Accepted Manuscript

Synthesis and evaluation of iminocoumaryl and coumarylderivatized glycosides as galectin antagonists

Vishal Kumar Rajput, Hakon Leffler, Ulf J. Nilsson, Balaram Mukhopadhyay

PII: DOI: Reference:	S0960-894X(14)00563-0 http://dx.doi.org/10.1016/j.bmc1.2014.05.063 BMCL 21677
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	30 January 2014
Revised Date:	3 May 2014
Accepted Date:	16 May 2014

Please cite this article as: Rajput, V.K., Leffler, H., Nilsson, U.J., Mukhopadhyay, B., Synthesis and evaluation of iminocoumaryl and coumarylderivatized glycosides as galectin antagonists, *Bioorganic & Medicinal Chemistry Letters* (2014), doi: http://dx.doi.org/10.1016/j.bmcl.2014.05.063

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Bioorganic & Medicinal Chemistry Letters

Synthesis and evaluation of iminocoumaryl and coumarylderivatized glycosides as galectin antagonists

Vishal Kumar Rajput^{a,b}, Hakon Leffler^c, Ulf J. Nilsson^a and Balaram Mukhopadhyay^b*

^aCentre for Analysis and Synthesis, Department of Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden; ^bIndian Institute of Science Education and ResearchKolkata, Mohanpur, Nadia 741252, India; ^cSection MIG, Department of Laboratory Medicine, Lund University, Sölvegatan 23, SE-223 62 Lund, Sweden

ARTICLE INFO ABSTRACT A collection of iminocoumarylmethyl glycoside derivatives have been prepared by copper-Article history: Received catalyzed multi-component reaction of carbohydrate propargyl derivatives, sulfonyl azides, and Revised salicylaldehyde or o-hydroxy acetophenone. The method is simple, versatile to all three components, and exceptionally high yielding. The carbohydrate N-sulfonyl iminocoumarine Accepted Available online hybrid molecules were evaluated for binding galectin-1, -2, -3, -4N, -4C, -7, -8N, -9N, and 9C using a competitive fluorescence polarisation assay. Selective compounds were identified against galectin-3, 7, 8N, and 9N with up to 40-fold affinity enhancements relative to methyl α -Keywords: D-galactopyranoside due to the coumarylmethyl moieties. iminocoumarine coumarine 2009 Elsevier Ltd. All rights reserved. galectin antagonist multicomponent reaction

^{*} Corresponding author. Tel.: +91 9748 261742; fax: +91 33 2334 8092; e-mail: sugarnet73@hotmail.com

Coumarines, widely abundant in nature, are versatile in applications as medicine, fluorescent indicators, dyes in laser technology and perfumery.¹⁻⁴ Many of them posses medicinally relevant character including antifungal, anticancer and anti-HIV activities.⁵⁻⁶Among the coumarin derivatives, iminocoumarins are reported to be potential protein tyrosine kinase (PTK) inhibitors⁷ and therefore attractive compoundsfor the treatment of diseases involving excess cell proliferation and antitumor processes. Considering the plethora of biological functions associated with carbohydrates, it is a reasonable postulation that carbohydrateheterocycle hybrids can provide target-specific drug candidates. In continuation to our recent research involving carbohydrateheterocycle hybrids,⁸ here we report an application of a facile multicomponent protocol for the synthesis of glycosylated iminocoumarins and coumarines. As an example of biomedical use we tested the compounds as antagonists of galectins. The galectins are a sub-class of lectins defined by having specific affinity for β -galactosides having a wide variety of biologically important functions including induction of apoptosis for T-cells, anti-apoptotic and pro-inflammatory functions, modulation of cell adhesion and migration.9-11 Hence, there is a clear demand of molecules that would antagonize galectin activity and, therefore, enable evaluation of galectin functions in more detail and lead to the development of galectin blocking drugs.¹²⁻¹⁵

Scheme 1. Copper-catalyzed multi-component reaction of acetylated propargyl glucoside 1a, *p*-toluenesulfonylazide 2a and salicylaldehyde 3a

