ORIGINAL RESEARCH

# Synthesis and in vitro microbial activities of amides of pyridoquinolone

Navin B. Patel · Sarvil D. Patel · Hiren I. Chauhan

Received: 23 November 2009/Accepted: 17 September 2010/Published online: 2 October 2010 © Springer Science+Business Media, LLC 2010

**Abstract** In this study, we report the antimicrobial evaluation of newly synthesized amides of pyridoquinolones from substituted aniline, substituted phenyl thioureas and 4-amino-*N*-(substitutedphenyl)benzenesulfonamide. Structures of selected compounds have been established by IR and <sup>1</sup>H NMR spectra and elemental analysis. The structure– activity releationships have been studied by screening of antimicrobial activity over *S. aureus*, *B. subtilis*, *E. coli*, *P. aeruginosa*, and *C. albicans* using cup–plate method.

**Keywords** Pyridoquinolone · Phenyl thioureas · Sulfonamides · Antimicrobial activity

#### Introduction

Discovery of nalidixic acid gave an important class of antibacterial known as fluoroquinolones. They can inhibit DNA gyrase and topoisomerase IV enzymes, essential for DNA supercoiling. Phenyl thiourea derivatives possess significant pharmacological importance, e.g., antiviral (Yan *et al.*, 2009), antimicrobial (Turan-Zitouni *et al.*, 2002), antidiabetic (Maruyama *et al.*, 2009), antitubercular (Sycheva *et al.*, 1966) etc. Sulfonamides demonstrated bacteriostatic activity by inhibiting the bio-synthesis of folic acid (Brown, 1962). Its derivatives possess versatile activity, e.g., carbonic anhydrase inhibitors (Supuran *et al.*, 1998), anticancer (Reddy *et al.*, 2004), anti-inflammatory (Li *et al.*, 1995), anti-HIV (Selvam *et al.*, 2001), COX-2 inhibitors (Dannhardt *et al.*, 2002), selective 5-HT receptor

antagonist (Bromidge *et al.*, 2002), antitubercular (Kamal *et al.*, 2007) and antifungal (Briganti *et al.*, 1997) etc. Pyridoquinolones were synthesized and evaluated for antimicrobial activity (Lee *et al.*, 1992; Lee and Chang, 1994, 1996), in which pyridine ring was fused with quinazoline ring, and generally known as phenanthroline. The structure–activity relationships of fluoroquinolone have been studied in some reviews (Mitscher, 2005; Bhanot *et al.*, 2001); consideration of the above facts and the presence of fused pyrido ring in nalidixic acid urged us to synthesize structurally similar compounds to fluoroquinolone by replacing fluoro group with chloro and hydroxy groups at C–6 possition with fused pyrido ring; the carboxylic acid group was further converted to amides for enhanced antimicrobial activity.

### **Results and discussion**

# Chemistry

We have synthesized amides of pyridoquinolone **3a–l**, **4a–l**, **5a–l**, **6a–l**, **7a–l**, and **8a–l** from substituted aniline, substituted phenyl thioureas, and 4-amino-*N*-(substitutedphenyl)benzenesulfonamide as illustrated in Scheme 1: their structures were confirmed by elemental analysis, IR, and <sup>1</sup>H NMR spectral data. IR absorption bands in cm<sup>-1</sup> were obsevered at 3412 (NH), 3360 (OH), 2942, 2865 (CH), 1739 (>C=O of quinolone), 1640 (amide-I), 1535 (amide-II), 1305 (C–N), 1250 (amide-III), 810 (C–Cl), 1325, 1180 (S=O, sym, asym), and 1160 (>C=S), 1075 (S–N); some additional peaks appeared due to substitution in aromatic ring at 1512, 1352 (N=O sym, asym), 1265, 1046 (C–O–C), and 2236 (>C=N). In <sup>1</sup>H NMR spectra, the following common signals appeared at  $\delta_{\rm H}$  (ppm) values: a singlet

N. B. Patel (⊠) · S. D. Patel · H. I. Chauhan Department of Chemistry, Veer Narmad South Gujarat University, Surat, Gujarat 395 007, India e-mail: drnavin@satyam.net.in



X = CI for 1a, 2a, 3a-I, 5a-I, 7a-I

X = OH for 1b, 2b, 4a-I, 6a-I, 8a-I

**R** =

|   | a          | b    | c    | d                  | e                  | f                 | g                 | h                 | i                 | j                 | K                      | 1                       |
|---|------------|------|------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------------|
| 3 | -H         | 3-C1 | 4-Cl | 2-OCH <sub>3</sub> | 4-OCH <sub>3</sub> | 2-NO <sub>2</sub> | 3-NO <sub>2</sub> | 4-NO <sub>2</sub> | 2-CH <sub>3</sub> | 3-CH <sub>3</sub> | 4-CH <sub>3</sub>      | 2,5-di-CH <sub>3</sub>  |
| 4 | -H         | 3-C1 | 4-Cl | 2-OCH <sub>3</sub> | 4-OCH <sub>3</sub> | 2-NO <sub>2</sub> | 3-NO <sub>2</sub> | 4-NO <sub>2</sub> | 2-CH <sub>3</sub> | 3-CH <sub>3</sub> | 4-CH <sub>3</sub>      | 2,5-di-CH <sub>3</sub>  |
| 5 | -H         | 3-Cl | 4-Cl | 2-OCH <sub>3</sub> | 4-OCH <sub>3</sub> | 3-NO <sub>2</sub> | 4-NO <sub>2</sub> | 2-CH <sub>3</sub> | 3-CH <sub>3</sub> | 4-CH <sub>3</sub> | 2,5-di-CH <sub>3</sub> | 2-CN, 4-NO <sub>2</sub> |
| 6 | -H         | 3-C1 | 4-Cl | 2-OCH <sub>3</sub> | 4-OCH <sub>3</sub> | 3-NO <sub>2</sub> | 4-NO <sub>2</sub> | 2-CH <sub>3</sub> | 3-CH <sub>3</sub> | 4-CH <sub>3</sub> | 2,5-di-CH <sub>3</sub> | 2-CN, 4-NO <sub>2</sub> |
| 7 | <b>-</b> H | 3-OH | 4-OH | 2-OCH <sub>3</sub> | 4-OCH <sub>3</sub> | 2-NO <sub>2</sub> | 3-NO <sub>2</sub> | 4-NO <sub>2</sub> | 2-CH <sub>3</sub> | 3-CH <sub>3</sub> | 4-CH <sub>3</sub>      | 3-Cl                    |
| 8 | <b>-</b> H | 3-OH | 4-OH | 2-OCH <sub>3</sub> | 4-OCH <sub>3</sub> | 2-NO <sub>2</sub> | 3-NO <sub>2</sub> | 4-NO <sub>2</sub> | 2-CH <sub>3</sub> | 3-CH <sub>3</sub> | 4-CH <sub>3</sub>      | 3-Cl                    |

Scheme 1 Synthetic route of compounds 3a-l, 4a-l, 5a-l, 6a-l, 7a-l, 8a-l

signal at  $\delta$  7.80, and 8.50 corresponding to H-2 and H-5 of quinolone ring, respectively; a multiplet at  $\delta$  3.20 corresponding to >N–(CH<sub>2</sub>)<sub>2</sub>–O; a singlet at  $\delta$  4.25 corresponding to CH<sub>2</sub>OH; a multiplet at  $\delta$  8.75–9.50 corresponding to pyrido ring; a singlet at  $\delta$  5.40 corresponding to Ar–OH; a singlet at  $\delta$  10.10 corresponding to >CO.NH; and a singlet single at  $\delta$  10.20 and 10.28 corresponding to –SONH<sub>2</sub> and

>CS.NH, respectively, Due to the substitution on aromatic ring, a singlet appeared at  $\delta$  6.56 and 3.85 corresponding to Ar–OH and Ar–OCH<sub>3</sub>, repectively. Substituted phenyl thiourea derivatives (Venkatesh and Pandeya, 2009; Bhusari *et al.*, 2008) and substituted 4-amino-*N*-(substitutedphenyl)benzenesulfonamide (Hirpara *et al.*, 2004) have been synthesized as per the previously reported methods (Table 1).

