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Abstract: A new type of chiral amidinobenzodiene 5 was prepared
from isatin in ten steps. While attempting to prepare the core struc-
ture from 5 and tryptamine derivative 17 via a hetero Diels–Alder
reaction for the total synthesis of communesin and perophorami-
dine, we observed an unexpected three-step, one-pot cascade reac-
tion of Michael–Manich–Manich additions. The cascade reaction
between 5 and 17 yielded diasteromers 21a and 21b with a complex
polycyclic skeleton of 2,3,4,5-diindolinohexahydropyrrole in 76%
yield and a ratio of 3:1. The stereochemistry of 21a was confirmed
by X-ray crystal-structural analysis.
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Since communesins A and B were isolated from a Penicil-
lium mold by Numata in 1993,1 six additional members
(C–H) of this indole alkaloid family have been identified
during the past two decades (Figure 1).2 Among commu-
nesins, communesin B is the most active in vitro cytotox-
icity against the lymphocytic leukemia cell line P388
(ED50: 0.45 mg/mL). In 2002, perophoramidine, a biosyn-
thetically related alkaloid and with opposite stereochem-
istry at the two adjacent quaternary stereocenters related
to communesin B, was isolated by Ireland from the marine
ascidian Perophora Namei (Figure 1). This compound
showed low cytotoxicity against the colon carcinoma cell
line HCT116 (IC50 of 60 mg/mL).3

Figure 1 Structures of communesins and perophoramidine (com-
munesin B: R1 = Me, R2 = 1,3-pentadienyl, X = O; communesin F:
R1 = R2 = Me, X = double bond)

The intriguing structure and interesting biological activity
of communesins and perophoramidine have attracted in-
tense interest among synthetic chemists wishing to recre-
ate the core structure.4 Their efforts have led to two total
syntheses of racemic (dehalo)perophoramidine5 and two
total syntheses of racemic communesin F.6 Recently, the
absolute configuration of these alkaloids has been deter-
mined by asymmetric total syntheses of (–)-communesin
F from Ma’s group7 and an asymmetric total synthesis of
(+)-perophoramidine by our group.8

In our total synthesis of (+)-perophoramidine,8 we carried
out an asymmetric intermolecular hetero Diels–Alder re-
action between the in situ generated trans,trans-benzodi-
ene 3 and indole 2 to assemble the chiral core structures
4a and 4b. In this reaction, the chirality of adducts 4a and
4b was induced by a chiral auxiliary pre-installed on the
amide nitrogen (Scheme 1).

During our further explorations of the efficiency and
scope of this type of in situ generated benzodiene on
asymmetric hetero Diels–Alder reaction, we observed an
unexpected cascade reaction of Michael–Mannich–
Mannich additions to yield a new chiral skeleton when a
chiral auxiliary attached to the carbon of a benzodiene 5
rather than to the nitrogen of the benzodiene 3
(Scheme 1). In this letter, we report the unusual cascade
reaction.

Preparation of chloroimidate 14, a precursor of benzodi-
ene 5, is shown in Scheme 2. By adapting our previous
procedure,8 aldehyde 7 was prepared in 65% yield in three
steps from isatin (6). After reduction of the aldehyde
group in 7, the resulting hydroxyl group was converted to
bromide to give compound 8 in 84% yield. Treatment of
8 with NaI, K2CO3, and (S)-a-methylbenzylamine in
DMF for 10 hours at 90 °C led to the formation of a mix-
ture of diastereomers 11 in 83% yield. The reaction most
likely proceeded through a three-step reaction of iodo ex-
change (9), ring closure (10), and nucleophilic attack of
the imidate group by (S)-a-methylbenzylamine. Selective
protection of the indole nitrogen with MeCO2Cl under
weak basic conditions resulted in ring opening of the in-
doline to give imidate 12 in 87% yield. Removal of TBS
in 12 with TBAF provided alcohol 13. Chlorination of 13
with SOCl2 in pyridine at 0 °C afforded chloride 14 in
90% yield. Because of its instability under chromatogra-
phy conditions, chloride 14 was used directly in the next
step without purification.
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The tryptamine derivative 17 with a 4-benzyloxy substit-
uent was prepared from 3-(4-benzyloxyindolo)carbox-
aldehyde 159 (Scheme 3). Methylation with MeI and
condensation with nitromethane provided nitroolefin 16
in 81% yield in two steps. After simultaneous reduction of
the double bond and nitro group in 16 with LiAlH4, the re-
sulting amine was protected with the phthalic group to
give 17 with 62% yield in two steps.

We originally envisioned that benzodiene 5 might react
with 17 through an intermolecular hetero Diels–Alder re-
action to give a chiral intermediate 18 possessing the basic

skeleton of communesins and perophoramidine
(Scheme 4). Unfortunately, when the benzodiene 5, gen-
erated in situ with 2 equivalents of AgBF4, reacted with 17
at –78 °C in CH2Cl2 for 2 hours, the diastereomers 21a
and 21b10 instead of 18 were generated. These diastereo-
mers, which have a complex polycyclic skeleton of
2,3,4,5-diindolinohexahydropyrrole, were produced in
76% yield and a ratio of 1:3. The formation of 21a and
21b was explained through a three-step, one-pot cascade
reaction of Michael–Mannich–Mannich additions. We
hypothesize that the attack of indole 17 on the benzodiene

Scheme 1 Asymmetrically intermolecular Diels–Alder reaction
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Scheme 2 Reagents and conditions: a) NaBH4, THF, 0 °C, 1 h, 93%; b) Ph3P, NBS, CH2Cl2, r.t., 12 h, 90%; c) NaI, K2CO3, (S)-a-methyl-
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5 gave indolinium 19, which was susceptible to addition
of the imidate group in 19 to afford the iminium interme-
diate 20. A final Mannich addition of the amide group in
20 to the iminium moiety provided 21a and 21b. X-ray
crystal-structural analysis of 21a11 firmly established the
stereochemistry of 21a and 21b. Efforts to carry out an
acid-catalyzed rearrangement to convert 21a and 21b to
18, a potentially useful intermediate for the total synthesis
of communesins and perophoramidine, failed because of
the easy decomposition of 21a and 21b under a variety of
acidic conditions.

In conclusion, two chiral compounds 21a (Figure 2) and
21b with a polycylic skeleton of 2,3,4,5-diindolino-
hexahydropyrrole were prepared through a three-step,
one-pot cascade reaction of Michael–Mannich–Mannich
additions involving tryptamine derivative 17 and benzodi-
ene 5. Although we failed to prepare 18 with a skeleton of
communesins and perophoramidine from 21a and 21b,
this work demonstrates the usefulness of the new benzo-
diene 5 for preparing a complex ring system.

Scheme 4 Reagents and conditions: AgBF4, CH2Cl2, –78 °C, 2 h, 76%.
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