Literature methods for the synthesis of coumarins such as Knoevenagel reaction and derivation of coumarins are often troublesome and limited for a narrow range of substituents.¹ Therefore, a practical synthesis of glycosylated iminocoumarins will be timely and useful. Recent development of multicomponent reactions (MCR) generated some excellent routes towards the synthesis of complex molecules by forming more than one covalent bonds in a single pot reaction.¹⁷ In parallel to the extensive use of copper-catalysed Huisgen cycloaddition reaction between alkyl/aryl azides and terminal alkynes,¹⁸⁻¹⁹sulfonylazides are found to react in a different fashion in similar conditions. By exploiting this difference in reactivity, various MCR approaches have been reported in the literature to form highly substituted and complex molecules.²⁰⁻ ²¹Recently, Wang *et al*²² reported an efficient route towards formation of substituted iminocoumarines via copper-catalyzed multi-component domino reaction with terminal alkyne, sulfonylazide and salicylaldehyde or o-hydroxyacetophenone, which recently was applied on propargyl glycosides.²³⁻²⁴ Taking the cue from their observations, we opted for propargylated

carbohydrate derivatives of various carbohydrates as the terminal alkyne source for the synthesis of glycosylated *N*-sulfonyliminocoumarins and coumarines as potential galectin antagonists.

Initially, the scope and limitations of the method were investigated with per-acetylated propargyl glucoside (1a), ptoluenesulfonylazide (2a) and salicylaldehyde (3a), which were subjected to the copper-catalyzed multi-component reaction (Scheme 1). To optimize the reaction conditions, various bases, solvents and copper catalysts (CuI or CuCl) were used (Table 1). The best result (92% isolated yield) was obtained when the reaction was carried out in THF in the presence of triethylamine as base and CuI as catalyst at ambient temperature for 12h (Table 1, entry 3). Changing the solvent to CH₂Cl₂ or CH₃CN resulted in loss of yield and formation of inseparable by-products (Table 1, entry 1 and 2). Use of other bases, such as pyridine (Table 1, entry 5) or K₂CO₃ (Table 1, entry 6), also proved to be detrimental to yields and purity. CuCl as catalyst failed to deliver the desired product in good yield (Table 1, entry 4). Elevation of the reaction temperature to 50 °C and shortening the reaction time to 6h (Table 1, entry 7) led to a significant decrease in yield (56%) of the desired product.

Table 1. Optimization of copper-catalyzed multi-component reaction conditions^a of acetylated propargyl glucoside**1a**, *p*-toluenesulfonylazide**2a** and salicylaldehyde**3a**.

			-	-	
Entry	Base	Solvent	Catalyst	Time	Yield ^b
1	Et ₃ N	CH_2Cl_2	CuI	12h	71%
2	Et ₃ N	CH ₃ CN	CuI	12h	44%
3	Et ₃ N	THF	CuI	12h	92%
4	Et ₃ N	THF	CuCl	12h	≈20%
5	Pyridine	THF	CuI	12h	62%
6	K_2CO_3	CH_2Cl_2	CuI	12h	38%
7	Et_3N	THF	CuI	6h ^c	56%

^aAlkyne (1 mmol), sulfonylazide (1 mmol), salicylaldehyde (1.1 mmol), base (2 mmol) and Cu-catalyst (0.1 mmol) in THF (10 mL) at RT. ^bIsolated yield on the basis of the alkyne. ^cReaction was performed at 50 °C.

Having the optimized conditions in hand, we next focused our attention to investigate the generality of the reaction for different carbohydrate alkynes. Thus, a series of propargyl glycosides (**1a-1g**)²⁵ including 6-deoxy, 2-deoxy-2-acetamido and disaccharide were examined and to our satisfaction, excellent yield of the corresponding iminocoumarin derivative was obtained in each case (Scheme 2, Table 2). Propargyl ethers (**1h**) of carbohydrates attached to positions other than anomeric also gave similar results. In addition to *p*-toluenesulfonylazide (Table 2, entry 8), the reaction is equally effective with other sulfonylazides (Table2, entry 9, 11-12, and 14). Replacement of salicylaldehyde to *o*-hydroxyacetophenone merely affects the outcome of the reaction (Table 2, entries 13-14). Hence, the reaction is general with respect to choice of all three substrates.

In order to assess biological activity, it was essential to deprotect the acetate groups. The initial concern associated with the stability of the *N*-sulfonyls during NaOMe catalyzed de-*O*-acetylation was proved to be safe with low NaOMe concentration and controlled reaction time (Scheme 3). Completely de-*O*-acetylated products **5** were obtained in good yields using 0.005M NaOMe in MeOH (Table 3).