Table 1 Antibacterial and antifungal activity of synthesized compounds

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zone of inhibition in mm at 100 μg/ml |         |          |     |               |        |           |               |             |      |             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|----------|-----|---------------|--------|-----------|---------------|-------------|------|-------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Compd.                                | Gram    | negative |     |               | Gram I | positive  | Fugal species |             |      |             |  |
| ZI       AI       ZI       AI       ZI       AI       ZI       AI         3a       12       0.8       09       0.52       12       0.7       11       0.68       0.5       0.53         3b       07       0.46       07       0.41       08       0.47       09       0.6       0.3       0.33         3c       06       0.4       06       0.53       05       0.22       07       0.43       0.22         3d       08       0.73       11       0.64       08       0.47       10       0.62       04       0.44         3g       09       0.6       09       0.52       09       0.52       04       0.44         3g       09       0.6       00       0.58       10       0.66       0.53       0.4       0.4         3l       10       0.66       08       0.47       08       0.47       09       0.6       00       -         4a       08       0.53       08       0.47       07       0.41       06       0.55       01<                             |                                       | E. coli | E. coli  |     | P. aeruginosa |        | S. aureus |               | B. subtilis |      | C. albicans |  |
| Ja       12       0.8       09       0.52       12       0.7       11       0.68       0.5       0.55         Jb       07       0.46       07       0.41       08       0.47       09       0.68       0.33       0.22         3d       0.6       0.53       0.8       0.47       09       0.52       10       0.62       0.33       0.33         3e       0.0       -       0.6       0.35       0.6       0.66       0.6       0.35       0.4       0.44         3g       09       0.6       09       0.52       09       0.52       0.31       0.02       0.44         3g       07       0.46       04       0.23       00        05       0.31       0.0          3g       10       0.66       0.8       0.47       0.8       0.47       0.9       0.6       0.0          3g       10       0.66       0.8       0.47       0.7       0.41       0.6       0.35       0.0          3g       10       0.6                                                  |                                       | Z.I     | A.I      | Z.I | A.I           | Z.I.   | A.I.      | Z.I.          | A.I.        | Z.I. | A.I.        |  |
| 3b0.70.460.70.410.80.470.90.6.0.30.333c0.60.430.60.530.620.29070.43020.2223d0.80.470.90.520.660.660.660.620.430.333e0.90.60.90.520.90.620.660.630.350.40.443g0.90.60.90.520.90.660.660.330.40.443i0.70.460.40.230.00.510.310.03j100.660.70.410.660.90.60.40.443k0.40.260.290.50.290.70.430.04a0.80.530.80.470.90.60.04a0.80.530.80.470.70.410.660.350.04b0.40.260.40.230.00.660.350.04c100.660.40.00.660.80.70.114c110.73100.580.70.410.80.50.10.114c110.73100.580.70.410.80.50.10.114c140.90.60.90.52 <t< td=""><td>3a</td><td>12</td><td>0.8</td><td>09</td><td>0.52</td><td>12</td><td>0.7</td><td>11</td><td>0.68</td><td>05</td><td>0.55</td></t<>                                                                                                                                                                                                                                                                                                       | 3a                                    | 12      | 0.8      | 09  | 0.52          | 12     | 0.7       | 11            | 0.68        | 05   | 0.55        |  |
| 3e060.4060.350.50.29070.43020.223d080.53060.52100.62030.333e00-060.51060.660.650.620.440.443g090.6090.52090.52060.650.35030333h090.6090.64100.88100.660.90.660.40.443i100.660.1300050.31003j100.660.40.2300050.31004a080.53080.47070.41060.35010.114b040.26080.47070.41060.35010.114c100.66080.47070.41060.35010.114c110.73100.58100.58120.5505054f090.60.33080.47070.4300050.35020.224g080.43090.52080.47090.6603030303030303030303030303030303030303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3b                                    | 07      | 0.46     | 07  | 0.41          | 08     | 0.47      | 09            | 0.6         | 03   | 0.33        |  |
| 3d080.33080.47090.52100.620.30.333e00-060.35060.660.60.35020.223f110.73110.64080.47100.620.40.333h090.6100.52090.52060.3503033h070.46040.2300-0.66060.35040.443k040.26050.29050.290.720.4300-3k040.26080.47080.47090.600-4a080.33080.47070.41060.35010.114b040.26080.47120.7100.62050.554d060.40.26080.47120.7100.62050.554f090.60.73100.58110.68040.444g080.53100.58110.68020.52050.554f090.60.73100.58110.68040.444g080.53100.58110.68020.520303014g090.60.5080.770.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3c                                    | 06      | 0.4      | 06  | 0.35          | 05     | 0.29      | 07            | 0.43        | 02   | 0.22        |  |
| 3e00060.35060.66060.33020.223f110.73110.64080.47100.620.40.443g090.6100.52090.52060.35030.333h090.6100.58100.66060.35040.443i070.46010.58100.66090.6040.443k040.26050.29050.29070.43003l100.66080.47070.41060.35010.114a080.53080.47070.41060.35010.114b040.26040.2300060.35010.114c110.73100.58100.58110.6603014f090.6090.52090.52080.5010.514f090.6090.52090.52080.5030.3034f090.6090.52090.52080.5030.3303034f090.6090.52090.520805030303030303030303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3d                                    | 08      | 0.53     | 08  | 0.47          | 09     | 0.52      | 10            | 0.62        | 03   | 0.33        |  |
| 3r110.73110.64080.47100.62040.443g090.6090.52090.52060.35040.443i070.46040.2300-050.3100-3j100.66100.58100.66090.4300-3k040.26050.29050.29070.4300-4a080.53080.47080.47090.600-4a080.53080.47120.7100.62050.554d040.26040.2300-060.35010.114c100.660.80.47120.7100.62050.554d060.400-060.58110.68040.444g090.6090.52100.58110.68040.444g090.6090.52090.510300-144g090.6090.52090.52090.640300-4g090.60.4050.35080.47080.47080.42030.334g090.6090.5209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3e                                    | 00      | -        | 06  | 0.35          | 06     | 0.66      | 06            | 0.35        | 02   | 0.22        |  |
| 3g090.60.52090.52060.330.30.333h090.6100.58100.66060.350.40.443j100.66100.58100.66090.6040.443k040.260.50.29070.66004n080.53080.47080.47090.6004n080.53080.47070.41060.35010.114b0.440.26040.2300060.35010.114b0.460.660.80.47070.41060.35010.114c110.73100.52100.58110.66080.5010.114c060.4060.52100.58110.68040.444g080.53100.58070.41080.5020.224i090.6100.58070.41080.5010.114k090.60.4060.52090.52080.47070.43004j090.60.40.580.70.41080.47090.6020.22025h <t< td=""><td>3f</td><td>11</td><td>0.73</td><td>11</td><td>0.64</td><td>08</td><td>0.47</td><td>10</td><td>0.62</td><td>04</td><td>0.44</td></t<>                                                                                                                                                                                                                                                                                                                                            | 3f                                    | 11      | 0.73     | 11  | 0.64          | 08     | 0.47      | 10            | 0.62        | 04   | 0.44        |  |
| 3h090.6100.58100.66060.35040.443i070.46040.2300050.31003j100.66050.29050.29070.43003i100.66080.47080.47090.6003i100.66080.47070.41060.35014a080.53080.47070.41060.35014a080.53040.2300060.35014c100.66080.47120.7100.62050.554f090.6090.52100.58110.68040.444g080.53090.52100.58110.6804044g090.6100.58050.5903030303034i090.6080.47080.47090.6020.22024i090.6080.47080.47090.6020.22025i100.66080.47080.47090.60202025i100.66080.570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3g                                    | 09      | 0.6      | 09  | 0.52          | 09     | 0.52      | 06            | 0.35        | 03   | 0.33        |  |
| 3i070.46040.2300-050.3100-3j100.66100.58100.66090.60.40.443k040.26050.29050.29070.4300-31100.66080.47080.47090.600-4a080.35080.47070.41060.35010.114b040.260.40.0-060.66080.5010.114c110.73100.58100.58120.75050554d060.400-060.66080.47070.41080.5020.224f090.60.90.52100.58110.6804044g080.53100.5802020202024i090.6030.52090.52080.50303034i090.6030.29060.66070.43010.114k100.66090.52090.52080.50202025a0303300-060.66070.43010.114k090.603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3h                                    | 09      | 0.6      | 10  | 0.58          | 10     | 0.66      | 06            | 0.35        | 04   | 0.44        |  |
| 3j100.66100.58100.66090.6040.443k040.26050.29070.43004a080.53080.47070.41060.35010.114b040.26040.2300060.35010.114c100.66080.4712070.41060.35010.114c110.73100.58100.58120.75050.554f090.6090.52100.58110.68040.444g080.33100.58010.58110.68040.444g060.34060.35080.47070.430041090.6030.52090.52080.5010.114k100.66090.52090.52080.5010.114k100.6604070.41080.70.43010.114k100.66080.47090.6020202025a060.4070.41080.70.43010.114k100.66080.47090.6020202 <t< td=""><td>3i</td><td>07</td><td>0.46</td><td>04</td><td>0.23</td><td>00</td><td>-</td><td>05</td><td>0.31</td><td>00</td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                       | 3i                                    | 07      | 0.46     | 04  | 0.23          | 00     | -         | 05            | 0.31        | 00   | -           |  |
| 3k040.26050.29050.29070.430031100.66080.47080.47090.6004a080.53080.47070.41060.35004c100.66080.47120.7100.62050.554d060.400060.660.880.5010.114e110.73100.58100.58110.68040.444g080.53100.58070.410.880.5020.224h060.44060.35080.47070.43004j090.6100.58050.29060.35010.114k100.66090.52090.52080.50303034i090.6080.47080.47090.6020.225a060.44070.41080.47090.6020.225a060.40.58110.640.44090.6020.225a070.43070.41080.47090.6020.225a080.5300060.66<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3ј                                    | 10      | 0.66     | 10  | 0.58          | 10     | 0.66      | 09            | 0.6         | 04   | 0.44        |  |
| 31100.660.80.470.80.470.90.60.0-4a080.530.80.47070.41060.35010.114b0.400.260.40.2300-060.3500-4c100.660.80.47120.7100.62050.554d060.4400-060.58100.58110.68040.414e110.73100.58100.58110.68040.444g080.53100.58070.41080.5020.224h060.4060.350.80.47070.4300-4i090.6100.58060.660.660.35030.334i090.6080.47080.47090.6020.225a060.46090.52090.52080.5030.334i090.66080.47080.47090.6040.445c080.53010.58010.66080.50202025a090.66080.53020.22080.620303035b100.6609 <td>3k</td> <td>04</td> <td>0.26</td> <td>05</td> <td>0.29</td> <td>05</td> <td>0.29</td> <td>07</td> <td>0.43</td> <td>00</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                | 3k                                    | 04      | 0.26     | 05  | 0.29          | 05     | 0.29      | 07            | 0.43        | 00   | -           |  |
| 4a     08     0.53     08     0.47     07     0.41     06     0.35     01     0.11       4b     0.4     0.26     04     0.23     00     -     06     0.35     00     -       4c     10     0.66     08     0.47     12     0.7     10     0.62     05     0.55       4d     06     0.4     00     -     066     0.8     0.5     01     0.11       4e     11     0.73     10     0.58     10     0.58     12     0.75     05     0.55       4f     09     0.6     09     0.52     10     0.58     0.47     07     0.43     00     -       4i     09     0.6     10     0.58     0.5     0.29     06     0.35     00     -     0.41     08     0.47     09     0.6     02     0.22     0.2     0.22     0.2     0.22     0.2     0.22     0.2     0.22     0.2     0.22     0.2     0.22     0.2     0.22     0.2     0.22     0.2     <                                                                                                                        | 31                                    | 10      | 0.66     | 08  | 0.47          | 08     | 0.47      | 09            | 0.6         | 00   | -           |  |
| 4b     04     0.26     04     0.23     00     -     06     0.35     00     -       4c     10     0.66     08     0.47     12     0.7     10     0.62     05     0.55       4d     06     0.44     00     -     06     0.66     08     0.52     01     0.11       4e     11     0.73     10     0.58     11     0.68     04     0.44       4g     08     0.53     10     0.58     07     0.41     08     0.5     02     0.22       4h     06     0.44     06     0.35     08     0.47     08     0.47     0.43     00     -       4j     00     -     06     0.35     05     0.29     06     0.35     01     0.11       4k     10     0.66     09     0.52     09     0.52     08     0.5     03     0.33       4d     09     0.6     04     07     0.41     08     0.47     10     0.62     03     0.33                                                                                                                                                       | 4a                                    | 08      | 0.53     | 08  | 0.47          | 07     | 0.41      | 06            | 0.35        | 01   | 0.11        |  |
| 4c     10     0.66     0.8     0.47     12     0.7     10     0.62     0.5     0.55       4d     06     0.4     00     -     06     0.66     0.8     0.5     0.1     0.11       4e     11     0.73     10     0.58     10     0.58     11     0.68     0.4     0.6     0.52     10     0.58     11     0.68     0.4     0.6     0.22     0.22       4h     06     0.4     06     0.35     08     0.47     07     0.43     00        4i     09     0.6     10     0.58     0.5     0.5     0.3     0.35     0.6     0.35     0.6     0.6     0.35     0.0      4i     0.0     0.6     0.35     0.29     0.6     0.35     0.1     0.11       4k     10     0.66     0.9     0.52     09     0.52     08     0.53     0.2     0.22     0.22     0.22     0.25     0.5     0.33     0.33     0.5     0.29     0.6     0.6     0.35     0.2                                                                                                                        | 4b                                    | 04      | 0.26     | 04  | 0.23          | 00     | -         | 06            | 0.35        | 00   | -           |  |
| 4d060.400-060.66080.5010.114e110.73100.58100.58120.75050.554f090.6090.52100.58110.68040.444g080.53100.58070.41080.5020.224h060.4060.35080.47070.4300-4i090.6100.58060.66060.35010.114k100.66090.52090.52080.5030.334l090.66080.47080.47090.6020.225a100.66100.58110.64090.6040.415c080.33050.29060.66035020.225b100.66100.58110.64090.6040.415t090.51100.62030.33030.33030.33030.33030.33030.330.5020.60.60.60.5010.115t090.61090.52090.52100.62030.330303030303030303<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4c                                    | 10      | 0.66     | 08  | 0.47          | 12     | 0.7       | 10            | 0.62        | 05   | 0.55        |  |
| 4e       11       0.73       10       0.58       10       0.58       12       0.75       05       0.55         4f       09       0.6       09       0.52       10       0.58       11       0.68       04       0.44         4g       08       0.53       10       0.58       07       0.41       08       0.5       02       0.22         4h       06       0.4       06       0.35       08       0.47       07       0.43       00       -         4i       09       0.6       10       0.58       05       0.29       06       0.35       01       0.11         4k       10       0.66       09       0.52       09       0.52       08       0.5       03       0.33         4u       09       0.6       08       0.47       08       0.47       09       0.6       02       0.22         5a       06       0.4       0.73       09       0.52       09       0.6       04       0.44         5c       08       0.53       0                             | <b>4</b> d                            | 06      | 0.4      | 00  | _             | 06     | 0.66      | 08            | 0.5         | 01   | 0.11        |  |
| 4f     09     0.6     09     0.52     10     0.58     11     0.68     04     0.44       4g     08     0.53     10     0.58     07     0.41     08     0.5     02     0.22       4h     06     0.4     06     0.35     08     0.47     07     0.43     00     -       4i     09     0.6     10     0.58     06     0.66     06     0.35     01     0.11       4k     10     0.66     09     0.52     09     0.52     08     0.5     03     0.33       4l     09     0.6     08     0.47     08     0.47     09     0.6     02     0.22       5a     06     0.4     07     0.41     08     0.47     09     0.6     02     0.22       5b     10     0.66     10     0.58     11     0.66     07     0.43     01     0.11       5d     0.33     05     0.29     06     0.66     08     0.5     02     0.22     03     0.33                                                                                                                                        | 4e                                    | 11      | 0.73     | 10  | 0.58          | 10     | 0.58      | 12            | 0.75        | 05   | 0.55        |  |
| 4g     08     0.53     10     0.58     07     0.41     08     0.5     02     0.22       4h     06     0.4     06     0.35     08     0.47     07     0.43     00        4i     09     0.6     10     0.58     06     0.66     06     0.35     00        4j     00     -     066     0.5     0.5     0.35     0.1     0.11       4k     10     0.66     09     0.52     09     0.52     08     0.5     03     0.33       4l     09     0.6     08     0.47     08     0.47     09     0.6     02     0.22       5a     06     0.4     07     0.41     08     0.47     09     0.6     02     0.22       5b     10     0.66     10     0.58     11     0.66     07     0.43     01     0.11       5d     05     0.33     05     0.29     06     0.66     08     0.5     02     0.22       5d     07 <td>4f</td> <td>09</td> <td>0.6</td> <td>09</td> <td>0.52</td> <td>10</td> <td>0.58</td> <td>11</td> <td>0.68</td> <td>04</td> <td>0.44</td>                 | 4f                                    | 09      | 0.6      | 09  | 0.52          | 10     | 0.58      | 11            | 0.68        | 04   | 0.44        |  |
| 4h       06       0.4       06       0.35       08       0.47       07       0.43       00       -         4i       09       0.6       10       0.58       06       0.66       06       0.35       00       -         4j       00       -       06       0.35       05       0.29       06       0.35       01       0.11         4k       10       0.66       09       0.52       09       0.52       08       0.5       03       0.33         41       09       0.6       0.8       0.47       08       0.47       09       0.6       02       0.22         5a       06       0.44       07       0.43       01       0.43       01       0.44         5c       08       0.53       00       -       06       0.66       07       0.43       01       0.11         5d       0.33       0.5       0.29       06       0.66       0.35       02       0.22         5d       07       0.46       05       0.29       06       0.62                             | 4g                                    | 08      | 0.53     | 10  | 0.58          | 07     | 0.41      | 08            | 0.5         | 02   | 0.22        |  |
| 4i     09     0.6     10     0.58     06     0.66     06     0.35     00     -       4j     00     -     06     0.35     05     0.29     06     0.35     01     0.11       4k     10     0.66     09     0.52     09     0.52     08     0.5     03     0.33       4l     09     0.6     08     0.47     08     0.47     09     0.6     02     0.22       5a     06     0.4     07     0.41     08     0.47     10     0.62     02     0.22       5b     10     0.66     10     0.58     11     0.64     09     0.6     04     0.44       5c     08     0.53     00     -     06     0.66     07     0.43     01     0.11       5d     0.70     0.46     05     0.29     06     0.66     08     0.55     02     0.22       5g     11     0.73     09     0.52     09     0.52     10     0.62     03     0.33                                                                                                                                                 | 4h                                    | 06      | 0.4      | 06  | 0.35          | 08     | 0.47      | 07            | 0.43        | 00   | _           |  |
| 4j     00     -     06     0.35     05     0.29     06     0.35     01     0.11       4k     10     0.66     09     0.52     09     0.52     08     0.5     03     0.33       4l     09     0.6     08     0.47     08     0.47     09     0.6     02     0.22       5a     06     0.4     07     0.41     08     0.47     10     0.62     02     0.22       5b     10     0.66     10     0.58     11     0.64     09     0.6     04     0.44       5c     08     0.53     00     -     06     0.66     07     0.43     01     0.11       5d     05     0.33     05     0.29     06     0.66     0.85     02     0.22       5e     09     0.6     10     0.58     09     0.52     10     0.62     03     0.33       5f     07     0.46     05     0.29     06     0.35     00     -     5     03     0.33     03                                                                                                                                             | 4i                                    | 09      | 0.6      | 10  | 0.58          | 06     | 0.66      | 06            | 0.35        | 00   | _           |  |
