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a b s t r a c t

Two novel di-2-pyridyl imines, 2,4,6-trimethyl-(di-2-pyridylmethylene)aniline (1) and 2,6-di-isopropyl-
(di-2-pyridylmethylene)aniline (2), were prepared through condensation reactions between 2,20-dipyri-
dyl ketone and 2,4,6-trimethylaniline and 2,6-di-isopropylaniline. They reacted readily with bis(benzoni-
trile)dichloropalladium(II) to afford palladium imine complexes. The crystal structure of the palladium
complex (3) bearing the 2,4,6-trimethyl-(di-2-pyridylmethylene)aniline ligand revealed coordination of
a pyridyl group and an imine group to the metal center. The novel ligands were successfully employed
in the Suzuki coupling reaction of p-bromoanisole and phenylboronic acid.

� 2009 Elsevier B.V. All rights reserved.
Palladium-catalyzed Suzuki cross-coupling reaction of an aryl
halide and an arylboronic acid is a powerful and versatile tool in
organic synthesis [1–4]. The most commonly used ancillary ligands
for the palladium catalyst are bulky tertiary phosphines. However,
some phosphines are air-sensitive and require air-free handling in
order to avoid ligand oxidation. Recently, alternative ligands such
as N-heterocyclic carbenes (NHCs) [5–8], as well as ligand free
systems [9–12], have been employed in the coupling reactions.
Nitrogen ligands, such as amines [13], diazabutadienes [14], and
salicylaldimines [15], have attracted considerable interest due to
their stability and excellent activity. Unsymmetrical iminopyridine
ligands containing one imino group and one pyridyl group have
been extensively investigated and successfully employed recently
in catalytic transformations including olefin polymerization and
oligomerization [16–20], alkyne dimerization and cyclotrimeriza-
tion [21–24], hydroboration and aromatic C–H borylation [25,26],
hydrogenation of unsaturated hydrocarbons [27], and pyridine for-
mation [28], and have been evaluated as potential anti-cancer
agents [29]. In comparison, the chemistry of iminopyridine ligands
containing two pyridyl groups is relatively unexplored [30–32].
Here we wish to report the synthesis, characterization, and cata-
lytic application of air-stable di-2-pyridyl imine ligands, which
contain two pyridyl groups and one imino (C@N) group.

Reactions of 2,20-dipyridyl ketone and 2,6-di-isopropylaniline
or 2,4,6-trimethylaniline in toluene afforded the corresponding
di-2-pyridyl imines, 2,4,6-trimethyl-(di-2-pyridylmethylene)ani-
line (1) [33] and 2,6-di-isopropyl-(di-2-pyridylmethylene)aniline
ll rights reserved.
(2) [34] (Scheme 1). Both compounds could be handled and stored
in air for months without decomposition. The 1H NMR spectra of 1
and 2 in CDCl3 showed eight distinct signals for the eight pyridyl
hydrogen atoms, indicating the two pyridyl groups are non-equiv-
alent after the introduction of the bulky trimethyl and di-isopropyl
aryl imine groups. In 2, the two methyl groups in the isopropyl
moiety are also non-equivalent (1.15 and 1.97 ppm, respectively).
Both compounds showed strong absorption at 1630 cm�1 for
m(C@N) in the FTIR spectra.

Addition of a solution of 1 in CH2Cl2 to a solution of
(PhCN)2PdCl2 in CH2Cl2 afforded palladium complex 3 as an orange
solid [35]. Its 1H NMR spectrum showed downfield shift of up to
1.0 ppm in one pyridyl group and 0.3 ppm in the methyl groups
of the mesityl moiety, while the chemical shifts of the other pyridyl
group were almost unchanged. This suggested ligand coordination
to Pd through the imino group and only one pyridyl group in the
complex. Its IR spectrum showed red-shift of m(C@N) from 1630
to 1608 cm�1 upon coordination to the metal center. Slow evapo-
ration of a solution of 3 in acetone afforded orange crystals suitable
for X-ray diffraction analysis [36]. The crystal structure confirmed
the coordination mode of the ligand (Fig. 1). In the solid state, the
complex exists as a monomer, with Pd(II) ion adopting a distorted
square-planar geometry. The Pd–N bond distances of 2.022(2) and
2.026(2) Å are similar to the reported Pd–N values in related com-
plexes [15,19,37]. The reaction of 2 and (PhCN)2PdCl2 in CH2Cl2