 $R^3 = H CH_3$

3a 3b

Scheme 2. Copper-catalyzed multi-component reaction of panels of propargyl derivatives **1a-h**, sulfonylazides**2a-c**, and salicyaldehyde**3a** or hydroxyacetophenone**3b**

Table 2.Synthesis of carbohydrate-iminocoumarin hybrids **4** by CuI-catalyzed multi-component reactions of carbohydrate alkynes **1**, sulfonylazides**2**, and salicylaldehyde or *o*-hydroxyacetophenone**3**.

Entry	Alkyne 1	Sulfonylazid e2	Carbonyl 3	Imino- coumarine 4	Yield
1	1a	2a	3a	4aaa	92%
2	1b	2a	3a	4baa	90%
3	1c	2a	3a	4caa	91%
4	1d	2a	3a	4daa	86%
5	1e	2a	3a	4eaa	87%
6	1f	2a	3a	4faa	89%
7	1g	2a	3a	4gaa	81%
8	1h	2a	3a	4haa	91%

9	1 a	2b	3a	4aba	84%
10	1a	2c	3a	4aca	87%
11	1h	2b	3a	4hba	88%
12	1h	2c	3a	4hca	87%
13	1h	2a	3b	4hab	88%
14	1h	2b	3b	4hbb	86%

^aIsolated yields are calculated based on 1. ^bImino-coumarine4 numberingis accompanied with threeletter combinationsdefining the source of carbohydrate propargyl ether, sulfonylazide, and salicylaldehyde or *o*-hydroxyacetophenone, respectively. See scheme 2 legend for letter definitions.

Scheme 3. General de-*O*-acetylation of the carbohydrateiminocoumarines4 with NaOMe in MeOH.

Table 3.De-O-acetylation	of the carbohydrate-iminocoumarines	4
with NaOMe in MeOH.		

Entry	4	5	Yield ^a
1	4aaa	5aaa	82%
2	4baa	5baa	77%
3	4caa	5caa	79%
4	4daa	5daa	80%
5	4eaa	5eaa	78%
6	4faa	5faa	81%
7	4gaa	5gaa	74%
8	4aba	5aba	78%

^aYields after chromatographic purification.

Once the library of glycosylated-iminocoumarines **5** was in hand, we focused our attention to evaluate their activities with galectins. The deprotected glycosylated iminocoumarins **5** were evaluated as antagonists against human galectin-1, -3, -7, -8N (N-terminal domain), and -9N (N-terminal domain). This selection of galectins to evaluate is based on their well-documented relevance in immunity, inflammation and cancer. Galectin-4, -8 C-terminal

domain, -9 C-terminal domain, and -12 would also qualify as galectins of interest to evaluate, however adequately accurate assays for these galectins were not available. The data generated from these experiments clearly revealed that galactose and lactose-derived compounds **5baa** and **5gaa** posses binding

Table 4.K_d-values (mM)^a of binding compounds **5baa** and **5gaa**against human galectin-1, 3, 7, 8N, and 9N as measured by a fluorescence polarization assay.²⁶⁻²⁸ Methyl β -D-galactopyranoside**6** and methyl β -lactoside**7** are included as references.

Compound			Galectin		
	1	3	7	8N	9N
5baa	3.6±1.3	10±0.5	nb ^b	3.9±0.9	7.1±0.4
5gaa	0.5±0.09	0.13±0.06	nb	0.14 ± 0.01	0.080±0.010
Me β -D-gal(6) ²⁶	10	4.4	4.8	5.3	3.3
Me β- lac(7) ²⁹	0.19	0.22	0.11	0.062	0.023

^aThe data are average and standard deviation of 4-8 single point measurements. ^bNon-binding.

activities against galectin-1, 3, 8N, and 9N in the same range as reference methyl β -D-galactoside 6 and methyl β -lactoside7 (Table 4). On the contrary, galectin-7 did not bind by the anomeric coumarines **5baa** and **5gaa**. The other carbohydrate iminocoumarine compounds 5 as expected did not show any significant binding as they do not posses the key galactose or lactose moiety needed

Scheme 4. Synthesis of 3-*O*-iminocoumarine and coumarine derivatives **10-11** of methyl α-D-galactopyranoside..