| 4k       10       0.66       09       0.52       09       0.52       08       0.5       03       0.33         4l       09       0.6       08       0.47       08       0.47       09       0.6       02       0.22         5a       06       0.4       07       0.41       08       0.47       10       0.62       02       0.22         5b       10       0.66       10       0.58       11       0.64       09       0.6       04       0.44         5c       08       0.53       00       -       06       0.66       07       0.43       01       0.11         5d       05       0.33       05       0.29       06       0.66       08       0.53       02       0.22         5e       09       0.6       10       0.58       09       0.52       10       0.62       03       0.33         5f       07       0.46       05       0.29       06       0.62       03       0.33         5h       09       0.52       10                                    | 4j                                    | 00      | _        | 06  | 0.35          | 05     | 0.29      | 06            | 0.35        | 01   | 0.11        |  |
| 41     09     0.6     08     0.47     08     0.47     09     0.6     02     0.22       5a     06     0.4     07     0.41     08     0.47     10     0.62     02     0.22       5b     10     0.66     10     0.58     11     0.64     09     0.6     04     0.44       5c     08     0.53     00     -     06     0.66     07     0.43     01     0.11       5d     05     0.33     05     0.29     06     0.66     06     0.35     02     0.22       5e     09     0.6     10     0.58     09     0.52     10     0.62     03     0.33       5f     07     0.46     05     0.29     06     0.66     08     0.5     02     0.22       5g     11     0.73     09     0.52     09     0.52     10     0.62     03     0.33       5h     09     0.6     0.35     01     0.11     5     029     06     0.35     01     0.1                                                                                                                                        | 4k                                    | 10      | 0.66     | 09  | 0.52          | 09     | 0.52      | 08            | 0.5         | 03   | 0.33        |  |
| 5a     06     0.4     07     0.41     08     0.47     10     0.62     02     0.22       5b     10     0.66     10     0.58     11     0.64     09     0.6     04     0.44       5c     08     0.53     00     -     06     0.66     07     0.43     01     0.11       5d     05     0.33     05     0.29     06     0.66     06     0.35     02     0.22       5e     09     0.6     10     0.58     09     0.52     10     0.62     03     0.33       5f     07     0.46     05     0.29     06     0.66     08     0.5     02     0.22       5g     11     0.73     09     0.52     09     0.52     10     0.62     03     0.33       5h     09     0.6     09     0.52     09     0.52     10     0.62     03     0.33       5i     00     -     04     0.23     00     -     06     0.35     01     0.11    <                                                                                                                                             | 41                                    | 09      | 0.6      | 08  | 0.47          | 08     | 0.47      | 09            | 0.6         | 02   | 0.22        |  |
| 5b     10     0.66     10     0.58     11     0.64     09     0.6     04     0.44       5c     08     0.53     00     -     06     0.66     07     0.43     01     0.11       5d     05     0.33     05     0.29     06     0.66     06     0.35     02     0.22       5e     09     0.6     10     0.58     09     0.52     10     0.62     03     0.33       5f     07     0.46     05     0.29     06     0.66     08     0.5     02     0.22       5g     11     0.73     09     0.52     09     0.52     10     0.62     03     0.33       5h     09     0.6     09     0.52     09     0.52     10     0.62     03     0.33       5i     00     -     04     0.23     00     -     06     0.35     01     0.11       5k     10     0.66     10     0.58     10     0.58     09     0.6     0.2     0.22     0.22                                                                                                                                        | 5a                                    | 06      | 0.4      | 07  | 0.41          | 08     | 0.47      | 10            | 0.62        | 02   | 0.22        |  |
| 5c     08     0.53     00     -     06     0.66     07     0.43     01     0.11       5d     05     0.33     05     0.29     06     0.66     06     0.35     02     0.22       5e     09     0.6     10     0.58     09     0.52     10     0.62     03     0.33       5f     07     0.46     05     0.29     06     0.66     08     0.5     02     0.22       5g     11     0.73     09     0.52     09     0.52     10     0.62     03     0.33       5h     09     0.52     09     0.52     10     0.62     03     0.33       5i     00     -     04     0.23     00     -     06     0.35     00     -       5j     05     0.33     07     0.41     05     0.29     06     0.35     01     0.11       5k     10     0.66     10     0.58     10     0.58     09     0.52     08     0.5     03     0.33 <t< td=""><td>5b</td><td>10</td><td>0.66</td><td>10</td><td>0.58</td><td>11</td><td>0.64</td><td>09</td><td>0.6</td><td>04</td><td>0.44</td></t<> | 5b                                    | 10      | 0.66     | 10  | 0.58          | 11     | 0.64      | 09            | 0.6         | 04   | 0.44        |  |
| 5d     05     0.33     05     0.29     06     0.66     06     0.35     02     0.22       5e     09     0.6     10     0.58     09     0.52     10     0.62     03     0.33       5f     07     0.46     05     0.29     06     0.66     08     0.5     02     0.22       5g     11     0.73     09     0.52     09     0.52     10     0.62     03     0.33       5h     09     0.6     09     0.52     09     0.52     10     0.62     03     0.33       5i     00     -     04     0.23     00     -     06     0.35     01     -11       5k     10     0.66     10     0.58     10     0.58     09     0.6     04     0.44       5l     08     0.53     08     0.47     08     0.47     09     0.6     02     0.22       6a     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33    <                                                                                                                                             | 5c                                    | 08      | 0.53     | 00  | _             | 06     | 0.66      | 07            | 0.43        | 01   | 0.11        |  |
| 5e     09     0.6     10     0.58     09     0.52     10     0.62     03     0.33       5f     07     0.46     05     0.29     06     0.66     08     0.5     02     0.22       5g     11     0.73     09     0.52     09     0.52     10     0.62     03     0.33       5h     09     0.6     09     0.52     09     0.52     10     0.62     03     0.33       5i     00     -     04     0.23     00     -     06     0.35     00     -       5j     05     0.33     07     0.41     05     0.29     06     0.35     01     0.11       5k     10     0.66     10     0.58     10     0.58     09     0.6     02     0.22       6a     09     0.6     10     0.58     09     0.6     03     0.33       6b     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33       6c     04                                                                                                                                                     | 5d                                    | 05      | 0.33     | 05  | 0.29          | 06     | 0.66      | 06            | 0.35        | 02   | 0.22        |  |
| 5f     07     0.46     05     0.29     06     0.66     08     0.5     02     0.22       5g     11     0.73     09     0.52     09     0.52     10     0.62     03     0.33       5h     09     0.6     09     0.52     09     0.52     10     0.62     03     0.33       5i     00     -     04     0.23     00     -     06     0.35     00     -       5j     05     0.33     07     0.41     05     0.29     06     0.35     01     0.11       5k     10     0.66     10     0.58     10     0.58     09     0.6     04     0.44       5l     08     0.53     08     0.47     08     0.47     09     0.6     02     0.22       6a     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33       6b     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33                                                                                                                                                     | 5e                                    | 09      | 0.6      | 10  | 0.58          | 09     | 0.52      | 10            | 0.62        | 03   | 0.33        |  |
| 5g     11     0.73     09     0.52     09     0.52     10     0.62     03     0.33       5h     09     0.6     09     0.52     09     0.52     10     0.62     03     0.33       5i     00     -     04     0.23     00     -     06     0.35     00     -       5j     05     0.33     07     0.41     05     0.29     06     0.35     01     0.11       5k     10     0.66     10     0.58     10     0.58     09     0.6     04     0.44       5l     08     0.53     08     0.47     08     0.47     09     0.6     02     0.22       6a     09     0.6     10     0.58     09     0.52     08     0.5     03     0.33       6b     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33       6c     04     0.26     04     0.23     00     -     06     0.35     00     -                                                                                                                                                          | 5f                                    | 07      | 0.46     | 05  | 0.29          | 06     | 0.66      | 08            | 0.5         | 02   | 0.22        |  |
| Sh     09     0.6     09     0.52     09     0.52     10     0.62     03     0.33       5i     00     -     04     0.23     00     -     06     0.35     00     -       5j     05     0.33     07     0.41     05     0.29     06     0.35     01     0.11       5k     10     0.66     10     0.58     10     0.58     09     0.6     04     0.44       5l     08     0.53     08     0.47     08     0.47     09     0.6     02     0.22       6a     09     0.6     10     0.58     09     0.52     08     0.5     03     0.33       6b     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33       6c     04     0.26     04     0.23     00     -     06     0.35     00     -       6d     00     -     06     0.35     06     0.66     08     0.5     01     0.11 <t< td=""><td>5g</td><td>11</td><td>0.73</td><td>09</td><td>0.52</td><td>09</td><td>0.52</td><td>10</td><td>0.62</td><td>03</td><td>0.33</td></t<>           | 5g                                    | 11      | 0.73     | 09  | 0.52          | 09     | 0.52      | 10            | 0.62        | 03   | 0.33        |  |
| Si     00     -     04     0.23     00     -     06     0.35     00     -       Sj     05     0.33     07     0.41     05     0.29     06     0.35     01     0.11       Sk     10     0.66     10     0.58     10     0.58     09     0.6     04     0.44       Sl     08     0.53     08     0.47     08     0.47     09     0.6     02     0.22       6a     09     0.6     10     0.58     09     0.52     08     0.5     03     0.33       6b     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33       6c     04     0.26     04     0.23     00     -     06     0.35     00     -       6d     00     -     06     0.35     06     0.66     08     0.5     01     0.11       6e     08     0.53     07     0.41     08     0.47     08     0.5     02     0.22     0.22 <td>5h</td> <td>09</td> <td>0.6</td> <td>09</td> <td>0.52</td> <td>09</td> <td>0.52</td> <td>10</td> <td>0.62</td> <td>03</td> <td>0.33</td>        | 5h                                    | 09      | 0.6      | 09  | 0.52          | 09     | 0.52      | 10            | 0.62        | 03   | 0.33        |  |
| 5j     05     0.33     07     0.41     05     0.29     06     0.35     01     0.11       5k     10     0.66     10     0.58     10     0.58     09     0.6     04     0.44       5l     08     0.53     08     0.47     08     0.47     09     0.6     02     0.22       6a     09     0.6     10     0.58     09     0.52     08     0.5     03     0.33       6b     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33       6c     04     0.26     04     0.23     00     -     06     0.35     00     -       6d     00     -     06     0.35     06     0.66     08     0.5     01     0.11       6e     08     0.53     08     0.47     10     0.58     11     0.68     04     0.44       6f     08     0.53     07     0.41     08     0.47     08     0.5     02     0.22                                                                                                                                                     | 5i                                    | 00      | _        | 04  | 0.23          | 00     | _         | 06            | 0.35        | 00   | _           |  |
| 5k     10     0.66     10     0.58     10     0.58     09     0.6     04     0.44       5l     08     0.53     08     0.47     08     0.47     09     0.6     02     0.22       6a     09     0.6     10     0.58     09     0.52     08     0.5     03     0.33       6b     09     0.6     08     0.47     08     0.47     09     0.6     02     0.22       6c     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33       6c     04     0.26     04     0.23     00     -     06     0.35     00     -       6d     00     -     06     0.35     06     0.66     08     0.5     01     0.11       6e     08     0.53     08     0.47     10     0.58     11     0.68     04     0.44       6f     08     0.53     07     0.41     08     0.47     08     0.5     02     0.22                                                                                                                                                       | 5j                                    | 05      | 0.33     | 07  | 0.41          | 05     | 0.29      | 06            | 0.35        | 01   | 0.11        |  |
| 51     08     0.53     08     0.47     08     0.47     09     0.6     02     0.22       6a     09     0.6     10     0.58     09     0.52     08     0.5     03     0.33       6b     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33       6c     04     0.26     04     0.23     00     -     06     0.35     00     -       6d     00     -     06     0.35     06     0.66     08     0.5     01     0.11       6e     08     0.53     08     0.47     10     0.58     11     0.68     04     0.44       6f     08     0.53     07     0.41     08     0.47     08     0.5     02     0.22     0.22       6g     12     0.8     10     0.58     11     0.68     04     0.44       6h     00     -     04     0.23     04     0.26     06     0.35     00     -       6i                                                                                                                                                         | 5k                                    | 10      | 0.66     | 10  | 0.58          | 10     | 0.58      | 09            | 0.6         | 04   | 0.44        |  |
| 6a     09     0.6     10     0.58     09     0.52     08     0.5     03     0.33       6b     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33       6c     04     0.26     04     0.23     00     -     06     0.35     00     -       6d     00     -     06     0.35     06     0.66     08     0.5     01     0.11       6e     08     0.53     08     0.47     10     0.58     11     0.68     04     0.44       6f     08     0.53     07     0.41     08     0.47     08     0.5     02     0.22       6g     12     0.8     10     0.58     11     0.68     04     0.44       6h     00     -     04     0.23     04     0.26     06     0.35     00     -       6i     10     0.66     11     0.64     11     0.64     12     0.75     05     0.55                                                                                                                                                                          | 51                                    | 08      | 0.53     | 08  | 0.47          | 08     | 0.47      | 09            | 0.6         | 02   | 0.22        |  |
| 6b     09     0.6     08     0.47     08     0.47     09     0.6     03     0.33       6c     04     0.26     04     0.23     00     -     06     0.35     00     -       6d     00     -     06     0.35     00     -     06     0.35     00     -       6d     00     -     06     0.35     06     0.66     08     0.5     01     0.11       6e     08     0.53     08     0.47     10     0.58     11     0.68     04     0.44       6f     08     0.53     07     0.41     08     0.47     08     0.5     02     0.22       6g     12     0.8     10     0.58     11     0.68     04     0.44       6h     00     -     04     0.23     04     0.26     06     0.35     00     -       6i     10     0.66     11     0.64     11     0.64     12     0.75     05     0.55                                                                                                                                                                                 | 6a                                    | 09      | 0.6      | 10  | 0.58          | 09     | 0.52      | 08            | 0.5         | 03   | 0.33        |  |
| 6c     04     0.26     04     0.23     00     -     06     0.35     00     -       6d     00     -     06     0.35     06     0.66     08     0.5     01     0.11       6e     08     0.53     08     0.47     10     0.58     11     0.68     04     0.44       6f     08     0.53     07     0.41     08     0.47     08     0.5     02     0.22       6g     12     0.8     10     0.58     10     0.58     11     0.68     04     0.44       6h     00     -     04     0.23     04     0.26     06     0.35     00     -       6i     10     0.66     11     0.64     11     0.64     12     0.75     05     0.55                                                                                                                                                                                                                                                                                                                                        | 6b                                    | 09      | 0.6      | 08  | 0.47          | 08     | 0.47      | 09            | 0.6         | 03   | 0.33        |  |
| 6d     00     -     06     0.35     06     0.66     08     0.5     01     0.11       6e     08     0.53     08     0.47     10     0.58     11     0.68     04     0.44       6f     08     0.53     07     0.41     08     0.47     08     0.5     02     0.22       6g     12     0.8     10     0.58     10     0.58     11     0.68     04     0.44       6h     00     -     04     0.23     04     0.26     06     0.35     00     -       6i     10     0.66     11     0.64     11     0.64     12     0.75     05     0.55                                                                                                                                                                                                                                                                                                                                                                                                                           | 6c                                    | 04      | 0.26     | 04  | 0.23          | 00     | _         | 06            | 0.35        | 00   | _           |  |
| 6e       08       0.53       08       0.47       10       0.58       11       0.68       04       0.44         6f       08       0.53       07       0.41       08       0.47       08       0.5       02       0.22         6g       12       0.8       10       0.58       10       0.58       11       0.68       04       0.44         6h       00       -       04       0.23       04       0.26       06       0.35       00       -         6i       10       0.66       11       0.64       11       0.64       12       0.75       05       0.55                                                                                                                                                                                                                                                                                                                                                                                                    | 6d                                    | 00      | _        | 06  | 0.35          | 06     | 0.66      | 08            | 0.5         | 01   | 0.11        |  |
| 6f       08       0.53       07       0.41       08       0.47       08       0.5       02       0.22         6g       12       0.8       10       0.58       10       0.58       11       0.68       04       0.44         6h       00       -       04       0.23       04       0.26       06       0.35       00       -         6i       10       0.66       11       0.64       11       0.64       12       0.75       05       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6e                                    | 08      | 0.53     | 08  | 0.47          | 10     | 0.58      | 11            | 0.68        | 04   | 0.44        |  |
| 6g       12       0.8       10       0.58       10       0.58       11       0.68       04       0.44         6h       00       -       04       0.23       04       0.26       06       0.35       00       -         6i       10       0.66       11       0.64       11       0.64       12       0.75       05       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6f                                    | 08      | 0.53     | 07  | 0.41          | 08     | 0.47      | 08            | 0.5         | 02   | 0.22        |  |
| 6h       00       -       04       0.23       04       0.26       06       0.35       00       -         6i       10       0.66       11       0.64       11       0.64       12       0.75       05       0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6g                                    | 12      | 0.8      | 10  | 0.58          | 10     | 0.58      | 11            | 0.68        | 04   | 0.44        |  |
| <b>6i</b> 10 0.66 11 0.64 11 0.64 12 0.75 05 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6h                                    | 00      | _        | 04  | 0.23          | 04     | 0.26      | 06            | 0.35        | 00   | _           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6i                                    | 10      | 0.66     | 11  | 0.64          | 11     | 0.64      | 12            | 0.75        | 05   | 0.55        |  |