afforded a yellow precipitate. Its 1H NMR spectrum contained mul-
tiple isopropyl signals, indicating the existence of a mixture. This
suggested multiple coordination modes of the ligand, whereas it
can bond through one pyridyl group and the imine group or both
pyridyl groups. We were unable to grow suitable crystals for X-
ray analysis from the mixture.
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We investigated the Suzuki cross-coupling reaction between
phenylboronic acid and p-bromoanisole, which is a deactivated
Fig. 1. Molecular Structure of 3 with ellipsoids drawn at the 30% probability level.
Hydrogen atoms were omitted for clarity. Selected bond lengths (Å) and angles (�):
Pd(1)–N(1) 2.022(2); Pd(1)–N(3) 2.026(2); Pd(1)–Cl(1) 2.2702(7); Pd(1)–Cl(2)
2.2931(6); N(1)–Pd(1)–N(3) 80.48(8); N(1)–Pd(1)–Cl(1) 173.22(6); N(3)–Pd(1)–
Cl(1) 94.62(6); N(1)–Pd(1)–Cl(2) 94.89(6); N(3)–Pd(1)–Cl(2) 171.52(6); Cl(1)–
Pd(1)–Cl(2) 90.55(3).
and fairly inert halide [38]. Compound 2 was used for the screening
of solvent and base for the reaction. The conditions and results are
listed in Table 1. We examined a few common solvents and bases
for the Suzuki reaction [1–3], and found that the combination of
dioxane as the solvent and Cs2CO3 as the base afforded the best re-
sult (entry 6).

Next we evaluated the efficiency of the novel di-2-pyridyl imi-
nes and related bidentate nitrogen ligands under similar condi-
tions. Palladium acetate and imine 1, as well as palladium
complex 3 bearing the imine, gave excellent yields (entries 7 and
8). Compound 2 was found to be more efficient than 1 as a ligand.
This may be attributed to more steric hindrance and better donat-
ing ability in 2 which are beneficial factors in the catalytic systems
[1–4]. We compared the efficiency of related iminopyridines con-
taining only one pyridyl group, 2,4,6-trimethyl-(2-pyridylmethyl-
ene)aniline (4) and 2,6-di-isopropyl-(2-pyridylmethylene)aniline
(5) [37]. In our studies, the monopyridyl imines gave good but low-
er yields than the novel dipyridyl imines (entries 9 and 10). The
improved efficiency of the dipyridyl imines over the monopyridyl
imines is likely due to the extra basic pyridyl group which provides
additional nitrogen functionality that is beneficial to catalytic
properties [39,40]. Furthermore, good yields (entries 11 and 12)
were obtained when the reactions were carried out in air using pal-
ladium acetate and the dipyridyl imine ligands, suggesting the li-
gand systems are rather robust in air.

In conclusion, we have prepared and characterized two novel
di-2-pyridyl imines and a palladium complex bearing one of the
imines. They were successfully employed in the Suzuki reaction
of p-bromoanisole and phenylboronic acid. They demonstrated
better catalytic efficiency than related monopyridyl imines. Both
imines were easy to prepare and stable in air, making them poten-
tial alternative ligands to the commonly used yet air-sensitive
phosphine ligands.
Appendix A. Supplementary material

CCDC 736562 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Center via http://www.ccdc.ca-
m.ac.uk/data_request/cif.
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Table 1
Suzuki reactions using imine ligands.a

rBOeM +
Ligand, Pd(OAc)2

Base, solvent, reflux
hPOeMPhB(OH)2

Entry Solvent Base Ligand Yield (%)b

1 Toluene K3PO4 2 70
2 Toluene K2CO3 2 67
3 Toluene Cs2CO3 2 76
4 Dioxane K3PO4 2 82
5 Dioxane K2CO3 2 84
6 Dioxane Cs2CO3 2 99
7 Dioxane Cs2CO3 1 88
8 Dioxane Cs2CO3 3 88c

9 Dioxane Cs2CO3 4 78
10 Dioxane Cs2CO3 5 81
11 Dioxane Cs2CO3 1 77d

12 Dioxane Cs2CO3 2 89d

a 1 mmol, p-bromoanisole; 1.5 mmol, phenylboronic acid; 2 mol%, Pd(OAc)2 and 2 mol%, ligand or 2 mol%, palladium imine complex 3; 1.5 mmol, Cs2CO3; 10 mL, dioxane,
reflux.

b GC yield based on p-bromoanisole.
c Palladium complex 3 was used instead of palladium acetate and a ligand.
d Experiments carried out in air.
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