Next, we synthesized the 3-O-iminocoumarine derivatives of galactose as an alternative strategy, because galectin:ligand X ray structures³⁰⁻³⁶ reveal no clear contact between galactose 3-OH and galectin CRDs. This suggests that galactose 3-O is ideal as point of attaching putative affinity-enhancing coumaryl structures pointing into an extended binding pocket, as has been demonstrated with other structures in a series of publications.³ ⁴²Hence, 3-*O*-propargylated galactopyranoside $\mathbf{8}^{43}$ was subjected to the Cu-catalyzed three-component protocol to afford the desired 3-O-iminocoumarine galactosides9a and 9b in good vields. These derivatives were de-O-acetylated to afford compounds 10a and 10'b, respectively, using the same controlled de-O-acylation strategy with low sodium methoxide concentration (Scheme 4). Interestingly, the 2-O- acetyl group showed unexpectedly high stability and the partially de-Oacetylated 10'a and10'b were isolated together with the fully de-O-acetylated compounds 10a and 10b. As 2-O-substituted galactopyranose derivatives have proven better antagonists, as compared to parent galactosides, against galectin-344-48, it was of interest to study the effect of 2-O-acetyl protecting group on galectin binding. Alternatively, forcing the de-O-acetylation conditions by using 0.05M in MeOH for 12h, followed by addition of water yielded the corresponding coumarine derivatives after an additional 12h. Hence, increasing the sodium methoxide concentration, followed by addition of water, allowed for simultaneous de-O-acetylation and de-N-sulfonylation to yield the coumarine**11**.

Evaluation of **10a**,**10'a**,**10b**, **10'b**,and **11** as galectin antagonists revealed only a marginal, but significant, affinity enhancement for galectin-1. However, to our satisfaction, all five compounds indeed showed binding(Table 5)to galectin-3, 8N, and 9N with efficiencies approaching or even surpassing the hitherto most promising galactose 3-C-modifications based on aromatic amides and triazoles (*e.g.* methyl 3-deoxy-3-(4methylbenzamido)-1-thio- β -D-galactopyranoside **12**⁴⁶ and methyl 3-deoxy-3-(4-benzylaminocarbonyl-1*H*-[1,2,3]-triazol-1-yl)-1thio- β -D-galactopyranoside **13**,⁴⁰(Figure 1). For galectin-8N the result was possibly even more intriguing because while the *N*sulfonylatediminocoumarines**10a** and **10b** were more than20

Table 5.K_d-values $(\mu M)^a$ of 10a, 10'a, 10b, 10'b, 11, 12, 13, and methyl α -D-galactoyranoside14against human galectin-1, 3,7, 8N, and 9N, as measured by a fluorescence polarization assay.²⁶⁻²⁸

			Galectin		
	1	3	7	8N	9N
10a	1700±640	120±25	1700±720	250±55	140±13
10'a	5100±590	97±22	180±18	170±46	36±13
10b	650±110	81±13	1100±270	390±46	76±16
10'b	4500±100	130±49	230±50	270±70	45±5
11	1900±290	78±15	850±130	180±17	180±27
12^{40}	980	220		>2000	1500
			>2000		
13 ^{39,40}	n.b. ^b	150	2100	>5000	>5000
14	>10000 ^c	2700±42 0	11000±280 0	6300±97 0	2800±45 0

 $^{\rm a}The$ data are average and standard deviation of 4-8 single point measurements. $^{\rm b}Non-binding.$ $^{\rm c}No$ inhibition observed at 10 mM concentration.

Figure 1. Galectin-binding reference 3-C-modified galactosides 12, 13 and 14.

ΟH

times better ligands than methyl α -D-galactopyranoside14, the reference amide12 and triazole13 were virtually non-binding. Surprisingly, the compounds with 2-*O*-acetyl protection 10'a and10'b were proved better ligands against galectins-7 and 9N, than de-protected iminosulfonyl-cumarines (10a and 10b). They showed similar affinity as the coumarine11 for galectin-3 and galectin-8N and considerably increased affinity against galectin-7 (10'aK_d=180 μ M and 10'bK_d=230 μ M), galectin-9 (10'aK_d=36 μ M and 10'bK_d=45 μ M), but rendered neutral or slightly adverse effect against galectin-1 in comparison to compound 11, albeit in no case did the substitution cause abolished binding. Taken together, these results open up a promising avenue towards exploiting galactose 3-*C*-coumarines as galectin antagonists.

