CH), 133.6 (CH), 134.4 (CH), 135.2 (CH), 158.6 (C), 178.4 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₉H₅⁷⁹BrN₄NaO⁺ 286.9539; Found 286.9533.

3-(p-Tolyl)-2H-azirine-2-carbonyl azide (3f). Compound **3f** was prepared following general procedure A from 5-chloro-3-(*p*-tolyl)isoxazole **1f** (830 mg, 4.29 mmol), FeCl₂ (109 mg, 0.86 mmol) and NaN₃ (446 mg, 6.87 mmol) in 781 mg (91% yield, after flash chromatography on silica gel using hexanes/EtOAc (3:1 v/v) as eluent) as a beige solid: mp 86-87 °C (hexanes/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 2.48 (s, 3H), 2.83 (s, 1H), 7.34-7.44 (m, 2H), 7.74-7.80 (m, 2H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 22.1 (CH₃), 32.0 (CH), 118.9 (C), 130.4 (CH), 130.8 (CH), 145.7 (C), 157.6 (C), 178.9 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₀H₈N₄NaO⁺ 223.0590; Found 223.0591.

3-(4-Methoxyphenyl)-2H-azirine-2-carbonyl azide (3g). Compound **3g** was prepared following general procedure A from 5-chloro-3-(4-methoxyphenyl)isoxazole **1g** (841 mg, 4.02 mmol), FeCl₂ (102 mg, 0.80 mmol) and NaN₃ (418 mg, 6.42 mmol) in 768 mg (89% yield, after flash chromatography on silica gel using hexanes/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 106-107 °C (hexanes/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 2.81 (s, 1H), 3.91 (s, 3H), 7.05-7.12 (m, 2H), 7.79-7.86 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 32.0 (CH), 55.8 (CH₃), 113.9 (C), 115.2 (CH), 132.9 (CH), 156.6 (C), 164.5 (C), 179.1 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₀H₈N₄NaO₂⁺ 239.0539; Found 239.0532.

3-(3,4-Dimethoxyphenyl)-2H-azirine-2-carbonyl azide (3i). Compound **3i** was prepared following general procedure A from 5-chloro-3-(3,4-dimethoxyphenyl)isoxazole **1i** (1.745 g, 7.29 mmol), FeCl₂ (185 mg, 1.46 mmol) and NaN₃ (758 mg, 11.66 mmol) in 1.68 g (94% yield, after flash chromatography on silica gel using hexanes/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 84-86 °C (hexanes/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 2.84 (s, 1H), 3.97 (s, 3H), 3.98 (s, 3H), 7.03 (d, J = 8.2 Hz, 1H), 7.40 (d, J = 1.9 Hz, 1H), 7.43 (dd, J = 8.2, 1.9 Hz, 1H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 32.3 (CH), 56.3 (CH₃), 56.4 (CH₃), 111.3 (CH), 111.8 (CH), 114.0 (C), 125.9 (CH), 150.0 (C), 154.3 (C), 157.0 (C), 179.0 (C). HRMS (ESI) *m/z*: [M + Ag]⁺ Calcd for C₁₁H₁₀¹⁰⁷AgN₄O₃⁺ 352.9798; Found 352.9798.

3-(Naphthalen-2-yl)-2H-azirine-2-carbonyl azide (3k). Compound **3k** was prepared following general procedure A from 5-chloro-3-(naphthalen-2-yl)isoxazole **1k** (300 mg, 1.31 mmol), FeCl₂ (33 mg, 0.26 mmol) and NaN₃ (136 mg, 2.09 mmol) in 238 mg (77% yield, after flash chromatography on silica gel using hexanes/EtOAc (3:1 v/v) as eluent) as a beige solid: mp 97-99 °C (hexanes/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 2.96 (s, 1H), 7.57-7.74 (m, 2H), 7.90-8.10 (m, 4H), 8.32 (s, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 32.4 (CH), 119.0 (C), 124.9 (CH), 127.7 (CH), 128.3 (CH), 129.4 (CH), 129.5 (CH), 129.8 (CH), 132.8 (C), 133.4 (CH), 136.1 (C), 158.2 (C), 178.8 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₃H₈N₄NaO⁺ 259.0590; Found 259.0588.

3-(Furan-2-yl)-2H-azirine-2-carbonyl azide (31). Compound 31 was prepared following general procedure A from 5-chloro-3-(furan-2-yl)isoxazole 11 (267 mg, 1.58 mmol), FeCl₂ (40 mg, 0.32 mmol) and NaN₃ (164 mg, 2.52 mmol) in 194 mg (70% yield, after flash chromatography on silica gel using hexanes/EtOAc (3:1 v/v) as eluent) as a beige solid: mp 87-89 °C (hexane/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 2.86 (s, 3H), 6.71 (dd, *J* = 3.6, 1.8 Hz, 1H), 7.30 (dd, *J* = 3.6, 0.5 Hz, 1H), 7.86 (dd, *J* = 1.8, 0.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 31.7 (CH), 113.3 (CH), 122.5 (CH), 138.8 (C), 147.9 (C), 149.8 (CH), 178.1 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₇H₄N₄NaO₂⁺ 199.0226; Found 199.0222.

3-(Thiophen-2-yl)-2H-azirine-2-carbonyl azide (3m). Compound **3m** (855 mg, 94%) was prepared following general procedure A from 5-chloro-3-(thiophen-2-yl)isoxazole **1m** (884 mg, 4.76 mmol), FeCl₂ (121 mg, 0.95 mmol) and NaN₃ (495 mg, 7.62 mmol) in 855 mg (94% yield, after flash chromatography on silica gel using hexanes/EtOAc (3:1 v/v) as eluent) as a brown solid: mp 47-49 °C (hexanes/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 2.89 (s, 1H), 7.30 (dd, *J* = 5.0, 3.8 Hz, 1H), 7.73 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.92 (dd, *J* = 5.0, 1.1 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 32.8 (CH), 123.9 (C), 128.8 (CH), 136.1 (CH), 136.3 (CH), 151.3 (C), 178.3 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₇H₄N₄NaOS⁺ 214.9998; Found 214.9990.

General Procedure B for the Preparation of 1*H*-Pyrrole-2-carbonyl azides (5a-k).

1,3-Diketone **4** (1.60 mmol, 1.05 equiv) and NiCl₂·6H₂O (0.15 mmol, 10 mol%) were added to a solution of azirine **3** (1.52 mmol, 1 equiv) in acetonitrile (5 mL) and the resulting mixture was stirred at rt to the completion of the reaction (monitored by TLC, 1-2 d). After the reaction was over, the product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate, 3:1 v/v). Poorly soluble compounds such as **5d** and **5g** could be purified by filtration from the reaction mixture and washing with acetonitrile and water.

4-Acetyl-5-methyl-3-phenyl-1H-pyrrole-2-carbonyl azide (5a). Compound 5a was prepared following general procedure B from 3-phenyl-2H-azirine-2-carbonyl azide 3a (283 mg, 1.52 mmol), acetylacetone 4a (160 mg, 1.60 mmol) and NiCl₂·6H₂O (36 mg, 0.15 mmol) in 375 mg (92% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 116-117 °C (petroleum ether/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 1.78 (s, 3H), 2.59 (s, 3H), 7.27-7.33 (m, 2H), 7.38-7.46 (m, 3H), 9.39 (s, 1H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 14.7 (CH₃), 30.8 (CH₃), 119.3 (C), 124.8 (C), 128.2 (CH), 128.2 (CH), 130.1 (CH), 134.5 (C), 134.7 (C), 141.0 (C), 164.9 (C), 196.6 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₄H₁₁N₄O₂⁻ 267.0887; Found 267.0874.

4-Acetyl-3-(4-fluorophenyl)-5-methyl-1H-pyrrole-2-carbonyl azide (**5b**). Compound **5b** was prepared following general procedure B from 3-(4-fluorophenyl)-2H-azirine-2-carbonyl azide **3b** (400 mg, 1.96 mmol), acetylacetone **4a** (206 mg, 2.06 mmol) and NiCl₂·6H₂O (47 mg, 0.20 mmol) in 495 mg (88% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 118-119 °C (petroleum ether/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 1.81 (s, 3H), 2.59 (s, 3H), 7.06-7.18 (m, 2H), 7.22-7.32 (m, 2H), 9.69 (s, 1H). ¹⁹F {¹H} NMR (CDCl₃, 376 MHz): δ -113.62. ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 14.7 (CH₃), 30.9 (CH₃), 115.3 (d, *J*_{C-F} = 21.6 Hz, CH), 119.5 (C), 124.8 (C), 130.4 (d, *J*_{C-F} = 3.8 Hz, C), 131.8 (d, *J*_{C-F} = 7.9 Hz, CH), 133.5

(C), 141.2 (C), 162.8 (d, $J_{C-F} = 247.8$ Hz, C), 164.9 (C), 196.2 (C). HRMS (ESI) m/z: [M - H]⁻ Calcd for C₁₄H₁₀FN₄O₂⁻ 285.0793; Found 285.0793.

4-Acetyl-3-(4-chlorophenyl)-5-methyl-1H-pyrrole-2-carbonyl azide (5c). Compound 5c was prepared following general procedure B from 3-(4-chlorophenyl)-2H-azirine-2-carbonyl azide 3c (250 mg, 1.13 mmol), acetylacetone 4a (119 mg, 1.19 mmol) and NiCl₂·6H₂O (27 mg, 0.11 mmol) in 303 mg (91% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 124-125 °C (petroleum ether/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 1.82 (s, 3H), 2.58 (s, 3H), 7.20-7.27 (m, 2H), 7.36-7.46 (m, 2H), 9.37 (s, 1H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 14.7 (CH₃), 31.0 (CH₃), 119.4 (C), 124.7 (C), 128.5 (CH), 131.5 (CH), 133.0 (C), 133.2 (C), 134.4 (C), 141.1 (C), 164.8 (C), 196.1 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₄H₁₁ClN₄NaO₂+ 325.0463; Found 325.0455.

4-Acetyl-3-(4-bromophenyl)-5-methyl-1H-pyrrole-2-carbonyl azide (5d). Compound 5d was prepared following general procedure B from 3-(4-bromophenyl)-2*H*-azirine-2-carbonyl azide 3d (165 mg, 0.62 mmol), acetylacetone 4a (66 mg, 0.66 mmol) and NiCl₂·6H₂O (15 mg, 0.06 mmol) in 158 mg (73% yield) as a colorless solid: mp 129-130 °C (MeCN). ¹H NMR (CDCl₃, 400 MHz): δ 1.82 (s, 3H), 2.58 (s, 3H), 7.10-7.23 (m, 2H), 7.47-7.65 (m, 2H), 9.35 (s, 1H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 14.7 (CH₃), 31.0 (CH₃), 119.3 (C), 122.6 (C), 124.7 (C), 131.4 (CH), 131.8 (CH), 133.1 (C), 133.5 (C), 141.0 (C), 164.7 (C), 196.1 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₄H₁₀⁷⁹BrN₄O₂⁻ 344.9993; Found 344.9994.