#### Table 1 continued

| Zone of inhibition in mm at 100 µg/ml |         |          |               |      |           |          |               |      |             |      |
|---------------------------------------|---------|----------|---------------|------|-----------|----------|---------------|------|-------------|------|
| Compd.                                | Gram    | negative |               |      | Gram J    | positive | Fugal species |      |             |      |
|                                       | E. coli |          | P. aeruginosa |      | S. aureus |          | B. subtilis   |      | C. albicans |      |
|                                       | Z.I     | A.I      | Z.I           | A.I  | Z.I.      | A.I.     | Z.I.          | A.I. | Z.I.        | A.I. |
| бј                                    | 05      | 0.33     | 00            | _    | 05        | 0.29     | 06            | 0.35 | 00          | _    |
| 6k                                    | 10      | 0.66     | 11            | 0.64 | 11        | 0.64     | 09            | 0.6  | 04          | 0.44 |
| 61                                    | 06      | 0.4      | 08            | 0.47 | 08        | 0.47     | 06            | 0.35 | 02          | 0.22 |
| 7a                                    | 10      | 0.66     | 09            | 0.52 | 09        | 0.52     | 11            | 0.68 | 03          | 0.33 |
| 7b                                    | 08      | 0.53     | 06            | 0.35 | 08        | 0.47     | 09            | 0.6  | 02          | 0.22 |
| 7c                                    | 12      | 0.80     | 11            | 0.64 | 12        | 0.7      | 11            | 0.68 | 05          | 0.55 |
| 7d                                    | 05      | 0.33     | 03            | 0.17 | 00        | -        | 06            | 0.35 | 00          | -    |
| 7e                                    | 08      | 0.53     | 06            | 0.35 | 08        | 0.47     | 09            | 0.6  | 02          | 0.22 |
| 7f                                    | 10      | 0.66     | 08            | 0.47 | 12        | 0.7      | 09            | 0.6  | 04          | 0.44 |
| 7g                                    | 00      | -        | 08            | 0.47 | 08        | 0.47     | 06            | 0.35 | 01          | 0.11 |
| 7h                                    | 10      | 0.66     | 09            | 0.52 | 11        | 0.64     | 12            | 0.75 | 05          | 0.55 |
| 7i                                    | 00      | -        | 04            | 0.23 | 06        |          | 08            | 0.5  | 02          | 0.22 |
| 7j                                    | 11      | 0.73     | 10            | 0.58 | 10        | 0.58     | 09            | 0.6  | 04          | 0.44 |
| 7k                                    | 06      | 0.4      | 00            | _    | 06        | 0.66     | 06            | 0.35 | 00          | -    |
| 71                                    | 09      | 0.6      | 09            | 0.52 | 08        | 0.47     | 10            | 0.62 | 03          | 0.33 |
| 8a                                    | 11      | 0.73     | 10            | 0.58 | 11        | 0.64     | 15            | 0.93 | 04          | 0.44 |
| 8b                                    | 09      | 0.6      | 07            | 0.41 | 08        | 0.47     | 10            | 0.66 | 03          | 0.33 |
| 8c                                    | 06      | 0.4      | 06            | 0.35 | 06        | 0.66     | 07            | 0.43 | 00          | -    |
| 8d                                    | 00      | _        | 04            | 0.23 | 04        | 0.26     | 00            | -    | 00          | -    |
| 8e                                    | 08      | 0.53     | 08            | 0.47 | 08        | 0.47     | 06            | 0.35 | 02          | 0.22 |
| 8f                                    | 05      | 0.33     | 04            | 0.23 | 00        | -        | 05            | 0.31 | 01          | 0.11 |
| 8g                                    | 09      | 0.6      | 10            | 0.58 | 07        | 0.41     | 07            | 0.43 | 00          | -    |
| 8h                                    | 12      | 0.8      | 10            | 0.58 | 10        | 0.58     | 09            | 0.6  | 04          | 0.44 |
| 8i                                    | 06      | 0.4      | 00            | _    | 05        | 0.29     | 07            | 0.43 | 00          | -    |
| 8j                                    | 09      | 0.6      | 09            | 0.52 | 09        | 0.52     | 08            | 0.5  | 03          | 0.33 |
| 8k                                    | 06      | 0.4      | 04            | 0.23 | 00        | -        | 06            | 0.35 | 01          | 0.11 |
| 81                                    | 10      | 0.66     | 09            | 0.52 | 09        | 0.52     | 10            | 0.62 | 03          | 0.33 |
| Ciprofloxacin                         | 15      | 1        | 17            | 1    | 17        | 1        | 16            | 1    |             |      |
| Amphoterian-B                         |         |          |               |      |           |          |               |      | 9           | 1    |

Z.I Zone of inhibition in mm, A.I. Activity index

A.I. = Zone of inhibition of compounds/Zone of inhibition of standard drug

#### Antimicrobial activity

Antibacterial and antifungal activity of all the synthesized compounds have been screened against five different strains, e.g., two Gram-positive *S. aureus*, *B. subtilis*, two Gram-negative *E. coli*, *P. aeruginosa* bacteria and fungi *C. albicans* by cup-plate method (Collee *et al.*, 1996) at 100  $\mu$ g/mL concentration, compared with standard drug ciprofloxacin and amphotericin-B.

Amides 3d, 3g, 3h, 3j, 3l, 4a, 4f, 4c, 4g, 4i, 4k, 4l, sulfonamides 5b, 5c, 5e, 5k, 5l, 6a, 6b, 6e, 6f, 6k, and thioureido amides 7a, 7b, 7e, 7f, 7h, 7l, 8b, 8e, 8g, 8j, 8l;

demostrated good activity against *E. coli*; whereas amides **3a**, **3f**, **4e**, sulfonamides **5g**, **6g** and thioureido amides **7c**, **7j**, **8a**, **8h** demostrated strong activity against *E. coli*.

Amides 3a, 3f, 3g, 3h, 3j, 4e, 4g, 4i, 4f, 4k, sulfonamides 5b, 5e, 5g, 5h, 5k, 6a, 6g, 6i, 6k, and thioureido amides 7c, 7j, 7l, 8a, 8g, 8h, 8j, 8l demostrated good activity against *P. aeruginosa*. Amides 3a, 3d, 3e, 3g–j, 4c–f, 4i, 4k, sulfonamides 5b–h, 5k, 6a, 6d, 6e, 6g, 6i, 6k and thioureido amides 7a, 7c, 7f, 7h, 7j, 7k, 8a, 8c, 8h, 8j, 8l showed good activity against *S. aureus*.

Amides 3a, 3b, 3d, 3f, 3j, 3l, 4c, 4d, 4f, 4g, 4k, 4l, sulfonamides 5a, 5b, 5e-h, 5l, 6a, 6b, 6e, 6f, 6g, 6k, and

thioureido amides **7a–c**, **7e**, **7f**, **7j**, **7l**, **8b**, **8h**, **8j**, **8l** demostrated good activity against *B. substilis*; whereas amide **4e**, sulfonamides **6i**, and thioureido amides **7h**, **8a** demostrated srong activity against *B. substilis*.

Amides **3a**, **4c**, **4e**; sulfonamide **6i**, and thioureido amides **7c**, **7h**, showed good activity against *C. albicans*.

# Conclusion

The structure–activity relationship study demonstrated that electron withdrawing as well as eletrodonating groups at phenyl ring were active; whereas chloro and hydroxyl groups at C–6 possition showed similar activity. Variations in antimicrobial activities of amides were observed.