In conclusion, we have employed a highly efficient multicomponent method for the synthesis of iminocoumarylmethyland coumarylmethylderivatised carbohydrates for evaluation as galectin antagonists. While iminocoumarylmethylgalactosides and lactosides derivativesshowedbinding activity against galectin-1, 3, 7, 8N, and 9N in the same range as methyl β -Dgalactoside and β -lactoside, respectively, the 3-Oiminocoumarylmethyl and coumarylmethyl galactoside derivatives showed greatly enhanced affinity over methyl α -D-galactoside for galectin-3, 7, 8N, and 9N, but less so for galectin-1. The affinity enhancements for galectin-3, 7, 8N, and 9N surpasses those of earlier discovered 3-benzamido- and 3-triazolyl galactosides, which clearly points to the 3-*O*-iminocoumarylmethyl and 3-*O*-coumarylmethyl derivatization being an attractive route towards efficient antagonists against these galectins.

Acknowledgments

VKR thanks CSIR, New Delhi, India for Senior Research Fellowship. The work wassupported by the Swedish Research Council program Swedish Links sponsored by SIDA (Swedish International Development Cooperation Agency), the Swedish Research Council (Grant No. 621-2009-5326), and the Department of Science and Technology, New Delhi, India (Grant No. SR/S1/OC-67/2009).

References and notes

- 1. Venugopala, K. N.; Rashmi, V.; Odhav, B. BioMed Res. Int. 2013, 1.
- 2. Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K.-H. Med. Res. Rev. 2003, 23, 322.
- O'Kennedy, R.; Thomas, R. D., Eds. Coumarins: Biology, Applications, and Mode of Action; Wiley: Chichester, UK, 1997.
- Brun, M. P.; Bischoff, L.; Garbay, C. Angew. Chem. Int. Ed. Engl. 2004, 43, 3432.
- Hariprassad, V.; Talele, T. T.; Kulkarni, V. Pharm. Pharmacol. Comun. 1998, 4, 365.
- 6. Lacy, A.; Kennedy, R. Curr. Phar. Des. 2004, 10, 3797.
- Burke, T. R.; Lim, B.; Marquez, V. E.; Li, Z.-H.; Bolen, J. B.; Bolen, J. B.; Stefanova, I.; Horak, I. D. J. Med. Chem. 1993, 36, 425.
- 8. Mandal, S.; Gauniyal, H. M.; Kausikisankar, P.; Mukhopadhyay, B. J. Org. Chem. 2007, 72, 9753.
- 9. Leffler, H.; Carlsson, S.; Hedlund, M.; Qian, Y.; Poirier, F. *Glycoconj. J.* 2004, *19*, 433.
- 10. Rabinovich, G. A.; Croci, D. O. Immunity 2012, 36, 322.
- 11. Rabinovich, G. A.; Toscano, M. A. Nat. Rev. Immunol. 2009, 9, 338.
- 12. Ingrassia, L.; Camby, I.; Lefranc, F.; Mathieu, V.; Nshimyumukiza, P.; Darro, F.; Kiss, R. *Curr. Med. Chem.* 2006, *13*, 3513.
- 13. Leffler, H.; Nilsson, U. J., Eds. Galectins and Disease Implications for Targeted Therapies, 2013.
- 14. Oberg, C.; Leffler, H.; Nilsson, U. J. Chimia 2011, 65, 1.
- 15. Pieters, R. J. ChemBioChem 2006, 7, 721.
- Volmajer, J.; Toplak, R.; Bittner, S.; Leban, I.; Le Marechal, A. M. Tetrahedron Lett. 2003, 44, 2363.
- 17. Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. Engl. 2000, 39, 3168.
- 18. Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2013, 8, 1128.
- 19. Meldal, M.; Tornøe, W. Chem. Rev. 2008, 108, 2952.
- 20. Murugavel, G.; Punniyamurthy, T. Org. Lett. 2013, 15, 3828.
- 21. Whiting, M.; Fokin, V. V. Angew. Chem. Int. Ed. Engl. 2006, 45, 3157.
- 22. Cui, S.-L.; Lin, X.-F.; Wang, Y.-G. Org. Lett. 2006, 8, 4517.
- Mandal, P. K. *RSC Adv.* 2014, *4*, 5803.
- Palanichamy, K.; Suravarapu, S. R.; Kaliappan, K. P. Synthesis, 2012, 2012, 1841.
- 25. Roy, B.; Mukhopadhyay, B. Tetrahedron Lett. 2007, 48, 3783.
- Cumpstey, I.; Carlsson, S.; Leffler, H.; Nilsson, U. J. Org. Biomol. Chem. 2005, 3, 1922.
- Sörme, P.; Kahl-Knutsson, B.; Huflejt, M.; Nilsson, U. J.; Leffler, H. Anal. Biochem. 2004, 334, 36.
- Sörme, P.; Kahl-Knutsson, B.; Wellmar, U.; Nilsson, U. J.; Leffler, H. Meth. Enzymol. 2003, 362, 504.
- Cumpstey, I.; Salomonsson, E.; Sundin, A.; Leffler, H.; Nilsson, U. J. ChemBioChem 2007, 8, 1389.
- Bianchet, M. A.; Ahmed, H.; Vasta, G. R.; Amzel, L. M. Proteins 2000, 40, 378.
- Leonidas, D. D.; Vatzaki, E. H.; Vorum, H.; Celis, J. E.; Madsen, P.; Acharya, K. R. *Biochemistry* 1998, 37, 13930.
- López-Lucendo, M. F.; Solís, D.; André, S.; Hirabayashi, J.; Kasai, K.i.; Kaltner, H.; Gabius, H.-J.; Romero, A. J. Mol. Biol. 2004, 343, 957.
- Nagae, M.; Nishi, N.; Nakamura-Tsuruta, S.; Hirabayashi, J.; Wataksuki, S.; Kato, R. J. Mol. Biol. 2008, 375, 119.