4-Acetyl-3-(2-bromophenyl)-5-methyl-1H-pyrrole-2-carbonyl azide (5e). Compound 5e was prepared following general procedure B from 3-(2-bromophenyl)-2H-azirine-2-carbonyl azide 3e (300 mg, 1.13 mmol), acetylacetone 4a (119 Mг, 1.19 mmol) and NiCl₂·6H₂O (27 mg, 0.11 mmol) in 341 mg (87% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 118-119 °C (petroleum ether/EtOAc). ¹H NMR (CDCl₃, 400 MHz):

δ 1.82 (s, 3H), 2.63 (s, 3H), 7.23-7.33 (m, 2H), 7.34-7.43 (m, 1H), 7.64-7.72 (m, 1H), 9.51 (s, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 15.0 (CH₃), 30.1 (CH₃), 119.4 (C), 123.8 (C), 124.7 (C), 127.3 (CH), 129.9 (CH), 131.6 (CH), 132.7 (CH), 132.9 (C), 136.1 (C), 141.6 (C), 164.7 (C), 195.6 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₄H₁₁⁷⁹BrN₄NaO₂⁺ 368.9958; Found 368.9950.

4-Acetyl-5-methyl-3-(p-tolyl)-1H-pyrrole-2-carbonyl azide (5f). Compound 5f was prepared following general procedure B from 3-(*p*-tolyl)-2*H*-azirine-2-carbonyl azide 3f (150 mg, 0.75 mmol), acetylacetone 4a (79 mg, 0.79 mmol) and NiCl₂·6H₂O (18 mg, 0.08 mmol) in 193 mg (91% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 119-120 °C (petroleum ether/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 1.80 (s, 3H), 2.42 (s, 3H), 2.58 (s, 3H), 7.09-7.19 (m, 2H), 7.20-7.32 (m, 2H), 9.39 (s, 1H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 14.7 (CH₃), 21.5 (CH₃), 30.8 (CH₃), 119.3 (C), 124.9 (C), 128.9 (CH), 130.0 (CH), 131.3 (C), 134.9 (C), 138.0 (C), 141.0 (C), 164.9 (C), 196.8 (C). HRMS (ESI) *m/z*: [M + H]⁻Calcd for C₁₅H₁₅N₄O₂+ 283.1190; Found 283.1201.

4-Acetyl-3-(4-methoxyphenyl)-5-methyl-1H-pyrrole-2-carbonyl azide (**5**g). Compound **5**g was prepared following general procedure **B** from 3-(4-methoxyphenyl)-2H-azirine-2-carbonyl azide **3**g (150 mg, 0.69 mmol), acetylacetone **4a** (73 mg, 0.73 mmol) and NiCl₂·6H₂O (16 mg, 0.07 mmol) in 152 mg (74% yield) as a colorless solid: mp 100-101 °C (MeCN). ¹H NMR (CDCl₃, 400 MHz): δ 1.81 (s, 3H), 2.57 (s, 3H), 3.87 (s, 3H), 6.92-7.00 (m, 2H), 7.17-7.24 (m, 2H), 9.37 (s, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 14.7 (CH₃), 30.8 (CH₃), 55.4 (CH₃), 113.7 (CH), 119.3 (C), 124.9 (C), 126.4 (C), 131.3 (CH), 134.6 (C), 140.9 (C), 159.6 (C), 164.8 (C), 196.8 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₅H₁₄N₄NaO₃⁺ 321.0958; Found 321.0959.

4-Acetyl-3-(3-methoxyphenyl)-5-methyl-1H-pyrrole-2-carbonyl azide (5h). Compound
5h was prepared following general procedure B from crude 3-(3-methoxyphenyl)-2H-azirine-2-carbonyl azide 3h (which in its turn was prepared following general procedure A from 350 mg (1.67)

mmol) of 5-chloro-3-(3-methoxyphenyl)isoxazole **1h**, 42 mg (0.33 mmol), FeCl₂ and 174 mg (2.67 mmol) NaN₃), acetylacetone 4a (129 мг, 1.29 mmol) and NiCl₂·6H₂O (29 mg, 0.12 mmol) in 264 mg (53% yield for two steps, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 118-120 °C (petroleum ether/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 1.83 (s, 3H), 2.58 (s, 3H), 3.83 (s, 3H), 6.80-6.85 (m, 1H), 6.86-6.91 (m, 1H), 6.92-6.98 (m, 1H), 7.33 (t, J = 8.0 Hz, 1H), 9.36 (s, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 14.7 (CH₃), 30.6 (CH₃), 55.4 (CH₃), 113.6 (CH), 116.0 (CH), 119.2 (C), 122.7 (CH), 124.7 (C), 129.2 (CH), 134.4 (C), 135.8 (C), 141.1 (C), 159.4 (C), 165.0 (C), 196.6 (C). HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₄N₄NaO₃⁺ 321.0958; Found 321.0946.

4-Acetvl-3-(3,4-dimethoxyphenyl)-5-methyl-1H-pyrrole-2-carbonyl azide (5i). Compound 5i was prepared following general procedure B from 3-(3,4-dimethoxyphenyl)-2Hazirine-2-carbonyl azide 3i (281 mg, 1.14 mmol), acetylacetone 4a (120 mg, 1.20 mmol) and NiCl₂·6H₂O (27 mg, 0.11 mmol) in 336 mg (90% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 129-131 °C (petroleum ether/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 1.84 (s, 3H), 2.57 (s, 3H), 3.88 (s, 3H), 3.94 (s, 3H), 6.80 (d, J = 1.8 Hz, 1H), 6.85 (dd, J = 8.2, 1.8 Hz, 1H), 6.93 (d, J = 8.2 Hz, 1H), 9.29 (s, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 14.6 (CH₃), 30.6 (CH₃), 55.9 (CH₃), 56.1 (CH₃), 110.9 (CH), 113.5 (CH), 119.3 (C), 122.7 (CH), 124.9 (C), 126.6 (C), 134.5 (C), 140.8 (C), 148.7 (C), 149.1 (C), 164.8 (C), 196.8 (C). HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆N₄NaO₄+⁺ 351.1064; Found 351.1064. 4-Acetvl-5-methvl-3-(4-(trifluoromethyl)phenyl)-1H-pyrrole-2-carbonyl azide

Compound **5** was prepared following general procedure B from crude 3-(4-(trifluoromethyl)phenyl)-2H-azirine-2-carbonyl azide **3** (which in its turn was prepared following general procedure A from 433 mg (1.75 mmol) of 5-chloro-3-(4-(trifluoromethyl)phenyl)isoxazole 1j, 44 mg (0.35 mmol) FeCl₂ and 182 mg (2.80 mmol) NaN₃), acetylacetone 4a (55 MF, 0.55 mmol) and NiCl₂·6H₂O (12 mg, 0.05

(**5***i*).

mmol) in 110 mg (19% yield for two steps, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 129-131 °C (petroleum ether/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 1.79 (s, 3H), 2.60 (s, 3H), 7.35-7.52 (m, 2H), 7.65-7.77 (m, 2H), 9.42 (s, 1H). ¹⁹F{¹H} NMR (DMSO-*d*₆, 376 MHz): δ -60.85. ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.8 (CH₃), 30.5 (CH₃), 118.7 (C), 123.7 (C), 124.3 (q, *J*_{C-F} = 270.3 Hz, C), 124.4 (q, *J*_{C-F} = 3.7 Hz, CH), 127.9 (q, *J*_{C-F} = 31.5 Hz, C), 130.9 (CH), 132.2 (C), 139.3 (C), 140.9 (C), 163.1 (C), 194.1 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₅H₁₀F₃N₄O₂⁻ 335.0761; Found 335.0763.

4-Acetyl-5-methyl-3-(naphthalen-2-yl)-1H-pyrrole-2-carbonyl azide (5k). Compound 5k was prepared following general procedure B from 3-(naphthalen-2-yl)-2*H*-azirine-2-carbonyl azide **3k** (177 mg, 0.75 mmol), acetylacetone **4a** (79 mg, 0.79 mmol) and NiCl₂·6H₂O (18 mg, 0.08 mmol) in 202 mg (85% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 134-135 °C (petroleum ether/EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 2.14 (s, 3H), 3.00 (s, 3H), 7.77-7.84 (m, 1H), 7.88-7.95 (m, 2H), 8.12-8.18 (m, 1H), 8.20-8.26 (m, 1H), 8.27-8.33 (m, 2H), 10.35 (s, 1H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 14.7 (CH₃), 30.9 (CH₃), 119.5 (C), 125.0 (C), 126.6 (CH), 126.6 (CH), 127.7 (CH), 128.0 (CH), 128.1 (CH), 128.2 (CH), 129.2 (CH), 132.0 (C), 133.0 (C), 133.1 (C), 134.5 (C), 141.1 (C), 165.0 (C), 196.6 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₈H₁₄N₄NaO₂⁺ 341.1009; Found 341.1010.

4-Benzoyl-5-methyl-3-phenyl-1H-pyrrole-2-carbonyl azide (51). Reaction of 3-phenyl-2*H*-azirine-2-carbonyl azide **3a** (150 mg, 0.81 mmol), 1-phenylbutane-1,3-dione **4b** (137 mg, 0.85 mmol) and NiCl₂·6H₂O (19 mg, 0.08 mmol), performed following general procedure B, gave a *ca*. 1:1 mixture (¹H NMR) of regioisomers **5l** and **5m** 245 mg (*ca*. 92% yield). 2-(Azidocarbonyl)pyrrole **5l** was isolated in pure form by chromatography on silica gel (eluent a mixture of benzene/DCM, 5:4 v/v) in 110 mg (41% yield), in contrast to isomer **5m**, which turned out to be unstable. Compound **5l**, colorless solid: mp 106-107 °C (benzene/DCM). ¹H NMR (CDCl₃, 400 MHz): δ 1.88 s (3H), 7.35-7.40 m (2H),

7.40-7.50 m (6H), 7.52-7.60 m (2H), 9.44 s (1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 31.4 (CH₃), 120.6 (C), 126.0 (C), 128.1 (CH), 128.3 (CH), 128.9 (CH), 128.9 (CH), 129.7 (CH), 130.3 (CH), 130.7 (C), 133.5 (C), 134.1 (C), 139.3 (C), 164.7 (C), 197.2 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₉H₁₄N₄NaO₂⁺ 353.1009; Found 353.0997.