Activities of amides in increasing order:

Thioureido amides < Sulfonamides < Amide

Activities against bacteria in increasing order:

P. aeruginosa < S. aureus < B. substilis < E. coli

# Experimental

#### General

Melting points (m.p.) were determined in open capillaries and left uncorrected. The IR spectra were recorded on Shimadzu FTIR spectrophotometer, using KBr pallets. <sup>1</sup>H NMR spectra were recorded in (DMSO-d<sub>6</sub>) using Bruker DRX-300 spectrometer at 300 MHz; the chemical shifts are reported in part per million ( $\delta$  ppm) using tetramethylsilane (TMS) as an internal standard. Elemental analysis (C, H, and N) of compounds was performed on Carlo Erba 1108.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (**1a**)

The parent molecule was prepared from 5-amino-8-chloro quinoline on reaction with diethyl ethoxymethelene malonate and cyclized in diethyl ether; further condensation with chloroethanol gave ester, which finally hydrolyzed to title compounds (Lee *et al.*, 1992). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.61 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O), 4.25 (s, 1H, CH<sub>2</sub>OH), 8.50 (s, H-2, quinolone), 7.80 (s, H-5, quinolone), 8.75–9.40 (m, 3H, pyrido), and 13.00 (s, 1H, COOH).

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (**1b**)

The parent molecule was prepared from 5-amino-8-hydroxy quinoline on reaction with diethyl ethoxymethelene

malonate and cyclized in diethyl ether; further condensation with chloroethanol gave ester, which finally hydrolyzed to title compounds (Lee *et al.*, 1992). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.61 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O), 4.25 (s, 1H, CH<sub>2</sub>OH), 8.50 (s, H-2, quinolone), 7.80 (s, H-5, quinolone), 5.65 (s, 1H, Ar–OH), 8.75–9.40 (m, 3H, pyrido), and 13.00 (s, 1H, COOH).

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl chloride (**2a**)

The mixture of 6-chloro-1-(2-hydroxyethyl)-4-oxo-1, 4-dihydro-[1,7]phenanthroline-3-carboxylic acid (1a) (0.01 mol) and thionyl chloride (0.01 mol) was refluxed using chloroform as a solvent in water bath at 80°C for 5–6 h in anhydrous condition with the help of calcium chloride guard tube, until the HCl gas evolution ceased, and then solvent was removed by distillation. The solid material of the title compound was obtained and used in next step.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl chloride (**2b**)

The mixture of 6-hydroxy-1-(2-hydroxyethyl)-4-oxo-1, 4-dihydro-[1,7]phenanthroline-3-carboxylic acid (**1b**) (0.01 mol) and thionyl chloride (0.01 mol) was refluxed using chloroform as a solvent in water bath at 80°C for 5–6 h in anhydrous condition with the help of calcium chloride guard tube, until the HCl gas evolution ceased, and then solvent was removed by distillation. The solid material of the title compound was obtained and used in next step.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (substitutedphenyl)amide (**3a**–**l**)

Substituted aniline (0.005 mol) was dissolved in dry pyridine and added dropwise in solution of carbonyl chloride (**2a**) (0.005 mol) in pyridine within 1.5 h with constant stirring at  $0-5^{\circ}$ C and refluxed for 8 h; then, material was poured into acidic crushed ice, and the solid mass was filtered and washed thoroughly with NaHCO<sub>3</sub> solution for neutralization. The purity of the compounds was monitored by TLC on silica gel glass plate using benzene:ethylacetate (1:1) as mobile phase.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid phenylamide (**3a**)

Yield = 62%, m.p. 256–258°C. IR (KBr) cm<sup>-1</sup>: 3412 (NH); 3360 (OH); 2942, 2865 (CH); 1739 (>C=O of quinolone); 1640 (amide-I); 1535 (amide-II); 1305 (C–N); 1250 (amide-III); and 810 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):

δ 3.25 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.45 (s, 1H, CH<sub>2</sub>OH); 8.71 (s, H-2, quinolone); 8.88 (s, H-5, quinolone); 8.94–9.55 (m, 3H, pyrido); 10.10 (s, 1H, CO.NH); and 7.28–7.92 (m, 5H, Ar–H). Anal. Calcd. for C<sub>21</sub>H<sub>16</sub>O<sub>3</sub>N<sub>3</sub>Cl: C, 64.11; H, 4.10; and N, 10.69. Found: C, 64.12; H, 4.12; and N, 10.65.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (3-chlorophenyl)amide (**3b**)

Yield = 53%, m.p. 278-280°C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (4-chlorophenyl)amide (**3c**)

Yield = 65%. m.p. 247–249°C. IR (KBr) cm<sup>-1</sup>: 3425 (NH); 3365 (OH); 2937; 2864 (CH); 1745 (>C=O of quinolone); 1645 (amide-I); 1525 (amide-II); 1315 (C–N); 1254 (amide-III); and 786 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.20 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.35 (s, 1H, CH<sub>2</sub>OH); 8.70 (s, H-2, quinolone); 8.84 (s, H-5, quinolone); 8.95–9.55 (m, 3H, pyrido); 10.15 (s, 1H, CO.NH); and 7.20–7.95 (m, 4H, Ar–H). Anal. Calcd. for C<sub>21</sub>H<sub>15</sub>O<sub>3</sub>N<sub>3</sub>Cl<sub>2</sub>: C, 59.01; H, 3.54; and N, 9.84. Found: C, 59.05; H, 3.56; and N, 9.82.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (2-methoxyphenyl)amide (**3d**)

Yield = 67%, m.p.  $255-257^{\circ}$ C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (4-methoxyphenyl)amide (**3e**)

Yield = 62%, m.p. 271–272°C. IR (KBr) cm<sup>-1</sup>: 3427 (NH); 3360 (OH); 2935, 2861 (CH); 1752 (>C=O of quinolone); 1652 (amide-I); 1535 (amide-II); 1312 (C–N); 1245 (amide-III); 1235, 1040 (C–O–C); and 786 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.21 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.27 (s, 1H, CH<sub>2</sub>OH); 8.65 (s, H-2, quinolone); 8.88 (s, H-5, quinolone); 8.97–9.61 (m, 3H, pyrido); 10.25 (s, 1H, CONH); 7.21–7.79 (m, 4H, Ar–H); and 3.85 (s, 3H, Ar–OCH<sub>3</sub>). Anal. Calcd. for C<sub>22</sub>H<sub>18</sub>O<sub>4</sub>N<sub>3</sub>Cl: C, 62.40; H, 4.29; and N, 9.93. Found: C, 62.38; H, 4.27; and N, 9.90.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (2-nitrophenyl)amide (**3f**)

Yield = 55%, m.p.  $260-262^{\circ}$ C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (3-nitrophenyl)amide (**3g**)

Yield = 66%, m.p. 277–279°C. IR (KBr) cm<sup>-1</sup>: 3433 (NH); 3355 (OH); 2937, 2865 (CH); 1745 (>C=O of quinolone); 1645 (amide-I); 1525 (amide-II); 1510, 1330 (N=O sym, asym); 1320 (C–N); 1235 (amide-III); and 792 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.28 (m, 4H, >N (CH<sub>2</sub>)<sub>2</sub>O); 4.25 (s, 1H, CH<sub>2</sub>OH); 8.61 (s, H-2, quinolone); 8.87 (s, H-5, quinolone); 8.81–9.65 (m, 3H, pyrido); 10.21 (s, 1H, CO.NH); and 7.18–7.65 (m, 4H, Ar–H). Anal. Calcd. for C<sub>21</sub>H<sub>15</sub>O<sub>5</sub>N<sub>4</sub>Cl: C, 57.52; H, 3.45; and N, 12.79. Found: C, 57.51; H, 3.42; and N, 12.77.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (4-nitrophenyl)amide (**3h**)

Yield = 62%, m.p. 250-252°C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (2-methylphenyl)amide (**3i**)

Yield = 53%, m.p. 247–249°C. IR (KBr) cm<sup>-1</sup>: 3435 (NH); 3358 (OH); 2925, 2861 (CH); 1745 (>C=O of quinolone); 1645 (amide-I); 1525 (amide-II); 1308 (C–N); 1232 (amide-III); and 798 (C–C1). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.27 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.25 (s, 1H, CH<sub>2</sub>OH); 8.61 (s, H-2, quinolone); 8.79 (s, H-5, quinolone); 8.85–9.61 (m, 3H, pyrido); 10.14 (s, 1H, CO.NH); 7.22–7.80 (m, 4H, Ar–H); and 2.22 (s, 3H, Ar–CH<sub>3</sub>). Anal. Calcd. for C<sub>22</sub>H<sub>18</sub>O<sub>3</sub>N<sub>3</sub>Cl: C, 64.85; H, 4.46; and N, 10.32. Found: C, 64.81; H, 4.42; and N, 10.37.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (3-methylphenyl)amide (**3**j)

Yield = 58%, m.p.  $268-270^{\circ}$ C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (4-methylphenyl)amide (**3k**)

Yield = 64%, m.p. 241–243°C. IR (KBr) cm<sup>-1</sup>: 3425 (NH); 3345 (OH); 2935, 2865 (CH); 1752 (>C=O of quinolone); 1648 (amide-I); 1521 (amide-II); 1315 (C–N); 1237 (amide-III); and 788 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.29 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.21 (s, 1H, CH<sub>2</sub>OH); 8.56 (s, H-2, quinolone); 8.85 (s, H-5, quinolone); 8.90–9.62 (m, 3H, pyrido); 10.15 (s, 1H, CO.NH); 7.21–7.82 (m, 4H, Ar–H); 2.25 (s, 3H, Ar–CH<sub>3</sub>). Anal. Calcd. for  $C_{22}H_{18}$  O<sub>3</sub>N<sub>3</sub>Cl: C, 64.85; H, 4.46; and N, 10.32. Found: C, 64.82; H, 4.41; and N, 10.35.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (2,5-dimethylphenyl)amide (**3***l*)

Yield = 60%, m.p.  $265-267^{\circ}$ C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (substitutedphenyl)amide (**4a**–**l**)

Substituted aniline (0.005 mol) was dissolved in dry pyridine and added dropwise in solution of carbonyl chloride (**2b**) (0.005 mol) in pyridine within 1.5 h with constant stirring at  $0-5^{\circ}$ C and refluxed for 8 h, then refluxed material was poured into acidic crushed ice, the solid mass was filtered and washed thoroughly with NaHCO<sub>3</sub> solution for neutralization. The purity of the compounds was monitored by TLC on silica gel glass plate using benzene:ethylacetate (1:1) as mobile phase.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid phenylamide (**4a**)

Yield = 58%, m.p. 244–246°C. IR (KBr) cm<sup>-1</sup>: 3425 (NH); 3345 (OH); 2965, 2854 (CH); 1749 (>C=O of quinolone); 1668 (amide-I); 1565 (amide-II); 1315 (C–N); and 1258 (amide-III). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.60 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.35 (s, 1H, CH<sub>2</sub>OH); 8.70 (s, H-2, quinolone); 8.15 (s, H-5, quinolone); 9.10–9.60 (m, 3H, pyrido); 10.10 (s, 1H, CO.NH); 5.65 (s, 1H, Ar–OH); and 6.95–7.40 (m, 5H, Ar–H). Anal. Calcd. for C<sub>21</sub>H<sub>17</sub>O<sub>4</sub>N<sub>3</sub>: C, 67.18; H, 4.57; and N, 11.20. Found: C, 67.15; H, 4.55; and N, 11.18.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (3-chlorophenyl)amide (**4b**)

Yield = 64%, m.p.  $265-267^{\circ}$ C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (4-chlorophenyl)amide (**4**c)

Yield = 62%, m.p. 261–263°C. IR (KBr) cm<sup>-1</sup>: 3421 (NH); 3335 (OH); 2961, 2851 (CH); 1751 (>C=O of quinolone); 1665 (amide-I); 1569 (amide-II); 1312 (C–N); 1252 (amide-III); and 788 (C–CI). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.61 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.25 (s, 1H, CH<sub>2</sub>OH); 8.65 (s, H-2, quinolone); 8.10 (s, H-5, quinolone); 9.12–9.65

(m, 3H, pyrido); 10.15 (s, 1H, CO.NH); 5.62 (s, 1H, Ar–OH); and 6.85–7.45 (m, 4H, Ar–H). Anal. Calcd. for  $C_{21}H_{16}O_4N_3Cl$ : C, 61.60; H, 3.94; and N, 10.27. Found: C, 61.62; H, 3.92; and N, 10.22.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (2-methoxyphenyl)amide (**4d**)

Yield = 62%, m.p. 261-263°C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (4-methoxyphenyl)amide (**4***e*)

Yield = 65%, m.p. 258–260°C. IR (KBr) cm<sup>-1</sup>: 3422 (NH); 3339 (OH); 2961, 2852 (CH); 1752 (>C=O of quinolone); 1664 (amide-I); 1561 (amide-II); 1310 (C–N); 1245 (amide-III) 1225, and 1038 (C–O–C). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.68 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.37 (s, 1H, CH<sub>2</sub>OH); 8.68 (s, H-2, quinolone); 8.25 (s, H-5, quinolone); 9.15–9.65 (m, 3H, pyrido); 10.15 (s, 1H, CO.NH); 5.61 (s, 1H, Ar–OH); 6.85-7.45 (m, 4H, Ar–H); and 3.95 (s, 3H, Ar–OCH<sub>3</sub>). Anal. Calcd. for C<sub>22</sub>H<sub>19</sub>O<sub>5</sub>N<sub>3</sub>: C, 65.16; H, 4.73; and N,10.37. Found: C, 65.15; H, 4.51; and N, 10.35.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (2-nitrophenyl)amide (**4f**)