- Saraboji, K.; Håkansson, M.; Genheden, S.; Diehl, C.; Qvist, J.; Weininger, U.; Nilsson, U.; Leffler, H.; Ryde, U.; Akke, M.; Logan, D. *Biochemistry* 2011, 51, 296.
- Seetharaman, J.; Kanigsberg, A.; Slaaby, R.; Leffler, H.; Barondes, S. H.; Rini, J. M. J. Biol.Chem. 1998, 273, 13047.
- Sörme, P.; Arnoux, P.; Kahl-Knutsson, B.; Leffler, H.; Rini, J. M.; Nilsson, U. J. J. Am. Chem. Soc. 2005, 127, 1737.
- Cumpstey, I.; Salomonsson, E.; Sundin, A.; Leffler, H.; Nilsson, U. J. Chem. Eur. J. 2008, 14, 4233.
- Cumpstey, I.; Sundin, A.; Leffler, H.; Nilsson, U. J. Angew. Chem. Int. Ed. 2005, 44, 5110.
- Salameh, B. A.; Cumpstey, I.; Sundin, A.; Leffler, H.; Nilsson, U. J. Bioorg. Med. Chem. 2010, 18, 5367.
- Salameh, B. A.; Leffler, H.; Nilsson, U. J. Bioorg. Med. Chem. Lett. 2005, 15, 3344.
- 41. Salameh, B. A.; Sundin, A.; Leffler, H.; Nilsson, U. J. Bioorg. Med. Chem. 2006, 14, 1215.
- 42. Sörme, P.; Qian, Y.; Nyholm, P.-G.; Leffler, H.; Nilsson, U. J. *ChemBioChem* 2002, *3*, 183.
- Campo, V. L.; Sesti-Costa, R.; Carneiro, Z. A.; Silva, J. S.; Schenkman, S.; Carvalho, I. *Bioorganic & amp; Medicinal Chemistry* 2012, 20, 145.
- 44. Collins, P. M.; Oberg, C. T.; Leffler, H.; Nilsson, U. J.; Blanchard, H. *Chem. Biol. Drug Design* 2012, *79*, 339.
- 45. Öberg, C. T.; Blanchard, H.; Leffler, H.; Nilsson, U. J. *Bioorg. Med. Chem. Lett.* 2008, *18*, 3691.
- 46. Öberg, C. T.; Leffler, H.; Nilsson, U. J. J. Med. Chem. 2008, 51, 2297.
- 47. Öberg, C. T.; Noresson, A.-L.; Leffler, H.; Nilsson, U. J. Chem. Eur. J. 2011, 17, 8139.
- 48. Öberg, C. T.; Noresson, A.-L.; Leffler, H.; Nilsson, U. J. *Tetrahedron* 2011, 67, 9164.

Supplementary Material

Synthetic experimental procedures, NMR data, ms data, and copies of NMR spectra.