General Procedure C for the Preparation of Carbamates (6a-i, n). A solution of azide **5** (0.93 mmol) in anhyd *t*-BuOH (10 mL) was refluxed for 1 h (monitored by TLC) using oil bath. After the reaction was complete, the solvent was evaporated and the residue was purified by flash column chromatography on silica gel (eluent a mixture of petroleum ether/EtOAc, 3:1 v/v).

tert-Butyl (4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)carbamate (**6a**). Compound **6a** was prepared following general procedure C from 4-acetyl-5-methyl-3-phenyl-1*H*-pyrrole-2-carbonyl azide **5a** (250 mg, 0.93 mmol) in 283 mg (97% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 177-178 °C (petroleum ether/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.38 (s, 9H), 1.84 (s, 3H), 2.36 (s, 3H), 7.14-7.28 (m, 3H), 7.29-7.39 (m, 2H), 8.36 (s, 1H), 11.39 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.5 (CH₃), 28.0 (CH₃), 30.3 (CH₃), 78.6 (C), 118.9 (C), 119.5 (C), 121.3 (C), 126.2 (CH), 127.7 (CH), 129.9 (CH), 131.0 (C), 135.4 (C), 155.2 (C), 194.3 (C). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₃N₂O₃⁺ 315.1703; Found 315.1716.

tert-Butyl (4-acetyl-3-(4-fluorophenyl)-5-methyl-1H-pyrrol-2-yl)carbamate (**6b**). Compound **6b** was prepared following general procedure C from 4-acetyl-3-(4-fluorophenyl)-5methyl-1*H*-pyrrole-2-carbonyl azide **5b** (323 mg, 1.20 mmol) in 400 mg (100% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 174-176 °C (petroleum ether/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.37 (s, 9H), 1.88 (s, 3H), 2.36 (s, 3H), 7.02-7.20 (m, 2H), 7.21-7.35 (m, 2H), 8.39 (s, 1H), 11.41 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.6 (CH₃), 28.0 (CH₃), 30.4 (CH₃), 78.7 (C), 114.4 (d, *J_{C-F}* = 21.0 Hz, CH),

117.8 (C), 119.4 (C), 121.6 (C), 131.2 (C), 131.6 (C), 131.7 (d, $J_{C-F} = 7.9$ Hz, CH), 155.2 (C), 161.0 (d, $J_{C-F} = 242.6$ Hz, C), 194.0 (C). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₂FN₂O₃⁺ 333.1609; Found 333.1617.

tert-Butyl (4-acetyl-3-(4-chlorophenyl)-5-methyl-1H-pyrrol-2-yl)carbamate (6c). Compound 6c was prepared following general procedure C from 4-acetyl-3-(4-chlorophenyl)-5methyl-1H-pyrrole-2-carbonyl azide 5c (300 mg, 0.99 mmol) in 344 mg (100% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 191-193 °C (petroleum ether/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.38 (s, 9H), 1.92 (s, 3H), 2.37 (s, 3H), 7.19-7.26 (m, 2H), 7.34-7.43 (m, 2H), 8.43 (s, 1H), 11.44 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.6 (CH₃), 28.0 (CH₃), 30.4 (CH₃), 78.8 (C), 117.5 (C), 119.3 (C), 121.7 (C), 127.6 (CH), 130.8 (C), 131.3 (C), 131.6 (CH), 134.3 (C), 155.1 (C), 193.9 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₈H₂₁ClN₂O₃Na⁺ 371.1133; Found 371.1148.

tert-Butyl (4-acetyl-3-(4-bromophenyl)-5-methyl-1H-pyrrol-2-yl)carbamate (6d). Compound 6d was prepared following general procedure C from 4-acetyl-3-(4-bromophenyl)-5methyl-1*H*-pyrrole-2-carbonyl azide 5d (53 mg, 0.15 mmol) in 57 mg (94% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 199-200 °C (petroleum ether/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.38 (s, 9H), 1.93 (s, 3H), 2.37 (s, 3H), 7.01-7.30 (m, 2H), 7.36-7.70 (m, 2H), 8.43 (s, 1H), 11.45 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.6 (CH₃), 28.0 (CH₃), 30.4 (CH₃), 78.8 (C), 117.5 (C), 119.3 (C), 119.4 (C), 121.7 (C), 130.5 (CH), 131.4 (C), 132.0 (CH), 134.6 (C), 155.1 (C), 193.9 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₈H₂₁⁷⁹BrN₂O₃Na⁺ 415.0628; Found 415.0611.

tert-Butyl (4-acetyl-3-(2-bromophenyl)-5-methyl-1H-pyrrol-2-yl)carbamate (6e). Compound 6e was prepared following general procedure C from 4-acetyl-3-(2-bromophenyl)-5methyl-1H-pyrrole-2-carbonyl azide 5e (300 mg, 0.86 mmol) in 310 mg (91% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 194-196 °C (petroleum ether/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.35 (s, 9H), 1.79 (s, 3H), 2.39 (s, 3H), 7.19-7.27 (m, 1H), 7.28-7.40 (m, 2H), 7.60-7.69 (m, 1H), 8.37 (m, 1H), 11.41 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.6 (CH₃), 28.0 (CH₃), 29.3 (CH₃), 78.7 (C), 116.9 (C), 119.2 (C), 121.9 (C), 125.4 (C), 127.1 (CH), 128.8 (CH), 131.0 (C), 132.1 (CH), 132.5 (CH), 136.7 (C), 154.7 (C), 193.3 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₈H₂₁⁷⁹BrN₂NaO₃⁺ 415.0628; Found 415.0632.

tert-Butyl (4-acetyl-5-methyl-3-(p-tolyl)-1H-pyrrol-2-yl)carbamate (6f). Compound 6f was prepared following general procedure C from 4-acetyl-5-methyl-3-(p-tolyl)-1H-pyrrole-2carbonyl azide 5f (320 mg, 1.13 mmol) in 356 mg (96% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 200-201 °C (petroleum ether/EtOAc). ¹H NMR (DMSO- d_6 , 400 MHz): δ 1.38 (s, 9H), 1.83 (s, 3H), 2.31 (s, 3H), 2.35 (s, 3H), 7.05-7.20 (m, 4H), 8.32 (s, 1H), 11.36 (s, 1H). ¹³C {¹H} NMR (DMSO- d_6 , 100 MHz): δ 13.5 (CH₃), 20.7 (CH₃), 28.0 (CH₃), 30.3 (CH₃), 78.6 (C), 118.7 (C), 119.5 (C), 121.2 (C), 128.3 (CH), 129.8 (CH), 131.0 (C), 132.3 (C), 135.2 (C), 155.3 (C), 194.4 (C). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₅N₂O₃⁺ 329.1860; Found 329.1865.

tert-Butyl (4-acetyl-3-(4-methoxyphenyl)-5-methyl-1H-pyrrol-2-yl)carbamate (**6g**). Compound **6g** was prepared following general procedure C from 4-acetyl-3-(4-methoxyphenyl)-5methyl-1*H*-pyrrole-2-carbonyl azide **5g** (262 mg, 0.88 mmol) in 287 mg (95% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 194-196 °C (petroleum ether/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.38 (s, 9H), 1.83 (s, 3H), 2.35 (s, 3H), 3.76 (s, 3H), 6.84-6.95 (m, 2H), 7.10-7.19 (m, 2H), 8.32 (s, 1H), 11.34 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.5 (CH₃), 28.0 (CH₃), 30.3 (CH₃), 55.0 (CH₃), 78.6 (C),

113.2 (CH), 118.5 (C), 119.5 (C), 121.2 (C), 127.4 (C), 130.9 (C), 131.0 (CH), 155.3 (C), 157.9 (C), 194.4 (C). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₅N₂O₄⁺ 345.1809; Found 345.1824.

tert-Butyl (4-acetyl-3-(3-methoxyphenyl)-5-methyl-1H-pyrrol-2-yl)carbamate (**6h**). Compound **6h** was prepared following general procedure C from 4-acetyl-3-(3-methoxyphenyl)-5-methyl-1*H*-pyrrole-2-carbonyl azide **5h** (116 mg, 0.39 mmol) in 100 mg (75% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 147-148 °C (petroleum ether/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.38 (s, 9H), 1.86 (s, 3H), 2.34 (s, 3H), 3.74 (s, 3H), 6.64-6.94 (m, 3H), 7.24 (t, *J* = 7.7 Hz, 1H), 8.37 (s, 1H), 11.39 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.4 (CH₃), 28.0 (CH₃), 30.2 (CH₃), 54.9 (CH₃), 78.7 (C), 111.9 (CH), 115.4 (CH), 118.7 (C), 119.5 (C), 121.3 (C), 122.5 (CH), 128.6 (CH), 131.0 (C), 136.7 (C), 155.2 (C), 158.8 (C), 194.4 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₉H₂₄N₂NaO₄⁺ 367.1628; Found 367.1630.

tert-Butyl (4-acetyl-3-(3,4-dimethoxyphenyl)-5-methyl-1H-pyrrol-2-yl)carbamate (6i). Compound **6i** was prepared following general procedure C from 4-acetyl-3-(3,4-dimethoxyphenyl)-5-methyl-1*H*-pyrrole-2-carbonyl azide **5i** (181 mg, 0.55 mmol) in 113 mg (55% yield, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a colorless solid: mp 163-165 °C (petroleum ether/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.39 (s, 9H), 1.85 (s, 3H), 2.34 (s, 3H), 3.72 (s, 3H), 3.76 (s, 3H), 6.68-6.78 (m, 1H), 6.79-6.87 (m, 1H), 6.92 (d, *J* = 8.2 Hz, 1H), 8.33 (s, 1H), 11.35 (m, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.5 (CH₃), 28.2 (CH₃), 30.2 (CH₃), 55.3 (CH₃), 55.5 (CH₃), 78.6 (C), 111.4 (CH), 114.0 (CH), 118.7 (C), 119.5 (C), 121.1 (C), 122.3 (CH), 127.8 (C), 130.9 (C), 147.5 (C), 148.0 (C), 155.2 (C), 194.4 (C). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₇N₂O₅⁺ 375.1914; Found 375.1905.

tert-Butyl (4-benzoyl-3,5-diphenyl-1H-pyrrol-2-yl)carbamate (6n). Compound 6n was prepared following general procedure C from 4-benzoyl-3,5-diphenyl-1*H*-pyrrole-2-carbonyl azide

(which in its turn was prepared following general procedure B from 3-phenyl-2*H*-azirine-2-carbonyl azide **3a** (200 mg, 1.08 mmol), 1,3-diphenylpropane-1,3-dione **4b** (253 mg, 1.13 mmol) and NiCl₂·6H₂O (26 mg, 0.11 mmol)) in 240 mg (yield 51% for 2 steps, after flash chromatography on silica gel using petroleum ether/EtOAc (3:1 v/v) as eluent) as a pale green solid: mp 177-178 °C (petroleum ether/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.44 (s, 9H), 7.03-7.10 (m, 1H), 7.11-7.19 (m, 5H), 7.20-7.27 (m, 4H), 7.30-7.39 (m, 3H), 7.58-7.64 (m, 2H), 8.69 (s, 1H), 11.88 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 28.3 (CH₃), 79.1 (C), 118.8 (C), 120.3 (C), 123.9 (C), 125.9 (CH), 127.2 (CH), 127.7 (CH), 127.9 (CH), 128.3 (CH), 128.4 (CH), 129.0 (CH), 129.4 (CH), 129.9 (C), 131.7 (C), 132.6 (CH), 134.2 (C), 138.7 (C), 155.5 (C), 194.2 (C). HRMS (ESI) *m/z*: [M - H]⁻Calcd for C₂₈H₂₅N₂O₃- 437.1871; Found 437.1861.