Yield = 60%, m.p. 266-267°C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (3-nitrophenyl)amide (**4g**)

Yield = 66%, m.p. 235–237°C. IR (KBr) cm<sup>-1</sup>: 3428 (NH); 3325 (OH); 2965, 2858 (CH); 1745 (>C=O of quinolone); 1662 (amide-I); 1565 (amide-II); 1512, 1339 (N=O sym, asym); 1307 (C–N); and 1252 (amide-III). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.65 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.32 (s, 1H, CH<sub>2</sub>OH); 8.71 (s, H-2, quinolone); 8.15 (s, H-5, quinolone); 9.10–9.62 (m, 3H, pyrido); 10.12 (s, 1H, CO.NH); 5.62 (s, 1H, Ar–OH); and 6.79–7.35 (m, 4H, Ar–H). Anal. Calcd. for C<sub>21</sub>H<sub>16</sub>O<sub>6</sub>N<sub>4</sub>: C, 59.98; H, 3.84; and N, 13.33. Found: C, 59.95; H, 3.82; and N, 13.31.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (4-nitrophenyl)amide (**4h**)

Yield = 64%, m.p. 255-258°C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (2-methylphenyl)amide (**4**i)

Yield = 55%, m.p. 247–249°C. IR (KBr) cm<sup>-1</sup>: 3435 (NH); 3320 (OH); 2955, 2854 (CH); 1751 (>C=O of quinolone); 1665 (amide-I); 1561 (amide-II); 1310 (C–N); and 1245 (amide-III). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.67 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.21 (s, 1H, CH<sub>2</sub>OH); 8.65 (s, H-2, quinolone); 8.05 (s, H-5, quinolone); 9.12–9.55 (m, 3H, pyrido); 10.18 (s, 1H, CO.NH); 5.65 (s, 1H, Ar–OH); 6.71–7.25 (m, 4H, Ar–H); and 2.14 (s, 3H, Ar–CH<sub>3</sub>). Anal. Calcd. for C<sub>22</sub>H<sub>19</sub>O<sub>4</sub>N<sub>3</sub>: C, 67.84; H, 4.92; and N, 10.80. Found: C, 67.82; H, 4.91; and N, 10.78.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylic acid (3-methylphenyl)amide (**4j**)

Yield = 67%, m.p.  $270-271^{\circ}$ C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (4-methylphenyl)amide (**4**k)

Yield = 62%, m.p. 261-263°C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid (2,5-dimethylphenyl)amide (**4**)

Yield = 57%, m.p. 255-257°C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(phenylsulfamoyl)phenyl]amide (**5a–l**)

4-Amino-*N*-(substitutedphenyl)benzenesulfonamides (0.005 mol) was dissolved in dry pyridine and added dropwise in solution of carbonyl chloride **2a** (0.005 mol) in pyridine within 1.5 h with constant stirring at 0–5°C and refluxed for 8 h, then refluxed material was poured into acidic crushed ice, the solid mass was filtered and washed thoroughly with NaHCO<sub>3</sub> solution for neutralization. The purity of the compounds was monitored by TLC on silica gel glass plate using benzene:ethylacetate (1:1) as mobile phase.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(phenylsulfamoyl)phenyl]amide (**5a**)

Yield = 66%, m.p. 241-243°C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(3-chlorophenylsulfamoyl)phenyl]amide (**5b**)

Yield = 60%, m.p. 239–240°C. IR (KBr) cm<sup>-1</sup>: 3425 (NH); 3365 (OH); 2945, 2850 (CH); 1742 (>C=O of quinolone); 1680 (amide-I); 1565 (amide-II); 1325, 1180 (S=O, sym, asym); 1310 (C–N); 1255 (amide-III); 1075 (S–N); and 798 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.58 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.44 (s, 1H, CH<sub>2</sub>OH); 8.68 (s, H-2, quinolone); 7.95 (s, H-5, quinolone); 8.98–9.75 (m, 3H, pyrido); 10.10 (s, 1H, CO.NH); 10.32 (s, 1H, SO<sub>2</sub>NH); and 7.15–7.70 (m, 4H, Ar–H). Anal. Calcd. for C<sub>27</sub>H<sub>20</sub> O<sub>5</sub>N<sub>4</sub>SCl<sub>2</sub>: C, 55.67; H, 3.46; and N, 9.62. Found: C, 55.62; H, 3.42; and N, 9.60.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(4-chlorophenylsulfamoyl)phenyl]amide (**5c**)

Yield = 56%, m.p. 260-262°C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(2methoxyphenylsulfamoyl)phenyl]amide (5d)

Yield = 64%, m.p. 257–259°C. IR (KBr) cm<sup>-1</sup>: 3431 (NH); 3361 (OH); 2937, 2848 (CH); 1748 (>C=O of quinolone); 1665 (amide-I); 1557 (amide-II); 1325, 1180 (S=O, sym, asym); 1310 (C–N); 1255 (amide-III); 1212, 1035 (C–O–C); 1075 (S–N); and 798 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.62(m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.47 (s, 1H, CH<sub>2</sub>OH); 8.61 (s, H-2, quinolone); 7.90 (s, H-5, quinolone); 8.91–9.72 (m, 3H, pyrido); 10.15 (s, 1H, CO.NH); 9.95 (s, 1H, SO<sub>2</sub>NH); 7.01–7.65 (m, 4H, Ar–H); and 3.82 (s, 3H, Ar–OCH<sub>3</sub>). Anal. Calcd. for C<sub>28</sub>H<sub>23</sub>O<sub>6</sub>N<sub>4</sub>SCl: C, 58.12; H, 4.01; and N, 9.69. Found: C, 58.10; H, 4.06; and N, 9.64.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(4methoxyphenylsulfamoyl)phenyl]amide (5e)

Yield = 52%, m.p. 274-276°C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(3-nitrophenylsulfamoyl)phenyl]amide (**5**f)

Yield = 55%, m.p. 247–249°C. IR (KBr) cm<sup>-1</sup>: 3426 (NH); 3358 (OH); 2928, 2835 (CH); 1751 (>C=O of quinolone); 1671 (amide-I); 1562 (amide-II); 1528, 1332 (N=O sym, asym); 1335, 1182 (S=O, sym, asym); 1315

(C–N); 1265 (amide-III); and 1065 (S–N); 795 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.62 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.47 (s, 1H, CH<sub>2</sub>OH); 8.61 (s, H-2, quinolone); 7.90 (s, H-5, quinolone); 8.91–9.72 (m, 3H, pyrido); 10.15 (s, 1H, CO.NH); 9.95 (s, 1H, SO<sub>2</sub>NH); and 7.01–7.65 (m, 4H, Ar–H). Anal. Calcd. for C<sub>27</sub>H<sub>20</sub>O<sub>7</sub>N<sub>5</sub>SCl: C, 54.63; H, 3.40; and N, 11.81. Found: C, 54.60; H, 3.38; and N, 11.78.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(4-nitrophenylsulfamoyl)phenyl]amide (**5g**)

Yield = 61%, m.p. 259-261°C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(2-methyphenylsulfamoyl)phenyl]amide (**5h**)

Yield = 63%, m.p. 236–237°C. IR (KBr) cm<sup>-1</sup>: 3420 (NH); 3345 (OH); 2932, 2821 (CH); 1741 (>C=O of quinolone); 1665 (amide-I); 1565 (amide-II); 1325, 1179 (S=O, sym, asym); 1310 (C–N); 1262 (amide-III); 1062 (S–N); and 805 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>): δ 3.62 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.47 (s, 1H, CH<sub>2</sub>OH); 8.69 (s, H-2, quinolone); 7.91 (s, H-5, quinolone); 8.85–9.68 (m, 3H, pyrido); 10.10 (s, 1H, CO.NH); 9.91 (s, 1H, SO<sub>2</sub>NH); 7.15–7.70 (m, 4H, Ar–H); and 2.10 (s, 3H, Ar–CH<sub>3</sub>). Anal. Calcd. for C<sub>27</sub>H<sub>20</sub>O<sub>7</sub>N<sub>5</sub>SCI: C, 59.78; H, 4.12; and N, 9.96. Found: C, 59.75; H, 4.10; and N, 9.95.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(3-methyphenylsulfamoyl)phenyl]amide (5i)

Yield = 59%, m.p. 231-233°C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(4-methyphenylsulfamoyl)phenyl]amide (**5***j*)

Yield = 67%, m.p. 255–257°C. IR (KBr) cm<sup>-1</sup>: 3425 (NH); 3341 (OH); 2935, 2825 (CH); 1745 (>C=O of quinolone); 1670 (amide-I); 1562 (amide-II); 1321, 1175 (S=O, sym, asym); 1315 (C–N); 1265 (amide-III); 1058 (S–N); and 795 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.67 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.42 (s, 1H, CH<sub>2</sub>OH); 8.65 (s, H-2, quinolone); 7.88 (s, H-5, quinolone); 8.81–9.65 (m, 3H, pyrido); 10.15 (s, 1H, CO.NH); 9.95 (s, 1H, SO<sub>2</sub>NH); 7.19–7.65 (m, 4H, Ar–H); and 2.10 (s, 3H, Ar–CH<sub>3</sub>). Anal. Calcd. for C<sub>27</sub>H<sub>20</sub>O<sub>7</sub>N<sub>5</sub>SCI: C, 59.78; H, 4.12; and N, 9.96. Found: C, 59.74; H, 4.09; and N, 9.92. 6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(2,5-dimethyphenylsulfamoyl)phenyl]amide (**5k**)

Yield = 60%, m.p. 258-260°C.

6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(2-cyno-4nitrophenylsulfamoyl)phenyl]amide (51)

Yield = 64%, m.p. 233–235°C. IR (KBr) cm<sup>-1</sup>: 3428 (NH); 3335 (OH); 2925, 2818 (CH); 2236 (>C $\equiv$ N); 1755 (>C=O of quinolone); 1665 (amide-I); 1565 (amide-II); 1528, 1332 (N=O sym, asym); 1325, 1174 (S=O, sym, asym); 1304 (C–N); 1260 (amide-III); 1062 (S–N); and 795 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.67 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.42 (s, 1H, CH<sub>2</sub>OH); 8.65 (s, H-2, quinolone); 7.88 (s, H-5, quinolone); 8.81–9.65 (m, 3H, pyrido); 10.15 (s, 1H, CO.NH); 9.95 (s, 1H, SO<sub>2</sub>NH); and 7.19–7.65 (m, 3H, Ar–H). Anal. Calcd. for C<sub>27</sub>H<sub>20</sub>O<sub>7</sub>N<sub>5</sub>SCl: C, 59.78; H, 4.12; and N, 9.96. Found: C, 59.74; H, 4.09; and N, 9.92.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(substitutedphenylsulfamoyl)phenyl]amide (**6a**–**I**)

4-Amino-*N*-(substitutedphenyl)benzenesulfonamides (0.005 mol) was dissolved in dry pyridine and added dropwise in solution of carbonyl chloride **2b** (0.005 mol) in pyridine within 1.5 h with constant stirring at  $0-5^{\circ}$ C and refluxed for 8 h, Then, refluxed material was poured into acidic crushed ice, and the solid mass was filtered and washed thoroughly with NaHCO<sub>3</sub> solution for neutralization. The purity of the compounds was monitored by TLC on silica gel glass plate using benzene:ethylacetate (1:1) as mobile phase.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(phenylsulfamoyl)phenyl]amide (**6a**)

Yield = 62%, m.p. 235-237°C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(3chlorophenylsulfamoyl)phenyl]amide (**6b**)

Yield = 65%, m.p. 271–273°C. IR (KBr) cm<sup>-1</sup>: 3432 (NH); 3395 (OH); 2945, 2858 (CH); 1746 (>C=O of quinolone); 1668 (amide-I); 1528 (amide-II); 1352, 1165 (S=O, sym, asym); 1314 (C–N); 1265 (amide-III); 1075 (S–N); and 795 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.67

(m, 4H,  $>N(CH_2)_2O$ ); 4.42 (s, 1H, CH<sub>2</sub>OH); 8.65 (s, H-2, quinolone); 7.88 (s, H-5, quinolone); 8.81–9.65 (m, 3H, pyrido); 10.15 (s, 1H, CO.NH); 9.95 (s, 1H, SO<sub>2</sub>NH); 5.60 (s, 1H, Ar–OH); 7.19-7.65 (m, 4H, Ar–H). Anal. Calcd. for C<sub>27</sub>H<sub>21</sub>O6N<sub>4</sub>SCI: C, 57.44; H, 3.75; and N, 9.93. Found: C, 57.42; H, 3.72; and N, 9.90.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(4chlorophenylsulfamoyl)phenyl]amide (**6c**)

Yield = 54%, m.p. 258-260°C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(2methoxyphenylsulfamoyl)phenyl]amide (**6d**)