1,3-Bis(4-benzoyl-3,5-diphenyl-1H-pyrrol-2-yl)urea (8a). Compound **8a** was obtained from crude 4-benzoyl-3,5-diphenyl-1*H*-pyrrole-2-carbonyl azide **5n** (48 mg, 0.12 mmol) while standing on air for 2 weeks and purified by column chromatography on silica gel (eluent a mixture of hexanes/EtOAc, 1:1 v/v) to give 22 mg (50% yield) of pure product as a yellow solid: mp 167-169 °C (dec., hexanes/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 7.07-7.13 (s, 2H), 7.14-7.20 (m, 10H), 7.21-7.28 (m, 8H), 7.31-7.40 (m, 6H), 7.62-7.69 (m, 4H), 8.41 (s, 2H), 11.75 (s, 2H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 118.6 (C), 124.5 (C), 125.7 (CH), 126.9 (CH), 127.5 (CH), 128.0 (CH), 128.0 (CH), 128.2 (CH), 128.2 (C), 129.0 (CH), 129.2 (C), 129.3 (CH), 131.5 (C), 132.4 (CH), 133.7 (C), 138.5 (C), 155.7 (C), 194.0 (C). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₄₇H₃₅N₄O₃⁺ 703.2704; Found 703.2711.

1,3-Bis(4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)urea (**8b**). 4-Acetyl-5-methyl-3phenyl-1H-pyrrole-2-carbonyl azide **5a** (70 mg, 0.26 mmol) was dissolved in AcOH/H₂O mixture (v/v 1:1, 2 mL) and the resulting solution was refluxed for 1 h by using oil bath heating. The reaction mixture was poured into water (30 mL), neutralized with 5% NaHCO₃ and extracted with EtOAc

 $(3\times20 \text{ mL})$. The combined organic phases were washed with water (30 mL), dried over Na₂SO₄, filtered off and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent a mixture of DCM/MeOH, 50:1 v/v) to give 58 mg (96% yield) of pure product as an ochre solid: mp 246-247 °C (dec., DCM/MeOH). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.83 (s, 6H), 2.37 (s, 6H), 7.10-7.22 (m, 4H), 7.24-7.30 (m, 2H), 7.31-7.38 (m, 4H), 7.84 (s, 2H), 11.30 (s, 2H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.5 (CH₃), 30.3 (CH₃), 119.3 (C), 122.2 (C), 126.2 (CH), 128.0 (CH), 129.0 (C), 130.1 (CH), 130.8 (C), 135.1 (C), 155.5 (C), 194.2 (C). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₇H₂₇N₄O₃⁺ 455.2078; Found 455.2095.

1,3-Bis(*4-acetyl-3-(2-bromophenyl)-5-methyl-1H-pyrrol-2-yl)urea* (*8c*). A solution of 4acetyl-3-(2-bromophenyl)-5-methyl-1*H*-pyrrole-2-carbonyl azide **5e** (259 mg, 0.75 mmol) in *o*-DCB (3 mL) was kept at 150 °C for 1 h by using oil bath heating, then the solvent was evaporated and the residue was left overnight. After that it was diluted with DCM containing traces of water, the precipitate formed was filtered off and washed with Et₂O to give pure compound **8c** in 107 mg (47% yield) as an ochre solid: mp > 182 °C (dec., DCM). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.75 (s, 6H), 2.40 (s, 6H), 7.16-7.31 (m, 4H), 7.33-7.41 (m, 2H), 7.55-7.70 (m, 2H), 7.75 (s, 2H), 11.32 (m, 2H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.7 (CH₃), 29.4 (CH₃), 29.4 (CH₃), 118.7 (C), 118.8 (C), 122.6 (C), 125.6 (C), 127.6 (CH), 129.0 (CH), 130.8 (C), 132.2 (CH), 132.2 (CH), 132.7 (CH), 132.8 (CH), 136.3 (C), 136.3 (C), 154.2 (C), 154.5 (C), 193.1 (C). (Extra peaks in the NMR spectra are associated with hindered rotation of the *o*-bromophenyl moiety of the molecule). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₂₇H₂₃⁷⁹Br₂N₄O₃⁻ 611.0142; Found 611.0119.

General Procedure D for the Preparation of Aminopyrroles (9a-c). Carbamate **6** (0.45 mmol) was stirred in CF₃COOH (2-3 mL) at rt for 0.25 h. The reaction mixture was poured into water, neutralized with 5% aq NaHCO₃ and extracted with EtOAc. The combined organic phases were dried

with Na₂SO₄, filtered off and concentrated in vacuo. The crude product was washed with benzene and EtOH to give pure aminopyrrole **9**.

l-(5-Amino-2-methyl-4-phenyl-1H-pyrrol-3-yl)ethan-1-one (*9a*). Compound **9a** was prepared following general procedure D from *tert*-butyl (4-acetyl-5-methyl-3-phenyl-1*H*-pyrrol-2-yl)carbamate **6a** (141 mg, 0.45 mmol) in 77 mg (80% yield) as a pale yellow solid: mp 214-215 °C (EtOH). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.85 (s, 3H), 2.30 (s, 3H), 4.05 (s, 2H), 7.06-7.25 (m, 3H), 7.27-7.37 (m, 2H), 10.55 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.3 (CH₃), 30.3 (CH₃), 103.4 (C), 119.5 (C), 124.8 (CH), 127.5 (C), 128.0 (CH), 129.7 (CH), 133.6 (C), 136.7 (C), 194.1 (C). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₅N₂O⁺ 215.1179; Found 215.1171.

l-(5-Amino-2-methyl-4-(p-tolyl)-1H-pyrrol-3-yl)ethan-1-one (*9f*). Compound 9f was prepared following general procedure D from *tert*-butyl (4-acetyl-5-methyl-3-(*p*-tolyl)-1*H*-pyrrol-2-yl)carbamate 6f (250 mg, 0.76 mmol) in 142 mg (82% yield) as a pale yellow solid: mp 174-176 °C (EtOH). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.83 (s, 3H), 2.30 (s, 6H), 3.97 (s, 2H), 6.92-7.09 (m, 2H), 7.10-7.23 (m, 2H), 10.53 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 13.3 (CH₃), 20.7 (CH₃), 30.3 (CH₃), 103.3 (C), 119.5 (C), 127.4 (C), 128.7 (CH), 129.7 (CH), 133.4 (C), 133.6 (C), 133.8 (C), 194.1 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₄H₁₆N₂NaO⁺ 251.1155; Found 251.1165.

(5-*Amino-2*, 4-*diphenyl-1H-pyrrol-3-yl*)(*phenyl*)*methanone* (9n). Compound 9n was prepared following general procedure D from *tert*-butyl (4-benzoyl-3,5-diphenyl-1*H*-pyrrol-2yl)carbamate 6n (238 mg, 0.54 mmol) in 155 mg (84% yield) as a red solid: mp > 160 °C (dec., EtOH). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 4.58 (s, 2H), 6.93-7.01 (m, 1H), 7.05-7.30 (m, 11H), 7.31-7.38 (m, 1H), 7.60-7.75 (m, 2H), 10.92 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 105.2 (C), 118.9 (C), 124.1 (CH), 125.0 (C), 125.7 (CH), 126.3 (CH), 128.0 (CH), 128.0 (CH), 128.0 (CH), 128.2 (CH), 129.2 (CH), 132.1 (C), 132.2 (CH), 135.3 (C), 136.8 (C), 138.7 (C), 194.5 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₂₃H₁₇N₂O⁻ 337.1346; Found 337.1349.

General Procedure E for the Preparation of 3,4-Dihydro-5*H*-pyrrolo[2,3c]isoquinolin-5-ones (7a-d, f-k). A solution of 1*H*-pyrrole-2-carbonyl azide 5 (0.3-3.5 mmol) in o DCB (2-25 mL) was stirred at 150 $^{\circ}$ C for 0.5 h by using oil bath heating. After the reaction was complete the resulting mixture was cooled to rt, diluted with Et₂O, the precipitate was filtered off, washed with Et₂O and dried to give the pure product.

1-Acetyl-2-methyl-3,4-dihydro-5H-pyrrolo[*2,3-c*]*isoquinolin-5-one* (7*a*). Compound 7*a* was prepared following general procedure E from 4-acetyl-5-methyl-3-phenyl-1*H*-pyrrole-2-carbonyl azide 5*a* (955 mg, 3.56 mmol) in 705 mg (82% yield) as a colorless solid: mp > 265 °C (dec., °DCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.51 (s, 3H), 2.60 (s, 3H), 7.25-7.42 (m, 1H), 7.53-7.69 (m, 1H), 8.14-8.31 (m, 1H), 8.77-8.97 (m, 1H), 11.59 (s, 1H), 12.08 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 14.7 (CH₃), 31.5 (CH₃), 100.9 (C), 117.9 (C), 121.7 (C), 123.5 (CH), 125.3 (CH), 127.3 (CH), 131.4 (CH), 132.7 (C), 134.3 (C), 134.7 (C), 160.5 (C), 194.6 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₄H₁₂N₂NaO₂⁺ 263.0791; Found 263.0784.

1-Acetyl-7-*fluoro*-2-*methyl*-3, 4-*dihydro*-5*H*-*pyrrolo*[2, 3-*c*]*isoquinolin*-5-*one* (7*b*). Compound 7*b* was prepared following general procedure E from 4-acetyl-3-(4-fluorophenyl)-5methyl-1*H*-pyrrole-2-carbonyl azide 5*b* (190 mg, 0.66 mmol) in 125 mg (74% yield) as a colorless solid: mp > 300 °C (dec., °DCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.52 (s, 3H), 2.62 (s, 3H), 7.49-7.60 (m, 1H), 7.80-7.94 (m, 1H), 8.99-9.18 (m, 1H), 11.70 (s, 1H), 12.25 (s, 1H). ¹⁹F{¹H} NMR (DMSO-*d*₆, 470 MHz): δ -117.80. ¹³C{¹H, ¹⁹F} NMR (DMSO-*d*₆, 125 MHz): δ 14.9 (CH₃), 31.5 (CH₃), 100.9 (C), 111.6 (CH), 117.6 (C), 119.7 (CH), 123.0 (C), 128.4 (CH), 131.2 (C), 132.4 (C), 135.4 (C), 158.7 (C), 159.6 (C), 194.4 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₄H₁₀FN₂O₂⁻ 257.0732; Found 257.0714.

1-Acetyl-7-chloro-2-methyl-3,4-dihydro-5H-pyrrolo[2,3-c]isoquinolin-5-one (7c).
 Compound 7c was prepared following general procedure E from 4-acetyl-3-(4-chlorophenyl)-5-31

methyl-1*H*-pyrrole-2-carbonyl azide **5c** (160 mg, 0.53 mmol) in 116 mg (80% yield) as a colorless solid: mp > 270 °C (dec., °DCB). ¹H NMR (DMSO- d_6 , 400 MHz): δ 2.52 (s, 3H), 2.62 (s, 3H), 7.66 (dd, J = 9.0, 2.5 Hz, 1H), 8.16 (d, J = 2.5 Hz, 1H), 9.01 (d, J = 8.6 Hz, 1H), 11.74 (s, 1H), 12.32 (s, 1H). ¹³C {¹H} NMR (DMSO- d_6 , 100 MHz): δ 14.9 (CH₃), 31.5 (CH₃), 100.7 (C), 117.6 (C), 122.9 (C), 126.2 (CH), 127.8 (CH), 128.0 (C), 131.3 (CH), 132.9 (C), 132.9 (C), 135.7 (C), 159.4 (C), 194.4 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₄H₁₀ClN₂O₂⁻ 273.0436; Found 273.0415.

1-Acetyl-7-bromo-2-methyl-3,4-dihydro-5H-pyrrolo[2,3-c]isoquinolin-5-one (7*d*).

Compound **7d** was prepared following general procedure E from 4-acetyl-3-(4-bromophenyl)-5methyl-1*H*-pyrrole-2-carbonyl azide **5d** (104 mg, 0.30 mmol) in 66 mg (69% yield) as a colorless solid: mp > 300 °C (dec., °DCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.51 (s, 3H), 2.61 (s, 3H), 7.77 (dd, *J* = 9.0, 2.3 Hz, 1H), 8.31 (d, *J* = 2.2 Hz, 1H), 8.93 (d, *J* = 8.6 Hz, 1H), 11.74 (s, 1H), 12.33 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 14.9 (CH₃), 31.5 (CH₃), 100.7 (C), 116.1 (C), 117.7 (C), 123.2 (C), 128.0 (CH), 129.3 (CH), 132.9 (C), 133.2 (C), 134.0 (CH), 135.7 (C), 159.3 (C), 194.4 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₄H₁₀⁷⁹BrN₂O₂⁻ 316.9931; Found 316.9913.

1-Acetyl-2, 7-*dimethyl-3*, 4-*dihydro-5H-pyrrolo*[2, 3-*c*]*isoquinolin-5-one* (7*f*). Compound 7f was prepared following general procedure E from 4-acetyl-5-methyl-3-(*p*-tolyl)-1*H*-pyrrole-2carbonyl azide 5f (145 mg, 0.51 mmol) in 109 mg (83% yield) as a colorless solid: mp > 270 °C (dec., °DCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.41 (s, 3H), 2.50 (s, 3H), 2.59 (s, 3H), 7.45 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.96-8.10 (m, 1H), 8.80 (d, *J* = 8.5 Hz, 1H). 11.54 (s, 1H), 11.95 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 14.8 (CH₃), 20.8 (CH₃), 31.5 (CH₃), 101.0 (C), 117.8 (C), 121.8 (C), 125.4 (CH), 126.9 (CH), 132.1 (C), 132.1 (C), 132.7 (CH), 132.7 (C), 134.5 (C), 160.4 (C), 194.4 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₅H₁₃N₂O₂- 253.0983; Found 253.0972.

1-Acetyl-7-methoxy-2-methyl-3,4-dihydro-5H-pyrrolo[2,3-c]isoquinolin-5-one (7g).
Compound 7g was prepared following general procedure E from 4-acetyl-3-(4-methoxyphenyl)-5-

methyl-1*H*-pyrrole-2-carbonyl azide **5g** (200 mg, 0.67 mmol) in 154 mg (85% yield) as a colorless solid: mp > 270 °C (dec., °DCB). ¹H NMR (DMSO- d_6 , 400 MHz): δ 2.50 (s, 3H), 2.60 (s, 3H), 3.84 (s, 3H), 7.27 (dd, J = 9.1, 3.0 Hz, 1H), 7.67 (d, J = 3.0 Hz, 1H), 8.93 (d, J = 9.1 Hz, 1H), 11.56 (s, 1H), 12.04 (s, 1H). ¹³C{¹H} NMR (DMSO- d_6 , 100 MHz): δ 14.9 (CH₃), 31.5 (CH₃), 55.1 (CH₃), 101.2 (C), 107.9 (CH), 117.5 (C), 120.9 (CH), 122.8 (C), 127.4 (CH), 128.5 (C), 131.4 (C), 134.6 (C), 155.8 (C), 160.0 (C), 194.3 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₅H₁₃N₂O₃⁻ 269.0932; Found 269.0923.

1-Acetyl-8-methoxy-2-methyl-3,4-dihydro-5H-pyrrolo[*2,3-c*]*isoquinolin-5-one* (7*h*). Compound 7*h* was prepared following general procedure E from 4-acetyl-3-(3-methoxyphenyl)-5-methyl-1*H*-pyrrole-2-carbonyl azide 5*h* (120 mg, 0.40 mmol) in 105 mg (96% yield) as a colorless solid: mp > 280 °C (dec., °DCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.51 (s, 3H), 2.60 (s, 3H), 3.87 (s, 3H), 6.92 (dd, *J* = 8.9, 2.6 Hz, 1H), 8.13 (d, *J* = 8.8 Hz), 8.57 (d, *J* = 2.3 Hz, 1H), 11.55 (s, 1H), 11.86 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 14.9 (CH₃), 31.6 (CH₃), 55.1 (CH₃), 100.9 (C), 107.5 (CH), 112.5 (CH), 115.8 (C), 117.8 (C), 129.3 (CH), 133.0 (C), 135.0 (C), 136.3 (C), 160.3 (C), 161.7 (C), 194.5 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₅H₁₃N₂O₃⁻ 269.0932; Found 269.0913. *1-Acetyl-7,8-dimethoxy-2-methyl-3,4-dihydro-5H-pyrrolo*[*2,3-c*]*isoquinolin-5-one*

(7i). Compound 7i was prepared following general procedure E from 4-acetyl-3-(3,4-dimethoxyphenyl)-5-methyl-1*H*-pyrrole-2-carbonyl azide **5i** (120 mg, 0.37 mmol) in 105 mg (95% yield) as a colorless solid: mp > 290 °C (dec., °DCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.51 (s, 3H), 2.62 (s, 3H), 3.84 (s, 3H), 3.90 (s, 3H), 7.61 (s, 1H), 8.78 (s, 1H), 11.56 (s, 1H), 11.90 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 125 MHz): δ 15.2 (CH₃), 31.6 (CH₃), 55.2 (CH₃), 55.3 (CH₃), 101.4 (C), 107.4 (CH), 107.6 (C), 115.3 (CH), 117.3 (C), 129.9 (C), 132.1 (C), 135.2 (C), 146.3 (C), 152.1 (C), 159.6 (C), 194.3 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₆H₁₆N₂NaO₄⁺ 323.1002; Found 323.1004.

1-Acetyl-2-methyl-7-(trifluoromethyl)-3,4-dihydro-5H-pyrrolo[2,3-c]isoquinolin-5-

one (*7j*). Compound **7j** was prepared following general procedure E from 4-acetyl-5-methyl-3-(4-(trifluoromethyl)phenyl)-1*H*-pyrrole-2-carbonyl azide **5j** (80 mg, 0.24 mmol) in 61 mg (84% yield) as a colorless solid: mp > 280 °C (dec., °DCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.54 (s, 3H), 2.63 (s, 3H), 7.81-8.00 (m, 1H), 8.36-8.63 (m, 1H), 8.89-9.36 (m, 1H), 11.86 (s, 1H), 12.55 (s, 1H). ¹⁹F {¹H} NMR (DMSO-*d*₆, 470 MHz): δ -60.56. ¹³C {¹H, ¹⁹F} NMR (DMSO-*d*₆, 125 MHz): δ 14.8 (CH₃), 31.5 (CH₃), 100.6 (C), 117.8 (C), 121.2 (C), 123.5 (C), 124.5 (CH), 124.5 (C), 126.7 (CH), 127.1 (C), 134.2 (C), 136.2 (C), 137.0 (C), 160.1 (C), 194.5 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₅H₁₀F₃N₂O₂- 307.0700; Found 307.0697.

3-Acetyl-2-methyl-1,11-dihydro-10H-benzo[h]pyrrolo[2,3-c]isoquinolin-10-one (7k). Compound **7k** was prepared following general procedure E from 4-acetyl-5-methyl-3-(naphthalen-2-yl)-1*H*-pyrrole-2-carbonyl azide **5k** (110 mg, 0.35 mmol) in 91 mg (91% yield) as a yellow solid: mp > 310 °C (dec., °DCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.57 (s, 3H), 2.63 (s, 3H), 7.89-7.99 (m, 1H), 8.04 (d, *J* = 9.1 Hz, 1H), 8.80 (d, *J* = 9.1 Hz, 1H), 10.07 (d, *J* = 8.0 Hz, 1H), 11.72 (s, 1H), 12.37 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 14.6 (CH₃), 31.8 (CH₃), 102.9 (C), 117.5 (C), 124.2 (CH), 124.8 (CH), 126.5 (CH), 127.2 (CH), 128.0 (CH), 130.7 (C), 131.9 (CH), 132.0 (C), 134.7 (C), 135.8 (C), 161.0 (C), 195.4 (C). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₅N₂O₂⁺ 291.1128; Found 291.1115.