Yield = 66%, m.p. 245–248°C. IR (KBr) cm<sup>-1</sup>: 3435 (NH); 3385 (OH); 2942, 2848 (CH); 1755 (>C=O of quinolone); 1674 (amide-I); 1532 (amide-II); 1345, 1166 (S=O, sym, asym); 1320 (C–N); 1261 (amide-III); 1269, 1040 (C–O–C); and 1065 (S–N). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.61 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.47 (s, 1H, CH<sub>2</sub>OH); 8.69 (s, H-2, quinolone); 7.85 (s, H-5, quinolone); 8.79–9.62 (m, 3H, pyrido); 10.25 (s, 1H, CO.NH); 10.12 (s, 1H, SO<sub>2</sub>NH); 5.64 (s, 1H, Ar–OH); 7.20–7.52 (m, 4H, Ar–H); and 3.78 (s, 3H, Ar–OCH<sub>3</sub>). Anal. Calcd. for C<sub>28</sub>H<sub>24</sub> O<sub>7</sub>N<sub>4</sub>S: C, 59.99; H, 4.32; and N,10.00. Found: C, 59.96; H, 4.30; and N,10.02.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(4methoxyphenylsulfamoyl)phenyl]amide (**6e**)

Yield = 59%, m.p.  $275-277^{\circ}$ C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(3nitrophenylsulfamoyl)phenyl]amide (**6**f)

Yield = 67%, m.p. 263–265°C. IR (KBr) cm<sup>-1</sup>: 3441 (NH); 3387 (OH); 2937, 2845 (CH); 1749 (>C=O of quinolone); 1672 (amide-I); 1535 (amide-II); 1525, 1325 (N=O sym, asym); 1335, 1162 (S=O, sym, asym); 1315 (C–N); 1265 (amide-III); and 1065 (S–N). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.65 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.48 (s, 1H, CH<sub>2</sub>OH); 8.65 (s, H-2, quinolone); 7.84 (s, H-5, quinolone); 8.75–9.61 (m, 3H, pyrido); 10.15 (s, 1H, CO.NH); 10.15 (s, 1H, SO<sub>2</sub>NH); 5.65 (s, 1H, Ar–OH); and 7.15–7.45 (m, 4H, Ar–H). Anal. Calcd. for C<sub>27</sub>H<sub>21</sub>O<sub>8</sub>N<sub>5</sub>S: C, 56.34; H, 3.68; and N,12.17. Found: C, 56.32; H, 3.65; and N,12.15.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(4nitrophenylsulfamoyl)phenyl]amide (**6**g)

Yield = 63%, m.p.  $255-257^{\circ}$ C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(2methylphenylsulfamoyl)phenyl]amide (**6h**)

Yield = 60%, m.p. 275–277°C. IR (KBr) cm<sup>-1</sup>: 3438 (NH); 3375 (OH); 2939, 2852 (CH); 1752 (>C=O of quinolone); 1665 (amide-I); 1538 (amide-II); 1338, 1165 (S=O, sym, asym); 1305 (C–N); 1261 (amide-III); and 1060 (S–N). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.66 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.45 (s, 1H, CH<sub>2</sub>OH); 8.60 (s, H-2, quinolone); 7.89 (s, H-5, quinolone); 8.74–9.69 (m, 3H, pyrido); 10.10 (s, 1H, CO.NH); 9.95 (s, 1H, SO<sub>2</sub>NH); 5.62 (s, 1H, Ar–OH); 7.05–7.41 (m, 4H, Ar–H); and 2.21 (s, 3H, Ar-CH<sub>3</sub>). Anal. Calcd. for C<sub>28</sub>H<sub>24</sub>O6N<sub>4</sub>S: C, 61.75; H, 4.45; and N,10.29. Found: C, 61.72; H, 4.42; and N,10.27.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(3methylphenylsulfamoyl)phenyl]amide (**6***i*)

Yield = 58%, m.p. 240-241°C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(4methylphenylsulfamoyl)phenyl]amide (**6j**)

Yield = 62%, m.p. 264-266°C. IR (KBr) cm<sup>-1</sup>: 3435 (NH); 3371 (OH); 2935, 2845 (CH); 1745 (>C=O of quinolone); 1668 (amide-I); 1535 (amide-II); 1340, 1168 (S=O, sym, asym); 1315 (C–N); 1265 (amide-III); and 1065 (S–N). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta \delta$  3.60 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.48 (s, 1H, CH<sub>2</sub>OH); 8.62 (s, H-2, quinolone); 7.88 (s, H-5, quinolone); 8.65–9.65 (m, 3H, pyrido); 10.15 (s, 1H, CO.NH); 9.98 (s, 1H, SO<sub>2</sub>NH); 5.68 (s, 1H, Ar–OH); 7.15–7.48 (m, 4H, Ar–H); and 2.15 (s, 3H, Ar-CH<sub>3</sub>). Anal. Calcd. for C<sub>28</sub>H<sub>24</sub>O6N<sub>4</sub>S: C, 61.75; H, 4.45; and N,10.29. Found: C, 61.70; H, 4.44; and N,10.31.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(2,5-dimethylphenylsulfamoyl)phenyl]amide (**6**k)

Yield = 67%, m.p.  $277-279^{\circ}$ C.

6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carboxylicacid [4-(2-cyno-4nitrophenylsulfamoyl)phenyl]amide (**6**)

Yield = 65%, m.p. 280–282°C. IR (KBr) cm<sup>-1</sup>: 3428 (NH); 3365 (OH); 2925, 2832 (CH); 2236 (>C $\equiv$ N); 1751 (>C=O of quinolone); 1665 (amide-I); 1532 (amide-II); 1528, 1332 (N=O sym, asym); 1345, 1160 (S=O, sym, asym); 1325 (C–N); 1262 (amide-III); and 1056 (S–N). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.68 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.47 (s, 1H, CH<sub>2</sub>OH); 8.65 (s, H-2, quinolone); 7.85 (s, H-5, quinolone); 8.62–9.62 (m, 3H, pyrido); 10.10 (s, 1H, CO.NH); 9.95 (s, 1H, SO<sub>2</sub>NH); 5.69 (s, 1H, Ar–OH); and 7.10-7.52 (m, 3H, Ar–H). Anal. Calcd. for C<sub>28</sub>H<sub>20</sub>O<sub>8</sub>N<sub>4</sub>S: C, 58.73; H, 3.52; and N,9.79. Found: C, 58.70; H, 3.50; and N,9.76.

1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(substitutedphenyl)thiourea (**7a–l**)

Substitutedphenyl thioureas (0.005 mol) was dissolved in dry pyridine and added dropwise in solution of carbonyl chloride **2a** (0.005 mol) in pyridine within 1.5 h with constant stirring at  $0-5^{\circ}$ C and refluxed for 8 h, Then, refluxed material was suspended into acidic crushed ice, and the solid mass was filtered and washed thoroughly with NaHCO<sub>3</sub> solution for neutralization. The purity of the compounds were monitored by TLC on silica gel glass plate using benzene:ethylacetate (1:1) as mobile phase.

1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-phenylthiourea (**7a**)

Yield = 55%, m.p. 257–258°C. IR (KBr) cm<sup>-1</sup>: 3434 (NH); 3322 (OH); 2950, 2860 (CH); 1735 (>C=O of quinolone); 1650 (amide-I); 1540 (amide-II); 1300 (C–N); 1256 (amide-III); 1190 (>C=S); and 766 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.31 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.35 (s, 1H, CH<sub>2</sub>OH); 8.70 (s, H-2, quinolone); 8.14 (s, H-5, quinolone); 8.88–9.45 (m, 3H, pyrido); 10.05 (s, 1H, CO.NH); 10.25 (s, 1H, CS.NH); and 7.30–7.92 (m, 5H, Ar–H). Anal. Calcd. for C<sub>22</sub>H<sub>17</sub>O<sub>3</sub>N<sub>4</sub>SCl: C, 58.40; H, 3.79; and N,12.39. Found: C, 58.38; H, 3.76; and N,12.36.

1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(3hydroxyphenyl)thiourea (**7b**)

Yield = 65%, m.p. 244-246°C.

1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(4hydroxyphenyl)thiourea (7c)

Yield = 60%, m.p. 275–276°C. IR (KBr) cm<sup>-1</sup>: 3445 (NH); 3315 (OH); 2945, 2865 (CH); 1741 (>C=O of quinolone); 1645 (amide-I); 1540 (amide-II); 1305 (C–N); 1258 (amide-III); 1165 (>C=S); and 766 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.45 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.25 (s, 1H, CH<sub>2</sub>OH); 8.85 (s, H-2, quinolone); 8.24 (s, H-5, quinolone); 8.85–9.35 (m, 3H, pyrido); 10.10 (s, 1H, CO.NH); 10.35 (s, 1H, CS.NH); 7.25–7.85 (m, 4H, Ar–H); and 5.65 (s, 1H, Ar–OH). Anal. Calcd. for C<sub>22</sub>H<sub>17</sub>O<sub>4</sub>N<sub>4</sub>SCl: C, 56.40; H, 3.66; and N,11.97. Found: C, 56.37; H, 3.64; and N,11.95.

1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(2methoxyphenyl)thiourea (7d)

Yield = 57%, m.p. 277-279°C.

1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(4methoxyphenyl)thiourea (**7e**)

Yield = 60%, m.p. 255–256°C. IR (KBr) cm<sup>-1</sup>: 3452 (NH); 3325 (OH); 2935, 2860 (CH); 1748 (>C=O of quinolone); 1656 (amide-I); 1535 (amide-II); 1315 (C–N); 1269, 1040 (C–O–C); 1255 (amide-III); 1160 (>C=S); and 769 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.52 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.30 (s, 1H, CH<sub>2</sub>OH); 8.78 (s, H-2, quinolone); 8.30 (s, H-5, quinolone); 8.75–9.25 (m, 3H, pyrido); 10.05 (s, 1H, CO.NH); 10.15 (s, 1H, CS.NH); 7.26–7.75 (m, 4H, Ar–H); and 3.85 (s, 3H, Ar–OCH<sub>3</sub>). Anal. Calcd. for C<sub>23</sub>H<sub>19</sub>O<sub>4</sub>N<sub>4</sub>SCI: C, 57.25; H, 3.62; and N,11.93. Found: C, 57.25; H, 3.64; and N,11.95.

1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(2nitrophenyl)thiourea (**7f**)

Yield = 67%, m.p. 284-286°C.

1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(3nitrophenyl)thiourea (7g)

Yield = 56%, m.p. 261–263°C. IR (KBr) cm<sup>-1</sup>: 3456 (NH); 3330 (OH); 2925, 2865 (CH); 1755 (>C=O of quinolone); 1665 (amide-I); 1520 (amide-II); 1528, 1332

(N=O); 1325 (C–N); 1245 (amide-III); 1165 (>C=S); and 777 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.51 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.41 (s, 1H, CH<sub>2</sub>OH); 8.80 (s, H-2, quinolone); 8.25 (s, H-5, quinolone); 8.68–9.20 (m, 3H, pyrido); 10.00 (s, 1H, CO.NH); 10.22 (s, 1H, CS.NH); and 7.24–7.71 (m, 4H, Ar–H). Anal. Calcd. for C<sub>22</sub>H<sub>1</sub>6O<sub>5</sub>N<sub>5</sub> SCl: C, 53.11; H, 3.24; and N,14.09. Found: C, 53.09; H, 3.24; and N,14.07.

1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(4-nitrophenyl)thiourea (**7h**)

Yield = 61%, m.p. 249–251°C. IR (KBr) cm<sup>-1</sup>: 3445 (NH); 3325 (OH); 2920, 2862 (CH); 1748 (>C=O of quinolone); 1662 (amide-I); 1528 (amide-II); 1535, 1340 (N=O); 1320 (C–N); 1235 (amide-III); 1160 (>C=S); and 772 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>): δ 3.55 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.47 (s, 1H, CH<sub>2</sub>OH); 8.75 (s, H-2, quinolone); 8.15 (s, H-5, quinolone); 8.65–9.15 (m, 3H, pyrido); 10.05 (s, 1H, CO.NH); 10.28 (s, 1H, CS.NH); and 7.14–7.65 (m, 4H, Ar–H). Anal. Calcd. for C<sub>23</sub>H<sub>19</sub>O<sub>3</sub>N<sub>4</sub> SCl: C, 59.22; H, 4.11; and N,12.02. Found: C, 59.20; H, 4.09; and N,12.04.

1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(2-methylphenyl)thiourea (**7i**)

Yield = 67%, m.p. 243-244°C.

*1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(3methylphenyl)thiourea (7j)* 

Yield = 62%, m.p. 241-243°C.

*1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(4methylphenyl)thiourea (7k)* 

Yield = 63%, m.p. 263–265°C. IR (KBr) cm<sup>-1</sup>: 3452 (NH); 3330 (OH); 2922, 2865 (CH); 1752 (>C=O of quinolone); 1665 (amide-I); 1522 (amide-II); 1325 (C–N); 1231 (amide-III); 1165 (>C=S); and 762 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.57 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.51 (s, 1H, CH<sub>2</sub>OH); 8.65 (s, H-2, quinolone); 8.20 (s, H-5, quinolone); 8.62–9.20 (m, 3H, pyrido); 10.12 (s, 1H, CO.NH); 10.22 (s, 1H, CS.NH); 7.25–7.74 (m, 4H, Ar–H); and 2.22 (s, 1H, Ar–CH<sub>3</sub>). Anal. Calcd. for C<sub>23</sub>H<sub>19</sub>O<sub>3</sub>N<sub>4</sub>SCl: C, 59.22; H, 4.11; and N,12.02. Found: C, 59.24; H, 4.13; and N,12.00.