General Procedure F for the Preparation of 3,4-Dihydro-5*H*-pyrrolo[2,3c]isoquinolin-5-ones (71, m). A stirring solution of azide 31 or 3m (0.5 mmol), acetylacetone 4a (0.53 mmol, 1.05 equiv) and NiCl₂·6H₂O (0.05 mmol, 10 mol%) in dry acetonitrile (5 mL) was refluxed for 1 h or 5 h, respectively, by using oil bath heating. After the reaction was complete, the resulting mixture was cooled to rt, diluted with Et₂O, the precipitate was filtered off, washed with Et₂O and dried to give the pure product.

8-Acetyl-7-methyl-5, 6-dihydro-4H-furo[2, 3-d]pyrrolo[2, 3-b]pyridin-4-one (71). Compound **71** was prepared following general procedure F from 3-(furan-2-yl)-2H-azirine-2-carbonyl azide **31** (80 mg, 0.45 mmol), acetylacetone **4a** (48 mg, 0.48 mmol) and NiCl₂·6H₂O (6 mg, 0.05 mmol) in 94 mg (90% yield) as a colorless solid: mp > 320 °C (dec., MeCN/Et₂O). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.56 (s, 3H), 2.67 (s, 3H), 6.97 (d, *J* = 1.9 Hz, 1H), 7.86 (d, *J* = 1.9 Hz, 1H), 11.64 (s, 1H), 11.95 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 125 MHz): δ 13.9 (CH₃), 30.9 (CH₃), 96.9 (C), 106.1 (CH), 108.1 (C), 111.9 (C), 137.2 (C), 138.5 (C), 142.2 (CH), 154.3 (C), 155.7 (C), 192.2 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₂H₁₀N₂NaO₃⁺ 253.0584; Found 253.0584.

8-*Acetyl*-7-*methyl*-5,6-*dihydro*-4*H*-*pyrrolo*[2,3-*b*]*thieno*[2,3-*d*]*pyridin*-4-*one* (7*m*). Compound 7*m* was prepared following general procedure F from 3-(thiophen-2-yl)-2*H*-azirine-2-carbonyl azide 3*m* (100 mg, 0.52 mmol), acetylacetone 4*a* (55 mg, 0.55 mmol) and NiCl₂·6H₂O (7 mg, 0.05 mmol) in 115 mg (90% yield) as a colorless solid: mp > 310 °C (dec., MeCN/Et₂O). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.48 (s, 3H), 2.66 (s, 3H), 7.35 (d, *J* = 5.5 Hz, 1H), 7.45 (d, *J* = 5.5 Hz, 1H), 11.66 (s, 1H), 11.87 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 125 MHz): δ 14.6 (CH₃), 30.0 (CH₃), 104.2 (C), 114.0 (C), 122.8 (CH), 123.0 (C), 123.4 (CH), 135.7 (C), 136.1 (C), 143.2 (C), 156.6 (C), 192.7 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₂H₉N₂O₂S⁻ 245.0390; Found 245.0372.

General Procedure G for the Preparation of 3,4-Dihydro-5*H*-pyrrolo[2,3c]isoquinolin-5-ones (7n-q). A solution of azide 3a (0.5 mmol), diketone 4b, c or d (0.53 mmol) and NiCl₂·6H₂O (0.05 mmol) in dry acetonitrile (3 mL) was stirred for 2 d. The solvent was removed in vacuo, dry °DCB (2-3 mL) was added to the residue and the mixture was stirred at 150 °C for 0.5 h by using oil bath heating. After the reaction was complete, the resulting mixture was cooled to rt, diluted with Et₂O, the precipitate was filtered off, washed with Et₂O and dried to give the pure product. *1-Benzoyl-2-phenyl-3,4-dihydro-5H-pyrrolo*[2,3-c]isoquinolin-5-one (7n). Compound 7n was prepared following general procedure G from 3-phenyl-2*H*-azirine-2-carbonyl azide 3a (80 mg, 0.43 mmol), 1,3-diphenylpropane-1,3-dione **4b** (101 mg, 0.45 mmol) and NiCl₂·6H₂O (10 mg, 0.04 mmol) in 65 mg (41% yield) as a yellow solid: mp 296-298 °C (°DCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 7.12-7.18 (m, 1H), 7.19-7.26 (m, 2H), 7.28-7.36 (m, 5H), 7.43-7.53 (m, 2H), 7.59-7.66 (m, 1H), 7.74-7.82 (m, 2H), 8.22-8.29 (m, 1H), 12.04 (s, 1H), 12.04 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 102.4 (C), 114.5 (C), 121.7 (C), 122.3 (CH), 123.8 (CH), 127.3 (CH), 128.0 (CH), 128.0 (CH), 128.1 (CH), 128.5 (CH), 129.5 (CH), 131.2 (C), 131.4 (C), 132.0 (CH), 133.0 (CH), 133.4 (C), 134.2 (C), 138.3 (C), 160.8 (C), 195.0 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₂₄H₁₅N₂O₂⁻ 363.1139; Found 363.1121.

1-(4-Methylbenzoyl)-2-(p-tolyl)-3,4-dihydro-5H-pyrrolo[2,3-c]isoquinolin-5-one (70). Compound **70** was prepared following general procedure G from 3-phenyl-2*H*-azirine-2-carbonyl azide **3a** (140 mg, 0.75 mmol), 1,3-di-*p*-tolylpropane-1,3-dione **4c** (199 mg, 0.79 mmol) and NiCl₂·6H₂O (18 mg, 0.08 mmol) in 50 mg (30% yield) as a pale green solid: mp 215-217 °C (°DCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.21 (s, 3H), 2.27 (s, 3H), 7.02-7.09 (m, 2H), 7.14-7.19 (m, 2H), 7.22-7.27 (m, 2H), 7.26-7.31 (m, 1H), 7.45-7.52 (m, 2H), 7.66-7.75 (m, 2H), 8.21-8.28 (m, 1H), 11.95 (s, 2H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 20.6 (CH₃), 21.1 (CH₃), 102.2 (C), 114.1 (C), 121.7 (C), 122.0 (CH), 123.7 (CH), 127.4 (CH), 128.0 (CH), 128.5 (C), 128.9 (CH), 129.2 (CH), 129.6 (CH), 130.2 (C), 132.0 (CH), 133.4 (C), 133.8 (C), 135.7 (C), 136.5 (C), 143.7 (C), 160.7 (C), 195.0 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₆H₂₀N₂NaO₂⁺ 415.1417; Found 415.1414.

1-(4-Methoxybenzoyl)-2-(4-methoxyphenyl)-3,4-dihydro-5H-pyrrolo[2,3-

c]isoquinolin-5-one (7p). Compound **7p** was prepared following general procedure G from 3phenyl-2*H*-azirine-2-carbonyl azide **3a** (80 mg, 0.43 mmol), 1,3-bis(4-methoxyphenyl)propane-1,3dione **4d** (128 mg, 0.45 mmol) and NiCl₂·6H₂O (10 mg, 0.04 mmol) in 102 mg (56% yield) as a pale green solid: mp 275-276 °C (^{*o*}DCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 3.70 (s, 3H), 3.75 (s, 3H), 6.77-6.86 (m, 2H), 6.87-6.92 (m, 2H), 7.24-7.33 (m, 3H), 7.44-7.54 (m, 2H), 7.74-7.82 (m, 2H), 8.19-

8.30 (m, 1H), 1.83 (s, 1H), 11.96 (m, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 55.1 (CH₃), 55.4 (CH₃), 102.2 (C), 113.7 (C), 113.8 (CH), 113.9 (CH), 121.6 (C), 122.1 (CH), 123.5 (CH), 123.9 (C), 128.0 (CH), 128.9 (CH), 130.0 (C), 132.1 (C), 131.9 (CH), 131.9 (CH), 133.4 (C), 133.6 (C), 158.5 (C), 160.7 (C), 163.1 (C), 193.8 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₂₆H₁₉N₂O₄⁻ 423.1350; Found 423.1338.

2-(Thiophen-2-yl)-1-(thiophene-2-carbonyl)-3,4-dihydro-5H-pyrrolo[2,3-

cisoquinolin-5-one (7q). Compound 7q was prepared following general procedure G from 3phenyl-2*H*-azirine-2-carbonyl azide **3a** (80 mg, 0.43 mmol), 1,3-di(thiophen-2-yl)propane-1,3-dione 4e (107 mg, 0.45 mmol) and NiCl₂· $6H_2O$ (10 mg, 0.04 mmol) in 84 mg (52% yield) as an ochre solid: mp 285-287 °C (^oDCB). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 6.98-7.08 (m, 2H), 7.21-7.29 (m, 1H), 7.29-7.36 (m, 1H), 7.38-7.46 (m, 1H), 7.47-7.50 (m, 1H), 7.50-7.60 (m, 2H), 7.91-8.09 (m, 1H), 8.18-8.33 (m, 1H), 12.02 (s, 1H), 12.10 (s, 1H). ${}^{13}C{}^{1}H{}$ NMR (DMSO- d_6 , 100 MHz): δ 101.9 (C), 114.7 (C), 121.8 (C), 122.0 (CH), 124.0 (CH), 124.1 (C), 126.0 (CH), 126.4 (CH), 127.4 (CH), 128.1 (CH), 128.7 (CH), 132.2 (CH), 132.7 (C), 133.9 (C), 133.9 (C), 135.3 (CH), 136.0 (CH), 145.2 (C), 160.8 (C), 186.3 (C). HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₂N₂NaO₂S₂⁺ 399.0232; Found 399.0229. 1-Acetyl-2-methyl-3H-pyrrolo[2,3-c]isoquinolin-5-yl trifluoromethanesulfonate (13). A suspension of 1-acetyl-2-methyl-3,4-dihydro-5H-pyrrolo[2,3-c]isoquinolin-5-one (7a) (300 mg, 1.25 mmol) in of anhyd DCM (10 mL) was cooled to 0 °C with ice bath and DBU (285 mg, 1.88 mmol, 1.5 equiv) was added under inert atmosphere. After 10 min of stirring, Tf₂O (394 mg, 1.88 mmol, 1.5 equiv) was added and the resulting mixture was stirred for an additional 10 min, after that poured into water, extracted three times with EtOAc; the combined organic phases were washed with sat. aq NaHCO₃, dried over Na₂SO₄, filtered and concentrated in vacuo. The resulting solid was washed with Et₂O to give 400 mg (86% yield) of pure product as a colorless solid: mp 237-239 °C (dec., EtOAc). ¹H NMR (DMSO- d_6 , 400 MHz): δ 2.64 (s, 3H), 2.79 (s, 3H), 7.70-7.81 (m, 1H), 7.85-

7.98 (m, 1H), 8.02-8.18 (m, 1H), 9.33-9.51 (m, 1H), 13.04 (s, 1H). ¹⁹F{¹H} NMR (DMSO- d_6 , 470 MHz): δ -72.96. ¹³C{¹H, ¹⁹F} NMR (DMSO- d_6 , 125 MHz): δ 15.5 (CH₃), 31.7 (CH₃), 112.9 (C), 115.8 (C), 117.0 (C), 118.2 (C), 122.6 (CH), 126.4 (CH), 126.4 (CH), 131.1 (CH), 133.7 (C), 137.4 (C), 142.7 (C), 148.0 (C), 194.8 (C). HRMS (ESI) m/z: [M - H]⁻ Calcd for C₁₅H₁₀F₃N₂O₄S⁻ 371.0319; Found 371.0294.

1-(2-Methyl-5-(pyridin-2-yl)-3H-pyrrolo[2,3-c]isoquinolin-1-yl)ethan-1-one (14).

Triflate **13** (38 mg, 0.1 mmol), 2-(tributylstannyl)pyridine (99 mg, 0.27 mmol, 2.7 equiv) and CuI (4 mg, 0.02 mmol, 20 mol%) were mixed in dioxane (2 mL). The screw cap tube was flushed with argon, Pd(PPh₃)₄ (24 mg, 0.02 mmol, 20 mol%) was added and the mixture was stirred for 48 h at 85 °C by using oil bath heating (monitored by TLC). The solvent was evaporated and the crude product was purified by flash chromatography on silica gel (DCM/MeOH, starting from 100:1 to 20:1 v/v) to give **15** in 29 mg (94% yield) as a yellow solid: mp 242-244 °C (dec., DCM/MeOH). ¹H NMR (DMSO- d_6 , 400 MHz): δ 2.64 (s, 3H), 2.80 (s, 3H), 7.43-7.52 (m, 1H), 7.53-7.64 (m, 1H), 7.67-7.78 (m, 1H), 7.84-8.17 (m, 1H), 7.96-8.11 (m, 1H), 8.34-8.75 (m, 1H), 8.50-9.17 (m, 1H), 9.26-9.45 (m, 1H), 12.72 (s, 1H). ¹³C{¹H} NMR (DMSO- d_6 , 100 MHz): δ 15.6 (CH₃), 31.8 (CH₃), 111.9 (C), 116.7 (C), 123.3 (C), 123.4 (CH), 124.3 (CH), 125.3 (CH), 125.9 (CH), 128.2 (CH), 128.8 (CH), 131.9 (C), 137.0 (CH), 141.7 (C), 141.9 (C), 148.1 (CH), 152.1 (C), 158.3 (C), 194.9 (C). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₁₆N₃O⁺ 302.1288; Found 302.1282.

1-(2-Methyl-5-((trimethylsilyl)ethynyl)-3H-pyrrolo[2,3-c]isoquinolin-1-yl)ethan-1-

one (15). Triflate 13 (38 mg, 0.1 mmol), ethynyltrimethylsilane (15 mg, 0.15 mmol), $Pd(PPh_3)_2Cl_2$ (7 mg, 0.01 mmol, 10 mol%), CuI (2 mg, 0.01 mmol, 10 mol%) and Et_3N (31 mg, 0.3 mmol, 30 mol%) were mixed in dioxane (2 mL) and heated in a screw cap tube under inert atmosphere for 1 h at 50 °C by using oil bath heating (monitored by TLC). After the reaction was complete the solvent was evaporated and the crude product was purified by flash chromatography on silica gel (eluent a mixture

of hexanes/EtOAc, 1:1 v/v) to give 30 mg (92% yield) of compound **15** as a pale yellow solid: mp 254-256 °C (dec., hexanes/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 0.35 (s, 9H), 2.62 (s, 3H), 2.80 (s, 3H), 7.60-7.70 (m, 1H), 7.71-7.81 (m, 1H), 8.31-8.52 (m, 1H), 9.20-9.40 (m, 1H), 12.66 (s, 1H). ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ -0.3 (CH₃), 15.6 (CH₃), 31.7 (CH₃), 98.3 (C), 102.9 (C), 112.4 (C), 117.0 (C), 125.5 (CH), 125.7 (C), 126.3 (CH), 126.8 (CH), 129.5 (CH), 130.7 (C), 136.5 (C), 142.1 (C), 142.9 (C), 194.9 (C). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₉H₂₀N₂NaOSi⁺ 343.1237; Found 343.1238.

3-(1-Acetyl-2-methyl-3H-pyrrolo[*2*,*3-c*]*isoquinolin-5-yl*)*acrylonitrile* (*16*). Triflate **13** (38 mg, 0.1 mmol), acrylonitrile (11 mg, 0.2 mmol), Pd(PPh₃)₂Cl₂ (7 mg, 0.01 mmol, 10 mol%) and Et₃N (31 mg, 0.3 mmol, 30 mol%) were mixed in DMF (2 mL) and heated for 48 h in a screw cap tube under inert atmosphere at 100 °C by using oil bath heating (monitored by TLC). After the reaction was complete the solvent was evaporated and the crude product was purified by flash chromatography on silica gel (eluent a mixture of hexanes/EtOAc, 1:1 v/v) to give 27 mg (98% yield) of compound **16** as a yellow solid: mp 254-256 °C (dec., hexanes/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.63 (s, 3H), 2.80 (s, 3H), 6.78 (d, *J* = 15.8 Hz, 1H), 7.56-7.66 (m, 1H), 7.71-7.82 (m, 1H), 8.61 (d, *J* = 8.5 Hz, 1H), 8.81 (d, *J* = 15.8 Hz, 1H), 9.30 (d, *J* = 8.5 Hz, 1H), 12.81 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 15.6 (CH₃), 31.8 (CH₃), 100.1 (CH), 114.1 (C), 117.0 (C), 119.9 (C), 123.6 (C), 124.8 (CH), 125.3 (CH), 126.2 (CH), 129.1 (CH), 131.2 (C), 141.9 (C), 143.9 (C), 144.1 (C), 145.6 (CH), 195.0 (C). HRMS (ESI) *m/z*: [M - H]⁻ Calcd for C₁₇H₁₂N₃O⁻ 274.0986; Found 274.0969.

1-(5-(4-Methoxyphenyl)-2-methyl-3H-pyrrolo[2,3-c]isoquinolin-1-yl)ethan-1-one

(17*a*). Triflate 13 (38 mg, 0.1 mmol), (4-methoxyphenyl)boronic acid (23 mg, 0.15 mmol, 1.5 equiv), $Pd(OAc)_2$ (2 mg, 0.01 mmol, 10 mol%), PPh₃ (3 mg, 0.01 mmol, 10 mol%), and Et₃N (21 mg, 0.2 mmol, 2 equiv) were mixed in dioxane/water (v/v 4:1, 2 mL) and heated for 24 h in a screw cap tube under inert atmosphere at 60 °C by using oil bath heating (monitored by TLC). After the reaction was

complete the solvent was evaporated and the residue was redissolved in EtOAc and filtered through celite. The resulting solution was washed three times with 1M aq NaOH, twice with water, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (eluent a mixture of hexanes/EtOAc, 1:1 v/v) to give 26 mg (77% yield) of compound **17a** as a colorless solid: mp 261-263 °C (dec., hexanes/EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.63 (s, 3H), 2.78 (s, 3H), 3.86 (s, 3H), 7.04-7.22 (m, 2H), 7.42-7.52 (m, 1H), 7.56-7.66 (m, 2H), 7.67-7.78 (m, 1H), 7.99-8.17 (m, 1H), 9.23-9.51 (m, 1H), 12.61 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 15.6 (CH₃), 31.7 (CH₃), 55.2 (CH₃), 110.6 (C), 113.6 (CH), 116.6 (C), 123.3 (C), 124.2 (CH), 126.2 (CH), 127.8 (CH), 128.8 (CH), 131.3 (CH), 132.0 (C), 132.0 (C), 141.1 (C), 142.1 (C), 154.7 (C), 159.3 (C), 194.8 (C). HRMS (ESI) *m*/*z*: [M - H]⁻ Calcd for C₂₁H₁₇N₂O₂⁻ 329.1296; Found 329.1284.

1-(5-(4-Fluorophenyl)-2-methyl-3H-pyrrolo[2,3-c]isoquinolin-1-yl)ethan-1-one

(17b). Triflate 13 (38 mg, 0.1 mmol), (4-fluorophenyl)boronic acid (21 mg, 0.15 mmol, 1.5 equiv) and Et₃N (31 mg, 0.3 mmol, 3 equiv) were mixed in dioxane/water (v/v 4:1, 2 mL). The screw cap tube was flushed with argon, Pd(PPh₃)₄ (6 mg, 0.005 mmol, 5 mol%) was added and the mixture was stirred for 24 h at 85 °C by using oil bath heating (monitored by TLC). The solvent was evaporated and the residue was redissolved in EtOAc and filtered through celite. The resulting solution was washed three times with 1M aq NaOH, twice with water, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by washing with Et₂O/hexanes to give 31 mg (95%) of compound **17b** as a colorless solid: mp 288-290 °C (dec., EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.64 (s, 3H), 2.79 (s, 3H), 7.29-7.44 (m, 2H), 7.45-7.52 (m, 1H), 7.65-7.81 (m, 3H), 8.00 (d, *J* = 8.5 Hz, 1H), 12.66 (s, 1H). ¹⁹F{¹H} NMR (DMSO-*d*₆, 376 MHz): δ -113.78. ¹³C{¹H} NMR (DMSO-*d*₆, 100 MHz): δ 11.56 (CH₃), 31.7 (CH₃), 111.0 (C), 115.1 (d, *J*_{C-F} = 21.5 Hz, CH), 116.6 (C), 123.2 (C), 124.4 (CH), 126.2 (CH), 127.5 (CH), 129.0 (CH), 131.9 (C), 132.0 (d, *J*_{C-F}

= 8.3 Hz, CH), 136.1 (d, J_{C-F} = 3.1 Hz, C), 141.4 (C), 142.0 (C), 153.8 (C), 162.1 (d, J_{C-F} = 245.2, C), 194.8 (C). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₆FN₂O⁺ 319.1241; Found 319.1242.