1-[6-Chloro-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(3-chlorophenyl)thiourea (**7***l*)

Yield = 60%, m.p. 251–253°C. IR (KBr) cm<sup>-1</sup>: 3435 (NH); 3325 (OH); 2945, 2845 (CH); 1745 (>C=O of quinolone); 1665 (amide-I); 1562 (amide-II); 1312 (C–N); 1245 (amide-III); 1160 (>C=S); and 764 (C–Cl). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.35 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.37 (s, 1H, CH<sub>2</sub>OH); 8.75 (s, H-2, quinolone); 8.10 (s, H-5, quinolone); 8.90–9.52 (m, 3H, pyrido); 9.90 (s, 1H, CO.NH); 10.22 (s, 1H, CS.NH); and 7.18–7.95 (m, 4H, Ar–H). Anal. Calcd. for C<sub>22</sub>H<sub>18</sub>O<sub>4</sub>N<sub>4</sub>S: C, 60.81; H, 4.18; and N,12.90. Found: C, 60.78; H, 4.15; and N,12.85.

1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(substitutedhydroxyphenyl)thiourea (**8a–l**)

Substitutedphenyl thioureas (0.005 mol) was dissolved in dry pyridine and added dropwise the solution of carbonyl chloride **2b** (0.005 mol) in pyridine within 1.5 h with constant stirring at  $0-5^{\circ}$ C and refluxed for 8 h; then, refluxed material was poured into acidic crushed ice; and the solid mass was filtered and was washed thoroughly with NaHCO<sub>3</sub> solution for neutralization. The purity of the compounds was monitored by TLC on silica gel glass plate using benzene:ethylacetate (1:1) as mobile phase.

1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-phenylthiourea (**8a**)

Yield = 66%, m.p. 246-247°C.

1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(3-hydroxyphenyl)thiourea (**8b**)

Yield = 62%, m.p. 281-283°C.

1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(4-hydroxyphenyl)thiourea (**8c**)

Yield = 56%, m.p. 246–248°C. IR (KBr) cm<sup>-1</sup>: 3425 (NH); 3315 (OH); 2952, 2838 (CH); 1745 (>C=O of quinolone); 1662 (amide-I); 1562 (amide-II); 1315 (C–N); 1248 (amide-III); and 1165 (>C=S). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.42 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.35 (s, 1H, CH<sub>2</sub>OH); 8.74 (s, H-2, quinolone); 8.15 (s, H-5, quinolone); 8.88–9.45 (m, 3H, pyrido); 9.95 (s, 1H, CO.NH); 10.15 (s, 1H, CS.NH); 7.18–7.95 (m, 4H, Ar–H); and 5.40, 6.20 (s, 1H, Ar–OH). Anal. Calcd. for  $C_{22}H_{18}O_5N_4S$ : C, 58.65; H, 4.03; and N,12.44. Found: C, 58.62; H, 4.01; and N,12.42.

1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(2-methoxyphenyl)thiourea (**8d**)

Yield = 56%, m.p.  $241-243^{\circ}$ C.

1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(4-methoxyphenyl)thiourea (**8e**)

Yield = 60%, m.p. 233–235°C. IR (KBr) cm<sup>-1</sup>: 3445 (NH); 3324 (OH); 2945, 2825 (CH); 1748 (>C=O of quinolone); 1665 (amide-I); 1565 (amide-II); 1323 (C–N); 1252 (amide-III); 1235, 1020 (C–O–C); and 1161 (>C=S). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.44 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.45 (s, 1H, CH<sub>2</sub>OH); 8.78 (s, H-2, quinolone); 8.05 (s, H-5, quinolone); 8.08–9.35 (m, 3H, pyrido); 9.98 (s, 1H, CO.NH); 10.18 (s, 1H, CS.NH); 7.28–7.85 (m, 4H, Ar–H); and 3.85 (s, 1H, Ar–OCH<sub>3</sub>). Anal. Calcd. for C<sub>23</sub>H<sub>20</sub>O<sub>5</sub> N<sub>4</sub>S: C, 59.47; H, 4.34; and N,12.07. Found: C, 59.45; H, 4.24; and N,12.05.

*1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(2nitrophenyl)thiourea* (**8***f*)

Yield = 63%, m.p. 253-254°C.

1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(3-nitrophenyl)thiourea (**8g**)

Yield = 56%, m.p. 244–246°C. IR (KBr) cm<sup>-1</sup>: 3450 (NH); 3314 (OH); 2948, 2828 (CH); 1748 (>C=O of quinolone); 1675 (amide-I); 1564 (amide-II); 1315 (C–N); 1248 (amide-III); 1512, 1352 (N=O sym, asym); and 1168 (>C=S). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.48 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.42 (s, 1H, CH<sub>2</sub>OH); 8.88 (s, H-2, quinolone); 8.11 (s, H-5, quinolone); 8.15–9.25 (m, 3H, pyrido); 9.92 (s, 1H, CO.NH); 10.15 (s, 1H, CS.NH); and 7.25–7.75 (m, 4H, Ar–H). Anal. Calcd. for C<sub>23</sub>H<sub>20</sub>O<sub>5</sub>N<sub>4</sub>S: C, 55.10; H, 3.58; and N,14.61. Found: C, 55.05; H, 3.45; and N,14.59.

1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(4nitrophenyl)thiourea (**8h**)

Yield = 58%, m.p. 251–253°C. IR (KBr) cm<sup>-1</sup>: 3445 (NH); 3310 (OH); 2958, 2818 (CH); 1752 (>C=O of

quinolone); 1665 (amide-I); 1562 (amide-II); 1321 (C–N); 1352 (N=O sym, asym); 1252 (amide-III); and 1168 (>C=S). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.52 (m, 4H, >N (CH<sub>2</sub>)<sub>2</sub>O); 4.40 (s, 1H, CH<sub>2</sub>OH); 8.85 (s, H-2, quinolone); 8.14 (s, H-5, quinolone); 8.01–9.15 (m, 3H, pyrido); 9.85 (s, 1H, CO.NH); 10.25 (s, 1H, CS.NH); and 7.15–7.85 (m, 4H, Ar–H). Anal. Calcd.for C<sub>23</sub>H<sub>20</sub>O<sub>4</sub>N<sub>4</sub>S:C, 61.59; H,4.50; and N,12.50. Found: C,61.55; H,4.48; and N, 12.47.

*1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(2methylphenyl)thiourea* (*8i*)

Yield = 60%, m.p.  $235-237^{\circ}$ C.

*1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(3methylphenyl)thiourea* (*8j*)

Yield = 52%, m.p. 237-239°C.

1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(4-methylphenyl)thiourea (**8**k)

Yield = 60%, m.p. 251–253°C. IR (KBr) cm<sup>-1</sup>: 3452 (NH); 3315 (OH); 2945, 2810 (CH); 1742 (>C=O of quinolone); 1675 (amide-I); 1565 (amide-II); 1328 (C–N); 1245 (amide-III); and 1160 (>C=S). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>):  $\delta$  3.47 (m, 4H, >N(CH<sub>2</sub>)<sub>2</sub>O); 4.35 (s, 1H, CH<sub>2</sub>OH); 8.75 (s, H-2, quinolone); 8.18 (s, H-5, quinolone); 8.05–9.25 (m, 3H, pyrido); 9.88 (s, 1H, CO.NH); 10.28 (s, 1H, CS.NH); 7.05–7.78 (m, 4H, Ar–H); and 2.44 (s, 3H, Ar– CH<sub>3</sub>). Anal. Calcd. for C<sub>23</sub>H<sub>20</sub>O<sub>4</sub>N<sub>4</sub>S: C, 61.59; H, 4.50; and N,12.50. Found: C, 61.54; H, 4.47; and N,12.46.

1-[6-Hydroxy-1-(2-hydroxyethyl)-4-oxo-1,4-dihydro-[1,7]phenanthroline-3-carbonyl]-3-(3-chlorophenyl)thiourea (**8***l*)

Yield = 51%, m.p. 246-248°C.

# References

- Bhanot SK, Singh M, Chatterjee NR (2001) The chemical and biological aspects of fluoroquinolone: reality and dreams. Current Pharma Design 7:313–317
- Bhusari KP, Amnerkar ND, Khedekar PB, Kale MK, Bhole RP (2008) Synthesis and invitro antimicrobial activity of some new 4-amino-N-(1,3-benzothiazol-2-yl)benzenesulphonamide derivatives. Asian J Res Chem 1:53–57
- Briganti F, Scozzafava A, Supuran CT (1997) Sulfonylamido derivatives of aminoglutethimide and their copper(II) complexes: a

novel class of antifungal compounds. Eur J Med Chem 32: 901–910

- Bromidge SM, Clarke SE, King FD, Lovell PJ, Newman H, Riley G, Routledge C, Serafinowska HT, Smith DR, Thomas DR (2002) Bicyclic piperazinylbenzenesulphonamides are potent and selective 5-HT6 receptor antagonists. Bioorg Med Chem Lett 12: 1357–1360
- Brown GM (1962) Biosynthesis of folic acid. J Bio Chem 237:536–540
- Collee GJ, Fraser GA, Marmion PB, Simmon A (1996) Practical medical microbiology. Churcill Livinstone, Edinburg, pp 163–174
- Dannhardt G, Fiebich BL, Schweppenhäuser J (2002) COX-1/COX-2 inhibitors based on the methanone moiety. Eur J Med Chem 37:147–161
- Hirpara KV, Patel SP, Parikh KA, Bhimani AS, Parekh HH (2004) Preparation, characterisation and antimicrobial activities of some novel nitriles and imidazolines. J Sci Islamic Rep Iran 15(2):135–138
- Kamal A, Ahmed SK, Reddy KS, Khan MA, Shetty R, Siddhardha B, Murthy USN, Khan IA, Kumar M, Sharma S, Ram AB (2007) Anti-tubercular agents. Part IV: synthesis and antimycobacterial evaluation of nitroheterocyclic-based 1,2,4-benzothiadiazines. Bioorg Med Chem Lett 17:5419–5422
- Lee JK, Chang SJ (1994) Quinolone(II): synthesis of Fluorosubstituted pyrido[3,2-h] quinolone derivatives as potential antibacterials. Korean J Med Chem 4(2):92–100
- Lee JK, Chang SJ (1996) Quinolone(III): synthesis of pyrido[2,3-h] quinolone and pyrido [2,3-g] quinolone-3 carboxilic acid derivatives as potential antibacterials. Bull Korean Chem Soc 17:90–93
- Lee JK, Lee SH, Chang SJ (1992) New quinolones(I); Synthesis of new pyrido[3,2-h] quinoline derivatives and their antibacterial activity. Bull Korean Chem Soc 13(5):571–573
- Li JJ, Anderson GD, Burton EG, Cogburn JN, Collins JT, Garland DJ, Gregory SA, Huang H, Isakson PC (1995) 1,2-

Diarylcyclopentenes as selective Cyclooxygenase-2 Inhibitors and orally active anti-inflammatory agents. J Med Chem 38:4570–4578

- Maruyama T, Seki N, Onda K, Suzuki T, Kawazoe S, Hayakawa M, Matsui T, Takasu T, Ohta M (2009) Discovery of novel thiourea derivatives as potent and selective  $\beta$ 3-adrenergic receptor agonists. Bioorg Med Chem 17:5510–5519
- Mitscher LA (2005) Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev 105:559–592
- Reddy NS, Mallireddigari MR, Stephen C, Kiranmai G, Stanley B, Reddy P, Reddy R (2004) Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg Med Chem Lett 14:4093–4097
- Selvam P, Chandramohan M, De Clercq E, Witvrouw M, Pannecouque C (2001) Synthesis and anti-HIV activity of 4-[(1,2-dihydro-2-oxo-3H-indol-3-ylidene) amino]-N(4,6-dimethyl-2-pyrimidinyl)-benzene sulfonamide and its derivatives. Eur J Pharma Sci 14:313–316
- Supuran CT, Scozzafava A, Jurca BC, Ilies MA (1998) Carbonic anhydrase inhibitors Carbonic anhydrase inhibitors—part 49: synthesis of substituted ureido and thioureido derivatives of aromatic/heterocyclic sulfonamides with increased affinities for isozyme. Eur J Med Chem 33:83–93
- Sycheva TP, Kiseleva ID, Shchukina MN (1966) The synthesis of compounds with potential antitubercular activity. Chem Hetero Com 2:526–528
- Turan-Zitouni G, Sivaci DM, Kaplancikli ZA, Ozdemir A (2002) Synthesis and antimicrobial activity of some pyridinyliminothiazoline derivatives. Farmaco 57:569–572
- Venkatesh P, Pandeya SN (2009) Synthesis, characterisation and antiinflammatory activity of some 2-amino benzothiazole derivatives. Int J Chemtech Res 1:1354–1358
- Yan Z, Cai X, Yang X, Song B, Chen Z, Bhadury P, Hu D, Jin L, Xue W, Lu P (2009) Synthesis and antiviral activities of chiral thiourea derivatives. Chin J Chem 27(3):593–601