1-(2-Methyl-5-(thiophen-2-yl)-3H-pyrrolo[2,3-c]isoquinolin-1-yl)ethan-1-one (17c).

Triflate **13** (38 mg, 0.1 mmol), thiophen-2-ylboronic acid (20 mg, 0.15 mmol, 1.5 equiv) and Et₃N (31 mg, 0.3 mmol, 3 equiv) were mixed in dioxane/water (v/v 4:1, 2 mL). The screw cap tube was flushed with argon, Pd(PPh₃)₄ (6 mg, 0.005 mmol, 5 mol%) was added and the mixture was stirred for 24 h at 85 °C by using oil bath heating (monitored by TLC). The solvent was evaporated and the residue was redissolved in EtOAc and filtered through celite. The resulting solution was washed three times with 1M aq NaOH, twice with water, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by washing with Et₂O/hexanes to give 30 mg (96%) of compound **17c** as a beige solid: mp 232-234 °C (dec., EtOAc). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.63 (s, 3H), 2.78 (s, 3H), 7.16-7.38 (m, 1H), 7.50-7.61 (m, 1H), 7.63-7.71 (m, 1H), 7.72-7.90 (m, 2H), 8.54 (d, *J* = 8.5 Hz, 1H), 9.36 (d, *J* = 8.5 Hz, 1H), 12.74 (s, 1H). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 15.6 (CH₃), 31.7 (CH₃), 111.2 (C), 116.7 (C), 122.6 (C), 124.9 (CH), 126.3 (CH), 127.1 (CH), 127.7 (CH), 127.8 (CH), 128.7 (CH), 129.1 (CH), 132.0 (C), 141.7 (C), 141.9 (C), 142.7 (C), 147.4 (C), 194.8 (C). HRMS (ESI) *m*/*z*: [M - H]⁻ Calcd for C₁₈H₁₃N₂OS⁻ 305.0754; Found 305.0740.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.0000000.

X-ray diffraction experiments, NMR spectra for new compounds, computation details, and energies of compounds and their Cartesian coordinates (PDF).

Crystal data for compound 3d, 5d, 7n and 14 (CIF).

AUTHOR INFORMATION

ORCID

Liya D. Funt: 0000-0001-9322-4078

Yulia V. Krivolapova: 0000-0002-0965-3732

Mikhail S. Novikov: 0000-0001-5106-4723

Alexander F. Khlebnikov: 0000-0002-6100-0309

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the Russian Science Foundation (Grant no. 19-13-00039). This research used resources of the Magnetic Resonance Research Centre, Chemical Analysis, Materials Research Centre, Centre for X-ray Diffraction Studies and the Computer Centre of the Science Park of Saint Petersburg State University.

REFERENCES

- (a) Balci, M. Acyl Azides: Versatile Compounds in the Synthesis of Various Heterocycles. Synthesis 2018, 50, 1373–1401. (b) Organic Azides: Syntheses and Applications. Bräse, S.; Banert, K. Eds.; Wiley-VCH: Weinheim; 2010.
- (a) Ghosh, A. K.; Sarkar, A.; Brindisi, M. The Curtius Rearrangement: Mechanistic Insight and Recent Applications in Natural Product Syntheses *Org. Biomol. Chem.* 2018, *16*, 2006-2027. (b) Ghosh, A. K.; Brindisi, M.; Sarkar, A. The Curtius Rearrangement: Applications in Modern Drug Discovery and Medicinal Chemistry. *ChemMedChem* 2018, *13*, 2351-2373.
- Reissig, H.-U.; Böttcher, G.; Zimmer, R. New 1,3-dihydroazepin-2-one derivatives by [3,3]sigmatropic rearrangement of suitably substituted 2-alkenylcyclopropyl isocyanates. *Can. J. Chem.* 2004, 82, 166-176.

- Lemmens, J. M.; Blommerde, W. W. J. M.; Thijs, L.; Zwanenburg, B. Synthesis of α,β -Epoxyacyl Azides and Their Rearrangement to Epoxy Isocyanates and 3- and 4-Oxazolin-2-one. *J. Org. Chem.* 1984, 49, 2231-2235.
- (a) Khlebnikov, A. F.; Novikov, M. S. Ring Expansions of Azirines and Azetines. *Top. Heterocycl. Chem.* 2016, *41*, 143-232. (b) Khlebnikov, A. F.; Novikov, M. S.; Rostovskii, N. V. Advances in 2*H*-Azirine Chemistry: A Seven-Year Update. *Tetrahedron* 2019, *75*, 2555-2624.
 - (a) Mikhailov, K. I.; Galenko, E. E.; Galenko, A. V.; Novikov, M. S.; Ivanov, A. Yu.; Starova, G. L.; Khlebnikov, A. F. Fe(II)-Catalyzed Isomerization of 5-Chloroisoxazoles to 2*H*-azirine-2-carbonylchlorides as a Key Stage in the Synthesis of Pyrazole-Nitrogen Heterocycle Dyads. *J. Org. Chem.* 2018, *83*, 3177–3187. (b) Sakharov, P. A.; Novikov, M. S.; Khlebnikov, A. F. 2-Diazoacetyl-2*H*-azirines: Source of a Variety of 2*H*-Azirine Building Blocks with Orthogonal and Domino Reactivity. *J. Org. Chem.*, 2018, *83*, 8304–8314. (c) Bodunov, V. A.; Galenko, E. E.; Sakharov, P.A.; Novikov, M. S.; Khlebnikov, A. F. Selective Cu-Catalyzed Intramolecular Annulation of 3-Aryl/Heteryl-2-(diazoacetyl)-1*H*-pyrroles: Synthesis of Benzo/Furo/Thieno[*e*]-Fused 1*H*-Indol-7-oles and Their Transformations. *J. Org. Chem.* 2019, *84*, 10388-10401. (d) Auricchio, S.; Bini, A.; Pastormerlo, E.; Truscello, A. M. Iron Dichloride Induced Isomerization or Reductive Cleavage of Isoxazoles: A Facile Synthesis of 2-Carboxy-azirines. *Tetrahedron* 1997, *53*, 10911-10950.
- Pinho e Melo, T M. V. D. Synthesis of Azides, In Organic Azides: Syntheses and Applications;
 Bräse, S.; Banert, K. Eds.; Wiley-VCH: Weinheim; 2010; pp. 53-94.
- Galenko, E. E.; Galenko, A. V.; Khlebnikov, A. F.; Novikov, M. S. Domino transformation of isoxazoles to 2,4-dicarbonylpyrroles under Fe/Ni relay catalysis. *RSC Advances* 2015, *5*, 18172-18176.

- New, J. S.; Christopher, W. L.; Yevich, J. P.; Butler, R.; Schlemmer, R. F.; VanderMaelen, C. P.; Cipollina, J. A. The Thieno[3,2-c]pyridine and Furo[3,2-c]pyridine Rings: New Pharmacophores with Potential Antipsychotic Activity. *J. Med. Chem.* 1989, *32*, 1147-1156.
- Rochais, C.; Duc, V. N.; Lescot, E.; Santos, J. S. O.; Bureau, R.; Meijer, L.; Dallemagne, P.; Rault, S. Synthesis of New Dipyrrolo- and Furopyrrolopyrazinones Related to Tripentones and Their Biological Evaluation as Potential Kinases (CDKs1e5, GSK-3) Inhibitors. *Eur. J. Med. Chem.* 2009, 44, 708-716.
- Boros, E.; Kaldor, I. J. Thermal Synthesis of 3-Bromothieno[3,2-c]pyridin-4-(5H)-one: A Telescoped Procedure with Tributylamine. J. Heterocyclic. Chem. 2015, 52, 302-305.
- (a) Chuang, T. H.; Wu, P. L. Synthesis and Mechanistic Study of Isoquinolinones from Cinnamoyl Azides. J. Chin. Chem. Soc. 2006, 53, 413-420. (b) Chuang, T.-H.; Lee, S-J.; Yang, C.-W.; Wu, P.-L. Expedient Synthesis and Structure–Activity Relationships of Phenanthroindolizidine And Phenanthroquinolizidine Alkaloids. Org. Biomol. Chem. 2006, 4, 860-867.
- Miyazaki, Y.; Nakano, M.; Sato, H.; Truesdale, A. T.; Stuart, J. D.; Nartey, E. N.; Hightower, K. E.; Kane-Carson L. Design and Effective Synthesis of Novel Templates, 3,7-Diphenyl-4-amino-thieno and furo[3,2-*c*]pyridines as Protein Kinase Inhibitors and in Vitro Evaluation Targeting Angiogenetic Kinases. *Bioorg. Med. Chem. Lett.* 2007, *17*, 250-254.
- 14. Micetich, R. G.; Chin, C. G. Studies in Isoxazole Chemistry. III. The Preparation and Lithiation of 3,5-Disubstituted Isoxazoles. *Can. J. Chem.* **1970**, *48*, 1371–1376.
- Funt, L. D.; Tomashenko, O. A.; Novikov, M. S.; Khlebnikov, A. F. An Azirine Strategy for the Synthesis of Alkyl 4-Amino-5-(trifluoromethyl)-1*H*-pyrrole-2-carboxylates. *Synthesis* 2018, *50*, 4809-4822.

1		
2	16.	Lin, ST.; Kuo SH.; Yang, FM. Reaction of Halogenated Cyclopropanes and Nitrosyl Cation:
3		
5		Preparation of Isoxazoles. J. Org. Chem. 1997, 62, 5229–5231.
6 7	17.	Velaparthi, U.; Kumaravel, S.; Karuppiah, A. M. S. S.; Maheshwarappa, S. H.; Rachamreddy, C.
8 9		R.; Wittman M. D. (Bristol-Myers SQUIBB Company) Imidazo-Pyridazine Derivatives as Casein
10 11		Kingga I dalta/angilan Inhibitara Int Datant Ann. 2015 WO2015/105880
12		Kinase I dena/epsilon minoitors. Int. Patent Appl. 2015, w02015/195880.
13		
14		
16		
17		
18		
20		
21		
23		
24		
25		
27		
28		
29 30		
31		
32		
33 34		
35		
36		
37 38		
39		
40		
41 42		
43		
44		
45 46		
47		
48		
49 50		
51		
52		
53 54		
55		
56 57		
58		45
59		
60		ACS Paragon Plus Environment